
1

Looking Glass of NFV: Inferring the Structure and

State of NFV Network from External Observations
Yilei Lin, Student Member, IEEE, Ting He, Senior Member, IEEE, Shiqiang Wang, Member, IEEE, Kevin Chan,

Senior Member, IEEE, and Stephen Pasteris

Abstract—The rapid development of network function
virtualization (NFV) enables a communication network to
provide in-network services using virtual network functions
(VNFs) deployed on general IT hardware. While existing
studies on NFV focused on how to provision VNFs from the
provider’s perspective, little is done about how to validate the
provisioned resources from the user’s perspective. In this work,
we take a first step towards this problem by developing an
inference framework designed to “look into” the NFV network.
Our framework infers the structure and state of the overlay
formed by VNF instances, ingress/egress points of measurement
flows, and critical points on their paths (branching/joining
points). Our solution only uses external observations such as
the required service chains and the end-to-end performance
measurements. Besides the novel application scenario, our work
also fundamentally advances the state of the art on topology
inference by considering (i) general topologies with general
measurement paths, and (ii) information of service chains.
Our evaluations show that the proposed solution significantly
improves both the reconstruction accuracy and the inference
accuracy over existing solutions, and service chain information
is critical in revealing the structure of the underlying topology.

Index Terms—Network function virtualization, network topol-
ogy inference, network tomography

I. INTRODUCTION

Modern communication networks have outgrown simple bit

pipes. Increasingly, network providers use network appliances

to provide in-network services, e.g., Network Address Trans-

lators (NATs), firewalls, Intrusion Detection Systems (IDSs),

Intrusion Prevention Systems (IPSs), Deep Packet Inspectors

(DPIs), web proxies, and WAN optimizers [2]. While tradi-

tionally deployed as physical middleboxes implemented by

special-purpose hardware, next-generation network appliances

are increasingly deployed as software middleboxes, referred

to as Virtual Network Functions (VNFs), running on general-

purpose servers. This technology, known as Network Function

Virtualization (NFV) [3], is empowering network providers to

partner with cloud providers and software vendors to provide

innovative value-adding services within the communication

network [4].

Y. Lin (yjl5282@psu.edu) and T. He (tzh58@psu.edu) are with the Penn-
sylvania State University. S. Wang (wangshiq@us.ibm.com) is with IBM
T. J. Watson Research Center. K. Chan (kevin.s.chan.civ@mail.mil) is with
US Army Research Laboratory. S. Pasteris (s.pasteris@cs.ucl.ac.uk) is with
University College London.

A preliminary version of this work was presented at INFOCOM’19 [1].
This research was partly sponsored by the U.S. Army Research Laboratory and the

U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views
and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

On one hand, NFV opens up a whole new solution space

for configuring the network. Encapsulated as virtual machine

(VM) instances, VNFs can be scaled up/down, replicated,

and/or migrated to suit the current demands. Moreover, multi-

ple VNFs can be organized into a chain (a.k.a. service chain)

to serve flows with multiple processing needs. Solutions have

been developed to exploit the enlarged solution space from the

provider’s perspective, by optimizing the placement of VNFs

[5]–[8], the routing among VNFs [9], or a combination of

these actions [10]–[13].

On the other hand, the presence of (virtual or physical)

network appliances significantly complicates network manage-

ment. Due to the widespread deployment of network appli-

ances, the network administrator needs to manage not only

routers and switches, but also a variety of network appli-

ances, leading to high operational expenses and administrative

headaches [2]. The problem remains even with the virtual-

ization of network appliances, as the network administrator

still needs to manage VNFs based on software that is often

developed by independent vendors [4]. Furthermore, as NFV

becomes widely adopted by network providers, there will

be needs for a client (network administrator) to validate the

service received from its network provider, or for a network

provider to validate the service received from its peers. It is

therefore highly desirable to have a method that can “look

into” the NFV network without directly measuring individual

routers or VNF instances. Besides service validation, such a

method can also be used to engineer the optimal use of the

network, e.g., via service placement, flow scheduling, client-

server association, and load balancing.

In this work, we take a first step towards addressing this

problem by jointly inferring the internal structure and state of

an NFV network using external observations. We consider two

types of observations: (i) parameters of flow demands (e.g.,

ingress/egress points and service chains) and (ii) end-to-end

performance measurements (e.g., delays and losses). While

these observations do not directly specify the physical network

topology, we argue that they can provide useful information

about the VNF overlay, such as: the traversal of VNF instances

by each flow, the sharing of links & VNF instances across

flows, and the performance of these links & VNF instances.

We note that while motivated by NFV networks, our models

and solutions are applicable to any network employing gener-

alized forwarding under the constraint of waypoint traversals.

We model the above information by a directed, vertex-

labeled, and edge-weighted graph, referred to as the VNF

topology, where the graph topology represents the intercon-

nections between VNF instances, the vertex labels represent

2

the (logical) VNF placement, and the edge weights represent

the VNF performances1. We refer to the problem of inferring

the VNF topology as the VNF topology inference problem.

A. Related Work

NFV resource management: From an application perspec-

tive, our work is related to resource management in NFV.

As an emerging technology, NFV resource management has

only begun to be studied recently, where existing works

have addressed VNF placement [5]–[8], admission control and

path selection [9], and joint optimizations of multiple control

knobs [10]–[13]. Specifically, [10], [11] jointly optimize VNF

placement and routing, [12] jointly optimizes VNF placement,

routing, and admission control under hard capacity constraints,

and [13] jointly optimizes VNF placement, routing, and re-

source allocation under soft capacity constraints. However,

all the above are from the provider’s perspective. To our

knowledge, we are the first to investigate the validation of

VNF provisioning from the user’s perspective.

Network topology inference: Technically, our work be-

longs to the family of works on topology inference using

end-to-end measurements. In the context of communication

networks, the problem was initially studied for multicast

probing [14], [15], where correlation among losses observed

at multicast receivers is used to infer the multicast tree. Over

the years, the technique was extended to exploit a variety

of multicast measurements, including losses [16]–[19], delays

[19]–[21] and a combination of losses and delays [22]. Mean-

while, due to the limited support of multicast, unicast-based

solutions [23]–[25] were developed, using stripes of back-

to-back unicast packets [23], [24] or “sandwiches” of small

and large packets [25]. Most of these algorithms are inspired

by phylogenetic tree algorithms, which aim at constructing

a tree-structured model to represent the measured distances

between leaf nodes [26]. To improve the accuracy of topology

inference, a hybrid approach was proposed in [27], where end-

to-end measurements are augmented with a small number of

direct measurements (obtained by traceroute).

A few works considered underlying topologies that are not

trees [28]–[37], all based on measurements from multiple

sources. However, solutions in [33], [35] still constructed tree

topologies, except that the accuracy was analyzed with respect

to an underlying topology that may not be a tree. Solutions

in [28]–[31], [34] constructed directed acyclic graphs (DAGs)

by merging 2-by-2 topologies (i.e., quartets) depicting the

connections between two sources and two destinations, and

a similar idea was used in [36] by merging 1-by-3 topologies.

With the additional requirement that internal nodes support

network coding, [32] constructed DAGs with reduced prob-

ing overhead. Assuming measurements of 1-by-2 and 2-by-1

topologies, [37] presented a necessary and sufficient condition

for the underlying topology to be identifiable and an algorithm

to do so. However, all the above solutions assumed that there is

a single route for every source-destination pair, and the routes

from/to each node form a tree. In the context of NFV, the

1More precisely, the weight of an edge (s(e), t(e)) represents the overall
performance for data transfer from s(e) to t(e) and data processing at t(e),
the physical meaning of which will be explained in Section II-C.

source destination

VNF1 VNF2

path 1

(a) physical topology

path 2

s1
t1

f1

f2

f2(s2) (t2)

f0 f0

(b) overlay topology

p1

p2

Fig. 1. Topologies of the physical substrate and the VNF overlay.

requirements of VNF traversals can cause flows to deviate

from the default routes (e.g., shortest paths), and hence the

underlying topology may not be a tree even if all the probes are

sent by a single source. To our knowledge, our work is the first

to investigate topology inference based on end-to-end mea-

surements for an arbitrary topology under arbitrary routing.

B. Summary of Contributions

The main contributions of this work are:

1) We are the first to consider external observation-based

topology inference in NFV networks.

2) We show that the approach of tree approximation (for

each probing source/destination) as used by existing topology

inference algorithms is insufficient for NFV networks, and we

propose a two-step solution framework, designed to give the

smallest logical topology that is equivalent to the ground truth.

3) We extend our solution to incorporate information from

service chains, by reformulating our problem as a novel com-

binatorial optimization problem (string augmentation problem)

that can be cast as an integer linear program (ILP).

4) Through extensive data-driven simulations, we verify that

our solution significantly outperforms existing solutions in

both reconstructing the measurements and approximating the

ground truth topology, where service chain information plays

a critical role.

Roadmap. Section II formalizes our problem. Section III

addresses a simplified version of our problem in a classical

setting, and Section IV addresses the full version that incor-

porates service information. Section V evaluates the proposed

solution against benchmarks. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we model the VNF overlay by

a directed, vertex-labeled, and edge-weighted graph G =
(V,E, l, w), referred to as the VNF topology.

The vertex set V denotes the set of VNF instances and

critical points on measurement paths (sources, destinations,

and branching/joining points). The edge set E denotes the

connections between these points, where for each edge e ∈ E,

s(e) denotes the starting point of this edge and t(e) denotes

the ending point. Map l : V → F is a map from vertices to

their labels that represent the VNF placement, where lv ∈ F
denotes the type of VNF placed at vertex v ∈ V , and F =
{f1, f2, . . .} denotes the set of all types of VNFs supported by

the network. As measurement paths may start/end/branch/join

at a vertex that does not run any VNF (e.g., a traditional packet

switch), we introduce a dummy VNF f0 6∈ F to label such

vertices. Lastly, w : E → R represents the edge weights,

where we for edge e ∈ E models the overall performance

3

s1
t1

f0 f0

f1
f2

p1

Fig. 2. Example of non-simple path: p1 is the path for a flow from s1 to t1
traversing service chain (f1, f2) (i.e., going from s1 to f1, then to f2, and
then to t1).

in transferring a packet from s(e) to t(e) and processing

the packet at t(e). In this work, we consider a family of

performance metrics that can be modeled as additive edge

weights as detailed in Section II-C. Note that G is not directly

observable to the inference engine.

Note that G is by definition a logical topology that models

the VNF overlay. It is known that the physical network

topology cannot be inferred from external observations [34],

but the logical topology still contains valuable information

about the network structure and performance.

B. Flow Model

We measure the network by monitoring a set of flows

D = {di}ni=1, each demanding a source (or ingress point)

si, a destination (or egress point) ti, and a service chain

ci = (ci,j)
ni

j=1, where ci,j ∈ F is the type of VNF required at

step j of processing flow di. As the flow demands are provided

by the users (or a proxy of the users), they are assumed to be

observable to the inference engine. After a flow di is admitted

by the network, it is mapped onto a path pi that goes from

si to ti and traverses the service chain ci in between. The

internal portion of pi (other than si and ti) is not observable

to the inference engine. Note that due to the traversal of a

service chain, a flow may follow a non-simple path, which may

traverse a vertex/edge multiple times as illustrated in Fig. 2.

C. Performance Model

We consider a family of edge weights with two properties:

(i) the weights are nonnegative and additive, i.e., the path

weight equals the sum weight of the traversed edges, and (ii)

the weights can be reliably inferred (by an unbiased estimator)

from end-to-end measurements for each path and the shared

portion of each pair of paths. Let ρi denote the sum of edge

weights on path pi, referred to as the path length, and ρij
denote the sum of edge weights on the shared portion of paths

pi and pj , referred to as the shared path length. It is known

[23] that several important performance metrics satisfy these

properties, briefly reviewed below. Our formulation can use

any of these metrics.

We use a “probe” to refer to a packet sent on one of the mea-

surement paths {pi}ni=1 to obtain an end-to-end measurement.

As in [23], [38], we assume that probes are sent in back-to-

back pairs on a pair of paths at a time, so that probes in the

same pair experience the same performances at shared edges.

Nevertheless, the definitions below can be modified to account

for imperfect correlation at shared edges [23]. We further

assume that an edge performs independently for different

probe pairs, and different edges perform independently. It is

known that a stripe of back-to-back unicast probes can emu-

late a multicast probe [23]–[25]. In particular, bi-cast probes

emulated by pairs of back-to-back unicast probes are known

to be sufficient for accurately inferring the routing topology

rooted at each source if the topology is a tree [23]. We thus

assume this probing mechanism to examine its capability in

inferring general topologies under arbitrary routing.

1) Loss-based Weight: If we measure the end-to-end losses,

then the edge weight can be defined as we := − logαe, where

αe is the success rate of edge e (i.e., the probability for a

probe to successfully traverse edge e and get processed by the

VNF at vertex t(e)). Let Xp be the success indicator for path

p. Then we have

ρi =
∑

e∈pi

− logαe = − log Pr{Xpi = 1}, (1)

ρij =
∑

e∈pi∩pj

− logαe = − log

(

Pr{Xpi = 1}Pr{Xpj = 1}

Pr{Xpi = Xpj = 1}

)

. (2)

Thus, we can calculate the path lengths and the shared path

lengths by estimating the success probability of each path and

the joint success probability for each pair of paths from the

end-to-end losses. It is known that the unbiased estimators of

these probabilities are simply their empirical values.

2) Utilization-based Weight: If we measure the end-to-end

delays, then the edge weight can be defined as we := − log βe,

where βe is the no-queueing probability of edge e (i.e., the

probability that a probe incurs no queueing delay in traversing

edge e and getting processed at vertex t(e)). Let Yp be the no-

queueing indicator for path p. Then we have

ρi =
∑

e∈pi

− log βe = − log Pr{Ypi = 1}, (3)

ρij =
∑

e∈pi∩pj

− log βe = − log

(

Pr{Ypi = 1}Pr{Ypj = 1}

Pr{Ypi = Ypj = 1}

)

. (4)

Similar to loss-based weights, we can calculate the path

lengths and the shared path lengths by estimating the no-

queueing probabilities of each path and each pair of paths

from end-to-end queueing indicators. In practice, this can

be achieved by comparing each delay measurement with a

threshold representing the “maximum end-to-end delay” on

that path without queueing (estimated from delays measured

when the network is lightly loaded), and counting the fraction

of measurements below the threshold.

Remark: There is another “additive metric” defined in [23]

that represents an edge weight by the variance of edge delay.

We point out, however, that this definition is invalid in general

when a path can traverse an edge multiple times, as the path

weight no longer equals the sum weight of the traversed edges,

e.g., an edge with delay variance wl traversed twice by path

p will contribute 4wl to the delay variance of p.

3) Inferring Resource Provisioning from Weights: Under

mild assumptions, we can use the edge weight to infer the

amount of resources provisioned for the corresponding hop.

As a concrete example, consider using an M/M/1/B queue to

model each edge e (including data transfer on e and processing

at t(e)). Let λe denote the arrival rate and µe denote the service

rate, both measured by probes per unit time. Let σe := λe/µe.

Let Qe denote the queue length. It is known that the steady-

state distribution of Qe is πi = (1 − σe)σ
i
e/(1 − σB+1

e)

4

(i = 0, . . . , B). Therefore, the success (i.e., no queue overflow)

probability αe equals

αe = Pr{Qe < B} =
1− σB

e

1− σB+1
e

, (5)

and the no-queueing probability βe equals

βe = Pr{Qe = 0} =
1− σe

1− σB+1
e

. (6)

Given the inferred weight for edge e, we can easily calculate

αe in the case of loss-based weight and βe in the case of

utilization-based weight. Given the flow rates (observed) and

the flow paths (inferred), we can calculate λe. If B is known,

we can solve equations (5,6) for the service rate µe. If B is

unknown, we can use the bounds (B: lower bound on B)

αe ≥
1− σ

B
e

1− σ
B+1
e

, (7)

βe ≥ 1− σe (8)

to compute lower bounds on σe and hence upper bounds on µe.

Note that the lefthand sides of (7,8) are decreasing in σe. The

inferred service rate µe (or its upper bound) thus characterizes

the amount of resources provisioned for data transfer at e and

data processing at t(e).

D. VNF Topology Inference Problem

Given observations from a set of flows {di}i∈[n]

([n] := {1, . . . , n}), including the sources, the destinations, the

service chains, and the corresponding path lengths {ρi}i∈[n]

and shared path lengths {ρij}i,j∈[n], we want to infer the

underlying VNF topology and the paths of these flows.

Topology Selection Criteria: The solution to the VNF topol-

ogy inference problem will not be unique, e.g., dummy VNFs

can be added without changing the service chains, and the

sum weight of two edges traversed by the same set of paths

can be split arbitrarily between them without affecting path

lengths or shared path lengths. This is an inherent limitation

of topology inference problems [34], [39]. To resolve the

ambiguity, additional criteria are needed. Theoretically, the

optimal solution should maximize the likelihood of the given

measurements [25], [40]. In practice, however, simpler criteria

are often used to avoid requiring statistical knowledge of the

measurements (i.e., the likelihood function). In this work, we

adopt a set of such nonparametric criteria.

Generally, given a set of feasible topologies, each consistent

with all the observations, we want to select the topology that is:

1) a minimum weight representation that minimizes the total

edge weight, or

2) a minimum size representation that minimizes the number

of edges, or

3) a minimum order representation that minimizes the num-

ber of vertices.

Intuitively, (1) represents the “best-performing” topology in

terms of the total weight, and (2–3) represent the “simplest”

topology in terms of the number of edges or vertices. Any

topology inference algorithm can only reconstruct the ground

truth up to its minimum weight/size/order representation.

w1=1

w2=3

w3=0

w4=0

w5=0

w6=2

(a) ground truth

p1: e1,e2,e5

p2: e1,e2,e4,e6

p3: e1,e3,e6
w’1=2

w’2=2

w’3=1

w’5=2

w’4=0

(b) output of RNJ

p1: e’1,e’2,e’4
p2: e’1,e’2,e’5
p3: e’1,e’3

Fig. 3. Counterexample for tree approximation (wi: the weight of edge ei).

Remark: Objective (1) is consistent with the minimum

spanning/Steiner tree model commonly used in phylogenetic

inference [41], where the goal is to use a minimum weight

tree to convey the relationships between species. Objective

(2) is consistent with the penalized likelihood criterion in [25]

(where the penalty is the number of edges) and the notion of

“simplest topology” in [36]. Objective (3) is the same as the

“minimal representation” criterion used in [34], where the goal

is to reconstruct the measured distances between participating

nodes using a minimum number of hidden nodes. We have

renamed these criteria in the convention of graph theory.

III. SOLUTIONS BASED ON PATH LENGTH INFORMATION

We begin with a simplified version of the problem, where

only path lengths and shared path lengths are used for

inference as in [23], [37]. Accordingly, the goal is to infer

a directed, edge-weighted graph G = (V,E,w), such that the

flows can be mapped to paths in this graph that match the

given path lengths and shared path lengths.

While this formulation ignores the knowledge of the

sources/destinations, we can easily incorporate this knowledge

by extending the inferred path of each flow to connect from/to

its source/destination with zero-weight edges.

A. Deficiency of Tree Approximation

Although the simplified problem has been studied outside

the context of NFV, existing solutions assumed that the un-

derlying topology is either a tree or a union of trees (see

Section I-A), neither valid in the context of NFV. Our first

result is the following observation:

Claim III.1. It is not always possible to match the path/shared

path lengths in a general ground truth topology by only

constructing trees or unions of trees.

To illustrate this point, consider the ground truth topology

in Fig. 3 (a). Ignoring measurement errors, we will observe

the following: ρ1 = 4, ρ2 = 6, ρ3 = 3, ρ12 = 4, ρ13 = 1,

and ρ23 = 3. As all the paths start from a single source, all

the existing solutions will attempt to use an edge-weighted

tree rooted at the source to reconstruct these lengths. In

particular, the Rooted Neighbor-Joining (RNJ) algorithm [23]

guarantees correct reconstruction if the ground truth topology

is a canonical tree and there is no measurement error. In

this case, it returns a topology in Fig. 3 (b), which differs

from the ground truth. Furthermore, the inferred topology

does not match the measurements, as ρ′13 = 2 6= ρ13 and

ρ′23 = 2 6= ρ23, i.e., it is not even a feasible solution.

We note that this is not just a limitation of RNJ: any

tree topology will require at least two of the three shared

path lengths to be equal, which is inconsistent with the

measurements. Thus, this example illustrates a fundamental

5

Weight

Inference

Topology

Construction

path lengths &

shared path lengths

category

weights

weighted

topology

Fig. 4. The two-step solution framework.

limitation of tree approximation, indicating the need of a new

topology inference algorithm that can construct arbitrary non-

tree topologies.

B. Inference of General Topologies

We propose a solution framework for inferring a general

topology based on path lengths and shared path lengths. Our

framework consists of two steps as illustrated in Fig. 4: (1)

weight inference, and (2) topology construction, where step (1)

aims at inferring edge weights at the finest granularity (called

category weights), and step (2) aims at constructing a graph

based on the inferred weights to route the flows.
1) Weight Inference: We start by trying to infer edge

weights based on the given path length information. Despite

the unknown topology, we show that it is still possible to

deduce weights at a finer granularity than paths/shared paths.

Problem Definition: We partition the edges into 2n − 1
categories (n: number of flows), where each category ΓA

for A ⊆ [n] and A 6= ∅ (recall that [n] := {1, . . . , n})

contains the set of edges traversed by exactly the set of paths

{pi : i ∈ A}, i.e., ΓA := (
⋂

i∈A pi) \ (
⋃

i 6∈A pi) (viewing

each pi as the set of edges on path pi). Let wA denote the

category weight of ΓA, i.e., the sum weight for all the edges

in ΓA. Let A := 2[n] \ ∅ denote all the category indices.

For example, for n = 3, we have a total of 7 categories,

representing edges traversed by {p1}, {p2}, {p3}, {p1, p2},

{p1, p3}, {p2, p3}, and {p1, p2, p3}, respectively. In the ground

truth topology in Fig. 3 (a), e1 is in category Γ{1,2,3} as it is

traversed by p1, p2, and p3. Similarly, e2 is in Γ{1,2}, e3 in

Γ{3}, e4 in Γ{2}, e5 in Γ{1}, e6 in Γ{2,3}, and Γ{1,3} = ∅
(i.e., no edge is traversed by only p1 and p3).

Definition 1. The weight inference problem aims at determin-

ing the category weights (wA)A∈A from the given path lengths

and shared path lengths.

We note that the path lengths and the shared path lengths

only specify edge weights up to their sum within each cat-

egory, as one can split each wA arbitrarily among edges in

category ΓA without affecting any path length or shared path

length. In this sense, the weight inference problem aims at

inferring the edge weights at the finest granularity.

By definition, category-A edges are traversed by a path pi
if and only if i ∈ A. Similarly, category-A edges are shared

by paths pi and pj if and only if {i, j} ⊆ A. Therefore, we

can formulate the problem as solving the linear equations:
∑

A∈A:i∈A

wA = ρi, ∀i ∈ [n], (9a)

∑

A∈A:{i,j}⊆A

wA = ρij , ∀i, j ∈ [n], (9b)

subject to (s.t.) the constraint that wA ≥ 0 (∀A ∈ A) due to

the nonnegativity of edge weights (see Section II-C).

Challenges: There are several practical challenges in solving

(9). First, there are exponentially many variables, suggesting

that solving this linear system will incur exponential complex-

ity. Moreover, there is only a quadratic number of equations,

and thus we generally have an under-constrained linear system

that does not have a unique solution. Furthermore, in practice

we can only estimate the values of ρi’s and ρij’s from raw

measurements, and the estimation errors can cause the linear

system to be infeasible.

Results: For the first challenge, we first note that for each in-

put, there is a solution where majority of the variables are zero.

Proposition III.2. For each topology, there exists a feasible

solution to the weight inference problem that is (n +
(
n
2

)
)-

sparse, i.e., containing at most n +
(
n
2

)
non-zero variables.

Moreover, there exists a solution with the minimum total

weight that is (n+
(
n
2

)
)-sparse.

Proof. We note that the entire set of feasible solutions given by

(9) and wA ≥ 0 (∀A ∈ A) is a bounded nonempty polytope in

R2n−1 space. Every vertex of this polytope, which is a feasible

solution, is given by a subset of 2n − 1 constraints, where

the inequality constraint wA ≥ 0 is satisfied with equality.

As at least 2n − 1 − n −
(
n
2

)
of these constraints are of the

form wA = 0, at most n+
(
n
2

)
variables can be non-zero, i.e.,

feasible solutions corresponding to vertices of the polytope are

(n+
(
n
2

)
)-sparse. The second claim follows from the fact that if

we further minimize
∑

A∈A wA over the polytope, optimality

can always be achieved at a vertex, which gives a minimum

weight solution that is (n+
(
n
2

)
)-sparse.

Meanwhile, we have shown that no variable can be ignored

(i.e., set to zero) agnostic to the input.

Proposition III.3. For each A ∈ A, there exists an underlying

topology for which wA must be positive.

Proof. We prove the claim by contradiction. Suppose that

there exists a weight inference algorithm π that always sets

wA ≡ 0 for all inputs. Consider a ground truth topology where

only one edge in category ΓA has a non-zero weight of 1; other

edge weights are zero. Thus, ρi = 1 if i ∈ A, and ρi = 0 other-

wise; ρij = 1 if {i, j} ⊆ A, and ρij = 0 otherwise. Let A′ be

the set of categories assigned non-zero weights by π. We argue

that
⋃

A′∈A′ A′ must equal A. Otherwise, we must have either

(i) i ∈ ⋃
A′∈A′ A′\A, for which

∑
A′:i∈A′ wA′ > 0 but ρi = 0,

or (ii) i ∈ A \ (⋃A′∈A′ A′), for which
∑

A′:i∈A′ wA′ = 0 but

ρi = 1. If |A| = 1, then A′ = {A}, i.e., π assigns a non-zero

weight to category ΓA, contradicting our assumption. If |A| >
1, we argue that for any {i, j} ⊆ A, ∄A′ ∈ A′ that contains i
but not j, because otherwise we must have ρi > ρij . It implies

that A′ = {A}, again contradicting our assumption.

By Proposition III.2, once we know which subset of n+
(
n
2

)

variables are non-zero, we can ignore the other variables

and solve (9) in a time that is polynomial in n. However,

Proposition III.3 implies that none of the O(2n) variables can

be ignored (i.e., set to zero) for all the inputs. It remains open

whether given an input, one can find, in polynomial time, a

polynomial number of variables (i.e., category weights) such

that there exists a feasible solution to (9) that assigns positive

values only to these variables.

To address the second and the third challenges, we first relax

the requirements from perfect reconstruction as in (9) to best-

effort reconstruction, formulated as a constrained optimization:

6

min
∑

i∈[n]

|
∑

A:i∈A

wA − ρi|+
∑

i,j∈[n]

|
∑

A:{i,j}⊆A

wA − ρij | (10a)

s.t. wA ≥ 0, ∀A ∈ A. (10b)

This is a convex optimization that can be solved by convex

optimization solvers. We note that the ℓ-1 norm in (10a)

can be replaced by other norms. The optimal value of (10),

denoted by ǫ∗, gives the minimum reconstruction error we

have to tolerate due to measurement errors.

We then incorporate the objective of minimizing the total

edge weight:

min
∑

A∈A

wA (11a)

s.t.
∑

i∈[n]

|
∑

A:i∈A

wA − ρi|+
∑

i,j∈[n]

|
∑

A:{i,j}⊆A

wA − ρij | ≤ ǫ, (11b)

wA ≥ 0, ∀A ∈ A. (11c)

This optimization tries to minimize the total weight (11a)

subject to the constraints of approximately satisfying the mea-

surements (11b) and ensuring nonnegativity. The parameter ǫ
is used to trade off the reconstruction error and the total weight

of the inferred topology. At the minimum, it should account

for measurement errors, i.e., ǫ ≥ ǫ∗. As in (10), other norms

can be used instead of the ℓ-1 norm in (11b). Problem (11) is

again a convex optimization. In the special case of ǫ = 0, (11b)

can be replaced by linear constraints (9), and (11) becomes a

linear program. After obtaining the solution (wA)A∈A, we can

use any topology construction algorithm, such as Algorithm 1

presented later, to construct a minimum weight representation

(with up to ǫ reconstruction error).

Remark: In cases that the distribution g(·) of measure-

ment errors is known, we can incorporate this information

by performing the maximum likelihood estimation (MLE)

of the category weights. This is a constrained optimiza-

tion similar to (10), with the objective (10a) replaced by

max g((
∑

A:i∈AwA − ρi)i∈[n], (
∑

A:{i,j}⊆AwA − ρij)i,j∈[n]).
Similarly, we can compute a minimum weight representation

by solving a variation of (11), with (11b) replaced by a

constraint of the form g(·) ≥ δ, where δ is no greater than

the maximum likelihood.

2) Topology Construction: Given the inferred category

weights (wA)A∈A, we want to find a topology and paths in the

topology such that the sum of edge weights in each category

matches the given value. As an empty category (i.e., containing

no edge) must have a zero weight and a nonempty category

(i.e., containing at least one edge) can be assigned any weight,

it suffices to represent each positive-weight category by at least

one edge, i.e., if wA > 0, there must exist at least one edge in

ΓA. Generally, there are multiple topologies that can represent

a given set of positive-weight categories, and our objective is

to find the “simplest” topology in the following sense.

Definition 2. Given category weights (wA)A∈A, the topology

construction problem aims to construct a directed graph

G = (V,E) with the minimum number of vertices (minimum

order representation) or edges (minimum size representation),

together with n paths in G, such that all the positive-weight

categories are represented.

Algorithm 1: Clique Embedding (CE)

input : Number of measurement flows n and category weights
(wA)A∈A

output: Inferred topology G and flow paths {pi}
n
i=1

1 find the minimum directed clique C with at least
|{A ∈ A : wA > 0}| edges;

2 foreach A ∈ A such that wA > 0 do
3 randomly select an unselected edge in C, and assign it to

category ΓA and weight wA;
4 create a new vertex r;
5 foreach i = 1, . . . , n do
6 find continuous edge sequences formed by edges assigned

to categories {ΓA : A ∈ A, i ∈ A}: pi,1, . . . , pi,mi
;

7 foreach edge sequence pi,j do
8 create an edge from r to the beginning of pi,j and an

edge from the end of pi,j to r, both of zero weight;
9 pi is the concatenation of the cycles formed by going from

r to pi,j and back to r for j = 1, . . . ,mi;
10 G consists of all the selected edges in C, vertex r, and all the

edges between r and C;

This definition decouples the weight inference problem and

the topology construction problem such that we can “mix”

solutions to these problems. For example, an algorithm for

constructing a minimum order/size representation from given

category weights can take the output of any weight inference

algorithm, although intuitively the algorithm that gives the

sparsest solution (i.e., minimizing the number of positive

category weights) helps to minimize the order/size of the con-

structed topology. In this sense, (11) is an ℓ-1 approximation

to the weight inference solution that facilitates the construction

of the overall minimum order/size representation.

Although the optimal solution for the minimum order rep-

resentation needs not be the same as the optimal solution for

the minimum size representation, we are able to develop an

algorithm that is near-optimal for both types of representations.

Algorithm: Our idea is to “embed” edges representing the

categories with non-zero weights into the minimum directed

clique (i.e., complete directed graph) with sufficiently many

edges. This is because we must construct at least one edge

for each category with non-zero weight, and the clique is the

smallest graph that contains a given number of edges. This

is the initial idea behind our topology construction algorithm,

referred to as Clique Embedding (CE), shown in Algorithm 1

(lines 1–3).

However, the embedded edges may not form valid paths,

i.e., for a given i ∈ [n], the embedded edges in categories

{ΓA : A ∈ A, i ∈ A} may not form a sequence of pairwise

adjacent edges. To generate valid paths, we construct a special

vertex r (line 4), which is connected to/from each continuous

sequence of embedded edges that need to be traversed by pi
(lines 7–8). Thus, we can “stitch together” the edge sequences

via r to form a valid path (line 9). Fig. 5 illustrates the idea:

if the embedding generates three continuous edge sequences

pi,1, pi,2, and pi,3 for some i ∈ [n], then the constructed path

pi goes from r to pi,1 and back to r, then to pi,2 and back to

r, and finally to pi,3 and back to r (ordering does not matter).

Given the set Ei of embedded edges that need to be

traversed by pi (i.e., assigned to categories {ΓA : A ∈ A, i ∈
A}), we find the continuous edge sequences (line 6) as follows:

(i) initialize each edge sequence pi,j as a one-hop sequence

containing a randomly selected edge in Ei that has not been

7

pi,1
pi,2

pi,3

r

Fig. 5. Using r and its adjacent edges to stitch the embedded edge sequences
pi,1, pi,2, and pi,3 into a valid path pi.

covered by the existing edge sequences;

(ii) extend pi,j by adding one edge at a time from the

uncovered edges in Ei, until no more extension can be made;

(iii) if there are still uncovered edges in Ei, repeat (i–ii).

Performance: Among all the feasible topologies, Algo-

rithm 1 gives a near-optimal representation of the ground truth

topology in the following sense.

Theorem III.4. The topology G given by Algorithm 1 is

(a) near-optimal in minimizing the order, in that G has at most

one more vertex than the minimum order representation, and

(b) asymptotically near-optimal in minimizing the size, in

that for any ǫ > 0, the number of edges in G is no more

than (1 + ǫ) times the number of edges in the minimum size

representation for all sufficiently large |{A ∈ A : wA > 0}|.
Proof. Let ke := |{A ∈ A : wA > 0}| and h(ke) := min{m :
m(m − 1) ≥ ke} be the number of vertices in the minimum

clique with at least ke edges.

First, the minimum order representation needs at least one

edge in each positive-weight category, and hence its number of

vertices is at least h(ke). The topology given by Algorithm 1

contains h(ke) + 1 vertices. Hence, claim (a) holds.

Moreover, Algorithm 1 constructs at most ke+2h(ke) edges,

as there are at most 2h(ke) edges between r and vertices in

the clique. The minimum size representation has at least ke
edges. The approximation ratio is thus upper-bounded by 1+
2h(ke)/ke. As h(ke) = O(

√
ke), for every ǫ > 0, ∃k0 such

that 2h(ke)/ke ≤ ǫ for all ke ≥ k0, proving claim (b).

Example: Consider the input of n = 3 and wA > 0
for all A ∈ A. Fig. 6 illustrates two possible outcomes of

Algorithm 1, together with the set of embedded edges that

need to be traversed by each path. In case Fig. 6 (a), we

see that there is actually no need to add vertex r, i.e., G − r
is still a feasible solution, as the embedded edges for each

i already form a valid path. In case Fig. 6 (b), however,

the embedded edges do not form valid paths (E1 contains 2
edge sequences, E2 contains 3 sequences, and E3 contains 2
sequences), and thus r and its neighboring edges are needed.

As any feasible topology contains at least 4 vertices and 7
edges, Algorithm 1 provides a solution that is minimum in

both order and size in case (a) (after removing r), but not

in case (b). We note that it may be possible to strategically

embed edges and assign their categories to minimize the

order/size of the output, which we leave to future work.

IV. SOLUTIONS BASED ON PATH LENGTH AND SERVICE

INFORMATION

We now revisit the problem when information about the

services required by each flow is also used for inference,

including the source si, the destination ti, and the service

chain ci (i ∈ [n]).

r

1,2,3

1

1,2

1,3

2

2,3 3

r

1,2,3

2,3

1,2

1,3

1

2 3

(a) one possible outcome

(b) another possible outcome

E1 E2 E3

E1 E2
E3

Fig. 6. Two possible outcomes of Algorithm 1 for n = 3. Solid line:
embedded edges; dashed line: edges to/from r; Ei: embedded edges that
need to be traversed by pi; edge label: the category index.

While the service information distinguishes our problem

from all the existing topology inference problems, we can still

reuse some of previous solutions. Specifically, as the service

information does not inform about the edge weights, we can

still divide the problem into two subproblems: (1) weight

inference, and (2) VNF topology construction. Subproblem (1)

has the same input and output as in Section III-B1, and hence

results therein apply. Subproblem (2) takes both the inferred

category weights and the service information as input, and

outputs a directed, vertex-labeled and edge-weighted graph

G = (V,E, l, w) that represents the VNF overlay topology.

The focus here is subproblem (2). The challenge in VNF

topology construction is to preserve the service chains while

constructing at least one edge in each positive-weight category.

A. Existence of Single-copy Representation

While the ground truth topology may contain multiple

instances of the same VNF, we show that it is always possible

to construct an equivalent topology that contains at most one

instance per VNF, referred to as a single-copy representation.

Theorem IV.1. For each VNF topology G, there exists an

equivalent single-copy representation G̃, i.e., each fi ∈ F is

assigned to at most one vertex in G̃.

Proof. We prove by construction. Consider an arbitrary VNF

topology G. Let N−(v) and N+(v) denote the incom-

ing/outgoing neighbors of vertex v, i.e., vertices with edges

to/from v. For every two vertices labeled by the same (non-

dummy) VNF fi, denoted by f1
i and f2

i , we have four cases:

(1) N−(f1
i) ∩ N−(f2

i) = ∅ and N+(f1
i) ∩ N+(f2

i) = ∅,

(2) N−(f1
i) ∩ N−(f2

i) 6= ∅ and N+(f1
i) ∩ N+(f2

i) = ∅, (3)

N−(f1
i) ∩ N−(f2

i) = ∅ and N+(f1
i) ∩ N+(f2

i) 6= ∅, and

(4) N−(f1
i) ∩N−(f2

i) 6= ∅ and N+(f1
i) ∩N+(f2

i) 6= ∅. We

“merge” f1
i and f2

i as in Fig. 7: in case (1), we directly merge

them; in case (2), we replace f1
i by a dummy denoted by f1

0 ,

which is connected to f2
i , and rewire outgoing edges of f1

i to

start from f2
i ; in case (3), we replace f1

i by a dummy f1
0 , con-

nected from f2
i , and rewire incoming edges of f1

i to end at f2
i ;

in case (4), we replace f1
i by a dummy f1

0 , connected to/from

f2
i . Each path traversing f1

i will traverse (f1
0 , f

2
i) in case (2),

(f2
i , f

1
0) in case (3), and (f1

0 , f
2
i , f

1
0) in case (4). Each merge

operation reduces the number of duplicate VNF instances by

one, while preserving the service chains and the represented

8

fi
1

fi
2

fi

case (1)

fi
1

fi
2

f0
1

case (2)

fi
2

fi
1

fi
2

case (3)

f0
1

fi
2

fi
1

fi
2

case (4)

f0
1

fi
2

Fig. 7. Merge operation (f1
i , f2

i : instances of the same VNF; f1
0 : dummy).

categories. Repeatedly applying this operation will then give

a single-copy representation that is equivalent to G.

Moreover, the simplest single-copy representation is nearly

as simple as the overall simplest representation.

Corollary IV.2. a) The minimum order single-copy represen-

tation has as few vertices as the minimum order representation.

b) The minimum size single-copy representation has at most

2R more edges than the minimum size representation G∗,

where R is the number of duplicate VNF instances in G∗.

Proof. As the merge operation defined in the proof of

Theorem IV.1 reduces the number of duplicates by one, while

creating no extra vertex and at most 2 extra edges, applying it

to the minimum order/size representation yields the result.

B. Construction of Single-copy Representation

In a single-copy representation, we know that there will

be a unique vertex corresponding to each source, destination,

or type of VNF. However, simply constructing a topology

by connecting each pair of vertices that are adjacent in a

service chain by an edge may not give a feasible solution,

as it may not represent all the positive-weight categories. For

example, consider the input in Fig. 8 (a). Service chains p′1
and p′2 (including first/last hop) for flows d1 and d2 do not

have any pair of adjacent vertices in common, but weight

inference shows that the paths p1 and p2 of these flows

share at least one common edge, as the weight of category

Γ{1,2} is positive. This implies that there must be hidden

vertices (i.e., branching/joining points) shared by these paths

that create shared edges without violating the service chains,

as such vertices only “run” dummy VNF. Thus, the VNF

topology construction problem reduces to: augment the union

of service chains with dummies such that all the positive-

weight categories will be represented in the augmented graph.

To this end, we first give a feasible solution that is generally

suboptimal in order/size, and then present an optimization-

based approach to construct the minimum order/size single-

copy representation.
1) Extension of Clique Embedding: In the supplementary

file, we have shown an algorithm Clique Embedding++

(CE++) that can build a feasible solution by extending the

previous topology construction algorithm (Algorithm 1) to

incorporate service chains. The inferred topology, however,

is generally suboptimal in that it may contain more ver-

tices/edges than necessary. To find the simplest solution in

terms of the minimum order/size single-copy representation,

we introduce a clean-slate solution below.

1,2

2,3

dummy

p’1: s f1 f2 f3 t

p’2: s f2 f1 f4 t

p’3: s f4 f2 f3 t

+: {1},{2},{3},

{1,2},{1,3},{2,3},

{1,2,3}

(a) input (b) augmented

strings

(c) corresponding

topology

p1: s f1 f0 f2 f0 f3 t

p2: s f0 f2 f0 f1 f0 f4 t

p3: s f0 f4 f2 f0 f3 t

s

f1 f2

f3f4

t

2,3

2

1

3

1,3

1,3

1,2,31,2

2

f0

Fig. 8. Example of string augmentation (edge label denotes category index).

2) String Augmentation Problem (SAP): Let A+ be

the set of indices of categories with positive weights, and

p′i := si ⊕ ci ⊕ ti (⊕: concatenation) be the extended service

chain of flow di, including the endpoints. Viewing each

path as a string of vertices, we can formulate the problem

of constructing single-copy representations as the following

combinatorial optimization problem.

Definition 3 (SAP). Given a set A+ of subsets of [n] and

a set of n initial strings {p′i}i∈[n], the string augmentation

problem (SAP) aims to augment (p′i)i∈[n] by inserting dummy

letters f1
0 , f

2
0 , . . . (each can be inserted multiple times) such

that a certain objective is optimized subject to the constraint

that every set in A+ is represented, i.e., for every A ∈ A+, ∃
a pair of letters (f1, f2) which appear consecutively in string

i (i ∈ [n]) if and only if i ∈ A.

SAP with the minimum order objective aims at minimizing

the number of distinct dummy letters. SAP with the minimum

size objective aims at minimizing the number of distinct pairs

of consecutive letters in all the augmented strings.

Example: Fig. 8 gives an example of the input/output of

SAP. The augmented strings provide a VNF topology, where

each letter corresponds to a vertex and each string to a path.

3) SAP as Integer Linear Programs (ILPs): We can for-

mulate SAP as ILPs with a polynomial number of variables

and constraints. Our formulation assumes that the service

chains are cycle-free (i.e., no duplicate letters in p′i). Let

mmax be an upper bound on the number of dummy letters

and lmax an upper bound on the length of each string. Let

B := {si, ti}i∈[n] ∪ F ∪ {fk
0 }k∈[mmax] denote the set of all

the letters. From CE++ (see the supplementary file), we know

that mmax = O(n) and lmax = O(|F|+ n2).
Variables: We use variable xf

i,j ∈ {0, 1} to denote if the j-th

letter in string i is f . Moreover, we use variable δk ∈ {0, 1} to

indicate if dummy fk
0 is used in any string, and δf1,f2 ∈ {0, 1}

to indicate if (f1, f2) is used (consecutively) in any string.

Constraints: The first constraint is that there is at most one

letter in each position of each string:
∑

f∈B

x
f
i,j ≤ 1, ∀i ∈ [n], j ∈ [lmax], (12)

and the first (or last) letter must correspond to the source (or

destination) of the flow:

x
si
i,1 = 1, x

ti
i,lmax

= 1, ∀i ∈ [n]. (13)

We allow
∑

f∈B xf
i,j = 0 in (12) to denote that there might be

no letter in a position (and hence the augmented string can be

shorter than lmax). The second constraint is that service chains

must be preserved:

9

∑

1≤j1<j2≤lmax

x
f1
i,j1

· xf2
i,j2

= 1, ∀i ∈ [n], (f1, f2) ∈ p′i, (14)

∑

j∈[lmax]

x
f
i,j = 1(f ∈ p′i), ∀i ∈ [n], f ∈ {si, ti}i∈[n] ∪ F , (15)

which includes preserving the set of non-dummy letters (15)

and the order of them (14). Here 1(·) is the indicator function.

The third constraint is that each positive-weight category must

be represented:

∑

f1,f2∈B

∏

i∈A

1(

lmax−1
∑

j=1

x
f1
i,jx

f2
i,j+1>0) ·

∏

i 6∈A

1(

lmax−1
∑

j=1

x
f1
i,jx

f2
i,j+1=0)>0,

∀A ∈ A+, (16)

where
∑lmax−1

j=1 xf1
i,jx

f2
i,j+1 is the number of times (f1, f2)

appears consecutively in string i. Additionally, for minimum

order objective, we need

x
fk
0

i,j ≤ δk, ∀k ∈ [mmax], i ∈ [n], j ∈ [lmax], (17)

and for minimum size objective, we need

1(

lmax−1
∑

j=1

x
f1
i,jx

f2
i,j+1>0) ≤ δf1,f2 , ∀f1, f2 ∈ B and i ∈ [n]. (18)

Objective: For minimum order objective, the goal is to:

min

mmax
∑

k=1

δk, (19a)

s.t. (12–17). (19b)

For minimum size objective, the goal is to:

min
∑

f1,f2∈B

δf1,f2, (20a)

s.t. (12–16) and (18). (20b)

Linearization: Constraints (14,16,18) are non-linear. To lin-

earize them, we introduce the following dependent variables,

all in {0, 1}. Variable γi
f1,f2,j1,j2

s.t.

γi
f1,f2,j1,j2

≤ x
f1
i,j1

, (21a)

γi
f1,f2,j1,j2

≤ x
f2
i,j2

, (21b)

γi
f1,f2,j1,j2

≥ x
f1
i,j1

+ x
f2
i,j2

− 1 (21c)

replaces xf1
i,j1

· xf2
i,j2

. Variable ζif1,f2 s.t.

lmax−1
∑

j=1

γi
f1,f2,j,j+1 ≤ lmaxζ

i
f1,f2

, (22a)

lmax−1
∑

j=1

γi
f1,f2,j,j+1 ≥ ζif1,f2 (22b)

replaces 1(
∑lmax−1

j=1 xf1
i,jx

f2
i,j+1>0). Variable ξAf1,f2 s.t.

ξAf1,f2 ≤ ζif1,f2 , ∀i ∈ A, (23a)

ξAf1,f2 ≤ 1− ζif1,f2 , ∀i 6∈ A, (23b)

ξAf1,f2 ≥
∑

i∈A

ζif1,f2 +
∑

i 6∈A

(1− ζif1,f2)− n+ 1 (23c)

replaces
∏

i∈A1(
∑lmax−1

j=1 x
f1
i,jx

f2
i,j+1 > 0)

·
∏

i 6∈A1(
∑lmax−1

j=1 x
f1
i,jx

f2
i,j+1 = 0).

Using these variables, we can rewrite (14,16,18) as

TABLE I
PARAMETERS OF AS TOPOLOGIES

AS ISP #nodes #links

1755 Ebone (Europe) 172 381

6461 Abovenet (US) 182 294

3967 Exodus (US) 201 434

3 4 5 6 7 8 9 10

number of destinations

0

10

20

30

40

50

60

70

80

90

100

s
u

c
c
e

s
s
 r

a
te

(%
)

proposed AS1755

proposed AS3967

proposed AS6461

RNJ AS1755

RNJ AS3967

RNJ AS6461

(a) reconstruction success rate

3 4 5 6 7 8 9 10

number of destinations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

re
la

ti
v
e

 e
rr

o
r

proposed AS1755

proposed AS3967

proposed AS6461

RNJ AS1755

RNJ AS3967

RNJ AS6461

(b) reconstruction error

Fig. 9. Accuracy of reconstructing path/shared path lengths in single-source
probing (|F| = 5, S = 5).

∑

1≤j1<j2≤lmax

γi
f1,f2,j1,j2

= 1, ∀i ∈ [n], (f1, f2) ∈ p′i, (24)

∑

f1,f2∈B

ξAf1,f2 > 0, ∀A ∈ A+, (25)

ζif1,f2 ≤ δf1,f2 , ∀f1, f2 ∈ B and i ∈ [n], (26)

which converts the problem of constructing the minimum

order/size single-copy representation into ILPs.

Complexity: The number of variables in these ILPs is

O(|B|2(nl2max + |A+|)), and the number of constraints is

O(n|B|2(l2max + |A+|)). As |B| = O(n + |F|), lmax =
O(|F| + n2), and |A+| = O(n2), both numbers are in

O(n(n + |F|)2(n2 + |F|)2). This implies that the heuristic

of LP relaxation with rounding will have a polynomial com-

plexity. We conjecture that solving SAP optimally is NP-hard.

Discussion: The above formulation can be extended to

incorporate additional constraints, such as communication

capacities of links and processing capacities of servers hosting

VNFs. When available, adding these constraints can bring the

inferred topology closer to the ground truth, potentially at

the cost of a higher computational complexity. We leave the

detailed investigation of these extensions to future work.

V. PERFORMANCE EVALUATION

Setting: We evaluate our solutions via data-driven simula-

tions. Due to the lack of public NFV datasets, we synthesize

VNF overlay topologies based on real Internet topologies.

To this end, we use Rocketfuel Autonomous System (AS)

topologies [42], which represent IP-level connections between

routers in ASs of several ISPs. Parameters of the considered

topologies are given in Table I. We assign to each link a

weight uniformly distributed in [0.02, 0.1], which corresponds

to a success rate (or no-queueing probability) of [0.90, 0.98]
according to the definition of loss-based (or utilization-based)

weight in Section II-C.

Treating these topologies as the substrate, we generate VNF

overlays by randomly selecting S of the high-degree nodes

(degree ≥ 9) as servers2, and randomly placing |F| VNFs at

these servers (one instance per server) while ensuring at least

2We collapse a server and its associated router into one node.

10

3 4 5

number of path

0

0.1

0.2

0.3

0.4

0.5

0.6
e
rr

o
r

in
 #

v
e
rt

ic
e
s

RNJ

CE

SAP

(a) error in #vertices

3 4 5

number of path

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r

in
 #

e
d
g
e
s

RNJ

CE

SAP

(b) error in #edges

3 4 5

number of path

0

0.1

0.2

0.3

0.4

0.5

0.6

e
rr

o
r

in
 d

e
g
re

e

RNJ

CE

SAP

(c) error in average degree

3 4 5

number of path

0

0.5

1

1.5

2

2.5

3

3.5

e
rr

o
r

in
 a

v
e
ra

g
e
 e

d
g
e
 w

e
ig

h
t

RNJ

CE

SAP

(d) error in average edge weight
Fig. 10. Inference accuracy in single-source probing as n varies (AS6461, |F| = 5, S = 5, all errors are normalized).

5 10 15

number of server

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

e
rr

o
r

in
 #

v
e
rt

ic
e
s

RNJ

CE

SAP

(a) error in #vertices

5 10 15

number of server

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
rr

o
r

in
 #

e
d
g
e
s

RNJ

CE

SAP

(b) error in #edges

5 10 15

number of server

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r

in
 d

e
g
re

e

RNJ

CE

SAP

(c) error in average degree

5 10 15

number of server

0

0.5

1

1.5

2

2.5

3

e
rr

o
r

in
 a

v
e
ra

g
e
 e

d
g
e
 w

e
ig

h
t

RNJ

CE

SAP

(d) error in average edge weight
Fig. 11. Inference accuracy in single-source probing as S varies (AS6461, |F| = 5, n = 5, all errors are normalized).

one instance per VNF. We then randomly select k + m of

the low-degree nodes (degree ≤ 2) as endpoints, where k are

designated as sources and the rest as destinations. This gives us

n = km source-destination pairs. For each source-destination

pair, we send a flow with a service chain that is a random

permutation of |ci| different VNFs, where |ci| is uniformly

distributed in {1, . . . , |F|}. The routing path of each flow is

a concatenation of the shortest (hop count) paths from the

source to the nearest instance of the first VNF, and then to

the nearest instance of the second VNF, etc. All results are

averaged over 20 Monte Carlo runs unless stated otherwise,

and whenever applicable, we show the confidence interval as

“mean ± standard deviation”. We use “node/link” to refer

to elements in the substrate, and “vertex/edge” to refer to

elements in the overlay. Code and data of our simulations are

available at [43].

A. Evaluation of Single-source Probing

Benchmark: As all the existing topology inference algo-

rithms assume that the routing topology for each source is

a tree, we use Rooted Neighbor-Joining (RNJ) [23] as the

benchmark. For single-source probing, RNJ guarantees correct

reconstruction if the ground truth topology is a tree.

Reconstruction Accuracy: First, we compare the accuracy

of the proposed solution (by solving (11) with ǫ = 0) against

RNJ in reconstructing the measured path lengths and shared

path lengths, where we assume accurate measurements for

both algorithms. Fig. 9 (a) shows the success rate, defined

as the fraction of time that all the lengths are reconstructed

correctly. Fig. 9 (b) shows the normalized reconstruction error,

defined as ‖ρ̂ − ρ‖1/‖ρ‖1, where ρ is the vector of given

path/shared path lengths, and ρ̂ the reconstructed values.

Both are computed over 100 Monte Carlo runs. Clearly,

RNJ fails to match the measurements (its success rate tends

to zero). This is because it is designed for tree topologies,

while our ground truth topologies are no longer trees due to

VNF traversals. Meanwhile, our solution is always accurate.

This highlights the need to consider general graphs in VNF

topology inference. We note that the reconstruction errors of

RNJ are only associated with the shared path lengths.

Inference Accuracy: Next, we compare RNJ, our solution

without service information—CE (Algorithm 1), and our solu-

tion with service information—SAP (Section IV-B3), in terms

of the accuracy of the inferred topology. We use the minimum

order objective for SAP, solved by CPLEX. We skip CE++

as it performs worse than SAP. To measure the accuracy, we

evaluate the normalized error in reconstructing several graph

properties, including #vertices, #edges, average vertex degree

(including in- and out-degree), and average edge weight.

Fig. 10 shows the result when varying the number of paths

n. RNJ incurs substantial error, significantly underestimating

the complexity of the ground truth topology by only con-

structing trees. Meanwhile, CE tends to give overly dense

topologies as it aims at embedding edge weights into the

smallest graph. By jointly considering path length and service

chain information, SAP achieves the best accuracy. Similar

observations hold for other AS topologies. Note that although

CE better approximates the ground truth in terms of the

number of edges (Fig. 10 (b)), it fails to approximate the

structure of the ground truth as shown in the detailed example

later (see Fig. 12).

We have similar comparisons when varying the number of

servers S as in Fig. 11, where some VNFs will have multiple

replicas when S > |F|. This result shows that although SAP

only constructs single-copy representations, its accuracy is not

sensitive to the replication of VNFs.

Detailed Example: To give a concrete idea of how different

algorithms perform in resembling the structure of the ground

truth topology, we plot a specific realization of the ground

truth and the inferred topologies in Fig. 12. In this example,

there are 5 VNFs {f1, . . . , f5} with one instance each, and

we measure 5 paths from source s to destinations t1, . . . , t5,

with service chains: c1 = (f3), c2 = (f5, f3, f4, f1, f2), c3 =
(f4, f1, f3, f2, f5), c4 = (f1, f3), and c5 = (f3, f5, f1, f4).

Intuitively, only SAP resembles the structure of the ground

truth topology, where the source and the destinations are

connected via a densely-connected core that hosts the VNFs.

11

(a) ground truth (b) RNJ

s

t1

t2

t3

t4 t5

(c) CE

s

t1

t2

t3

t4t5

f1

f2

f3

f4

f5

(d) SAP (minimum order)

Fig. 12. Example for single-source probing (|F| = 5, S = 5, n = 5). •:
source; •: destination; •: VNF; •: dummy.

(a) #vertices (b) #edges

0 5 10 15

degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

ground truth

RNJ

CE

SAP

(c) CDF of vertex degree

0 5 10 15 20 25

edge weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

ground truth

RNJ

CE

SAP

(d) CDF of edge weight

Fig. 13. Detailed metrics of the example in Fig. 12.

Detailed metrics from the example are shown in Fig. 13.

Overall, SAP outperforms the other algorithms with respect

to both the graph structure and the metrics.

Impact of Measurement Error: So far we have assumed

accurate measurements of path/shared path lengths. To eval-

uate the impact of the error in measuring these lengths, we

perform a packet-level simulation. An edge with weight we is

configured to drop packets with probability 1−e−we . We send

N pairs of probing packets on each pair of paths to estimate

the path/shared path lengths as described in Section II-C1 and

ignore negative values. Fig. 14 (a) shows the normalized error

in estimating the path/shared path lengths, and Fig. 14 (b-e)

show the corresponding topology inference accuracy in terms

of various graph properties. We see that all the topology infer-

ence algorithms converge quickly (at N ≈ 100), even when

there are still substantial errors in the length measurements

(15% for path lengths and 50% for shared path lengths). This

is because these algorithms only depend on coarse statistics of

the measurements, e.g., RNJ only depends on the ranking of

certain functions of the measurements, and our algorithms (CE

and SAP) only depend on the set of positive-weight categories

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n
o

rm
a

liz
e

d
 e

rr
o

r

path length

shared path length

(a) estimation error

0 50 100 150 200 250 300 350 400 450 500

number of probes

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

e
rr

o
r

in
 #

v
e

rt
ic

e
s

RNJ

CE

SAP

(b) error in #vertices

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
rr

o
r

in
 #

e
d

g
e

s

RNJ

CE

SAP

(c) error in #edges

0 50 100 150 200 250 300 350 400 450 500

number of probes

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

e
rr

o
r

in
 d

e
g

re
e

RNJ

CE

SAP

(d) error in average degree

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.5

1

1.5

2

2.5

3

e
rr

o
r

in
 a

v
e

ra
g

e
 e

d
g

e
 l
e

n
g

th RNJ

CE

SAP

(e) error in average edge weight

Fig. 14. Packet-level simulation for single-source probing (AS6461, |F| = 5,
S = 5, n = 3).

obtained by applying weight inference to the measurements.

We have also evaluated the impact of measurement error on

other metrics such as the number of edges, the average degree,

and the average edge weight, and the results are similar.

Note: The parameters and the number of Monte Carlo

runs in our evaluation are limited by the high complexity

of solving the weight inference problem (Section III-B1) and

SAP (Section IV-B3). We conjecture that both problems are

NP-hard, and leave the proof of hardness and the development

of efficient heuristics to future work.

B. Evaluation of Multi-source Probing

Benchmark: We use Receiver Elimination Algorithm (REA)

as the benchmark [30]. REA can correctly reconstruct the 2-

by-N topology (2 sources, N destinations), under the assump-

tion that routing from each source follows a tree. It is worth

mentioning that the original version of REA needs to query

quartets, but we have adapted it to take as input the path

lengths and the shared path lengths. As REA is designed for

two-source probing, we fix the number of sources as 2 in the

sequel, although our solution does not make this assumption.

Reconstruction Accuracy: Similar to the case of single-

source probing, we compare the accuracy of our solution

against REA in reconstructing the measured path and shared

path lengths, assuming accurate measurements for both algo-

rithms. Fig. 15 (a) shows the success rate and Fig. 15 (b) shows

the normalized reconstructed error, as the number of desti-

nations increases. Both plots are computed over 100 Monte

Carlo runs. We see that when the routing is no longer along

trees, REA cannot guarantee that the inferred topology will be

12

1 2 3 4 5 6 7 8

number of destinations

0

10

20

30

40

50

60

70

80

90

100
s
u

c
c
e

s
s
 r

a
te

(%
)

proposed

REA

(a) reconstruction success rate

1 2 3 4 5 6 7 8

number of destinations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
la

ti
v
e

 e
rr

o
r

proposed: path length

proposed: shared path length

REA: path length

REA: shared path length

(b) reconstruction error

Fig. 15. Accuracy of reconstructing path/shared path lengths in multi-source
probing (|F| = 5, S = 5).

consistent with all the measurements, but our solution can. A

difference from the case of single-source probing is that while

RNJ only has errors in reconstructing the shared path lengths,

REA has errors in reconstructing both the path lengths and

the shared path lengths. This result reiterates the importance

of considering general graphs in VNF topology inference.

Inference Accuracy: Next, we compare REA, CE, and SAP

(with the minimum order objective) in their accuracy of topol-

ogy inference, measured by the normalized error in #vertices,

#edges, average vertex degree, and average edge weight.

Fig. 16 shows the result when varying the number of

destinations. Not surprisingly, it gives similar results as in

single-source probing: REA only constructs sparse topologies

that cannot capture the complexity of the ground truth, and

CE only constructs dense topologies that can also be far from

the ground truth. Compared with these two algorithms, SAP

achieves the best accuracy by considering the service chain.

Detailed Example: To be more specific, we show an exam-

ple in Fig. 17. There are 5 VNFs {f1, . . . , f5} with one in-

stance each, and we measure 6 paths from two sources s1, s2 to

each of the destinations t1, t2, t3. The service chains (including

source/destination) are: p′1 = (s1, f3, t1), p
′
2 = (s1, f3, f4, t2),

p′3 = (s1, f5, f4, f2, f1, f3, t3), p
′
4 = (s2, f5, f1, f2, f3, f4, t1),

p′5 = (s2, f1, t2) and p′6 = (s2, f3, f4, f5, f1, t3).
We see that the topology inferred by SAP best resembles the

structure of the ground truth topology. To quantify this resem-

blance, we plot #vertices, #edges, CDF of vertex degrees, and

CDF of edge weights in Fig. 18. Overall, SAP performs the

best in these metrics, especially when compared with REA.

Impact of Measurement Error: To evaluate the impact of

measurement error, we performed a packet-level simulation

for multi-source probing, under the same setting as single-

source probing (Fig. 14). Fig. 19 (a) shows the normalized

error in estimating the path/shared path lengths, and Fig. 19 (b-

e) show the corresponding topology inference accuracy in

terms of various graph properties. Similar to Fig. 14, all the

topology inference algorithms converge fast (at ≈ 200 probes),

when there are still 10% errors in the measured path lengths

and 14% errors in the measured shared path lengths. Similar

convergence behavior has been observed for other metrics.

VI. CONCLUSION

We consider, for the first time, the problem of inferring

the structure and state of NFV networks based on service

chains and end-to-end performance measurements. We show

that existing tree-based algorithms cannot guarantee a feasible

solution that is consistent with all the measurements, which

motivates us to propose a novel two-step solution designed

to construct the simplest logical topology that is equivalent to

the ground truth. Extensive evaluations show that the proposed

solution significantly improves the accuracy over several state-

of-the-art topology inference algorithms.

We note that the proposed solution contains nontrivial

convex or combinatorial optimization problems. Although not

the focus of this work, efficient algorithms for solving these

optimizations are certainly of interest for future work.

REFERENCES

[1] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris, “Looking glass of
NFV: Inferring the structure and state of NFV network from external
observations,” in IEEE INFOCOM, April 2019.

[2] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox
deployments,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2012-24, Feb 2012. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html

[3] “Network Functions Virtualisation — Introductory White Paper,” White
Paper, ETSI, 2012. [Online]. Available: https://portal.etsi.org/nfv/nfv
white paper.pdf

[4] “AT&T vision alignment challenge technology survey,” AT&T
Domain 2.0 Vision White Paper, November 2013. [Online].
Available: https://www.att.com/Common/about us/pdf/AT&TDomain2.
0VisionWhitePaper.pdf

[5] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in IEEE INFOCOM, April 2015.

[6] H. Moens and F. D. Turck, “VNF-P: a model for efficient placement of
virtualized network functions,” in IEEE CNSM, November 2014.

[7] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE CloudNet, October 2014.

[8] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, 2014.

[9] T. Loukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in ACM SIROCCO, July 2015.

[10] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in IEEE CNSM, November 2015.

[11] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The cloud service
distribution problem in distributed cloud networks,” in IEEE ICC, June
2015.

[12] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM, April 2016.

[13] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the nfv service distribution problem,” in IEEE
INFOCOM, April 2017.

[14] R. Caceres, N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley,
“Loss-based inference of multicast network topology,” in IEEE CDC,
1999.

[15] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees
and bottleneck bandwidths using end-to-end measurements,” in IEEE
INFOCOM, 1999.

[16] R. Bowden and D. Veitch, “Finding the right tree: Topology inference
despite spatial dependences,” IEEE Transactions on Information Theory,
vol. 64, no. 6, pp. 4594–4609, June 2018.

[17] H. Nguyen and R. Zheng, “A binary independent component analysis
approach to tree topology inference,” IEEE Transactions on Signal
Processing, vol. 61, no. 12, pp. 3071–3080, June 2013.

[18] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast
topology inference from measured end-to-end loss,” IEEE Transactions
on Information Theory, vol. 48, no. 1, pp. 26–45, January 2002.

[19] ——, “Multicast topology inference from end-to-end measurements,”
Advances in Performance Analysis, vol. 3, pp. 207–226, 2000.

[20] S. Bhamidi, R. Rajagopal, and S. Roch, “Network delay inference from
additive metrics,” Journal of Random Structures & Algorithms, vol. 37,
no. 2, pp. 176–203, September 2010.

[21] N. G. Duffield and F. L. Presti, “Network tomography from measured
end-to-end delay covariance,” IEEE/ACM Transactions on Networking,
vol. 12, no. 6, pp. 978–992, December 2004.

[22] N. G. Duffield, J. Horowitz, and F. L. Presti, “Adaptive multicast
topology inference,” in IEEE INFOCOM, 2001.

[23] J. Ni, H. Xie, S. Tatikonda, and Y. R. Yang, “Efficient and dynamic
routing topology inference from end-to-end measurements,” IEEE/ACM
Transactions on Networking, vol. 18, no. 1, pp. 123–135, February 2010.

13

2 4 6

number of path

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
e
rr

o
r

in
 #

v
e
rt

ic
e
s

REA

CE

SAP

(a) error in #vertices

2 4 6

number of path

0

0.5

1

1.5

2

2.5

3

3.5

e
rr

o
r

in
 #

e
d
g
e
s

REA

CE

SAP

(b) error in #edges

2 4 6

number of path

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r

in
 d

e
g
re

e

REA

CE

SAP

(c) error in average degree

2 4 6

number of path

0

2

4

6

8

10

12

e
rr

o
r

in
 a

v
e
ra

g
e
 e

d
g
e
 w

e
ig

h
t

REA

CE

SAP

(d) error in average edge weight
Fig. 16. Inference accuracy in multi-source probing (AS6461, |F| = 5, S = 5, all errors are normalized).

(a) ground truth (b) REA

(c) CE (d) SAP (minimum order)

Fig. 17. Example for multi-source probing (|F| = 5, S = 5, n = 6). •:
source; •: destination; •: VNF; •: dummy.

(a) #vertices (b) #edges

0 2 4 6 8 10 12

degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

ground truth

REA

CE

SAP

(c) CDF of vertex degree

0 5 10 15 20 25 30 35 40 45

edge weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

ground truth

REA

CE

SAP

(d) CDF of edge weight

Fig. 18. Detailed metrics of the example in Fig. 17

[24] J. Ni and S. Tatikonda, “Network tomography based on additive metrics,”
IEEE Transactions on Information Theory, vol. 57, no. 12, pp. 7798–
7809, December 2011.

[25] M. Coates, R. Castro, M. Gadhiok, R. King, Y. Tsang, and R. Nowak,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in ACM SIGMETRICS, June 2002.

[26] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1999.

[27] B. Eriksson, P. Barford, and R. Nowak, “Network discovery from passive
measurements,” in ACM SIGCOMM, 2008.

[28] M. Rabbat, R. Nowak, and M. Coates, “Multiple source, multiple
destination network tomography,” in IEEE INFOCOM, 2004.

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n
o

rm
a

liz
e

d
 e

rr
o

r

path length

shared path length

(a) estimation error

0 50 100 150 200 250 300 350 400 450 500

number of probes

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
rr

o
r

in
 #

v
e

rt
ic

e
s

REA

CE

SAP

(b) error in #vertices

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.5

1

1.5

2

2.5

3

3.5

4

e
rr

o
r

in
 #

e
d

g
e

s

REA

CE

SAP

(c) error in #edges

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
rr

o
r

in
 d

e
g

re
e

REA

CE

SAP

(d) error in average degree

0 50 100 150 200 250 300 350 400 450 500

number of probes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e
rr

o
r

in
 a

v
e

ra
g

e
 e

d
g

e
 l
e

n
g

th REA

CE

SAP

(e) error in average edge weight

Fig. 19. Packet-level simulation for multi-source probing (AS6461, |F| = 5,
S = 5, n = 4 (2 sources, 2 destinations)).

[29] M. Rabbat, M. Coates, and R. Nowak, “Multiple source Internet tomog-
raphy,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 12, pp. 2221–2234, December 2006.

[30] P. Sattari, M. Kurant, A. Anandkumar, A. Markopoulou, and M. G. Rab-
bat, “Active learning of multiple source multiple destination topologies,”
IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 1926–1937,
April 2014.

[31] P. Sattari, C. Fragouli, and A. Markopoulou, “Active topology inference
using network coding,” Physical Communication, vol. 6, pp. 142–163,
March 2013.

[32] R. Jithin and B. K. Dey, “Exact topology inference for DAGs using
network coding,” in IEEE International Symposium on Network Coding
(NetCod), June 2012.

[33] A. Krishnamurthy and A. Singh, “Robust multi-source network tomog-
raphy using selective probes,” in IEEE INFOCOM, March 2012.

[34] A. Anandkumar, A. Hassidim, and J. Kelner, “Topology discovery of
sparse random graphs with few participants,” in ACM SIGMETRICS,
June 2011.

[35] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
and A. Akella, “On the treeness of internet latency and bandwidth,” in
ACM SIGMETRICS, June 2009.

[36] A. Sabnis, R. K. Sitaraman, and D. Towsley, “OCCAM: An optimization
based approach to network inference,” in The Workshop on MAthemat-
ical performance Modeling and Analysis (MAMA), June 2018.

[37] G. Berkolaiko, N. Duffield, M. Ettehad, and K. Manousakis, “Graph
Reconstruction from Path Correlation Data,” ArXiv e-prints, 2018.

14

[38] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Network loss
tomography using striped unicast probes,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 697–710, August 2006.

[39] J. Pearl, Probabilistic Reasoning in Intelligent Systems—Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[40] R. Castro, M. Coates, and R. Nowak, “Likelihood based hierarchical
clustering,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp.
2308–2321, August 2004.

[41] A. S. Teixeira, P. T. Monteiro, J. A. Carrico, M. Ramirez, and A. P.
Fancisco, “Not seeing the forest for the trees: Size of the minimum
spanning trees (MSTs) forest and branch significance in MST-based
phylogenetic analysis,” PLoS ONE, vol. 10, no. 3, March 2015.

[42] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in ACM SIGCOMM, August 2002.

[43] “NFV-network-topology-inference,” GitHub, 2020. [Online]. Available:
https://github.com/yileilin/NFV-network-topology-inference

Yilei Lin (S’19) received the B.S. degree in informa-
tion security from University of Science and Tech-
nology of China in 2017 and is a Ph.D. candidate in
Computer Science in Pennsylvania State University,
advised by Prof. Ting He. Her research interest
includes computer networking, statistical inference
and queuing network.

Ting He (SM’13) received the B.S. degree in com-
puter science from Peking University, China, in 2003
and the Ph.D. degree in electrical and computer
engineering from Cornell University, Ithaca, NY, in
2007. Dr. He is an Associate Professor in the School
of Electrical Engineering and Computer Science
at Pennsylvania State University, University Park,
PA. Between 2007 and 2016, she was a Research
Staff Member in the Network Analytics Research
Group at the IBM T.J. Watson Research Center,
Yorktown Heights, NY. Her work is in the broad

areas of computer networking, network modeling and optimization, and
statistical inference. Dr. He is an Associate Editor for IEEE Transactions on
Communications (2017-2020) and IEEE/ACM Transactions on Networking
(2017-2021). She was the Membership co-chair of ACM N2Women in
2013-2014 and was listed in “N2Women: Rising Stars in Networking and
Communications” in 2017. She received the Research Division Award and
multiple Outstanding Contributor Awards from IBM, the Most Collaboratively
Complete Publications Award from ITA, the Best Paper Award at the 2013
International Conference on Distributed Computing Systems (ICDCS), the
Outstanding Student Paper Award at the 2015 ACM SIGMETRICS, and the
Best Student Paper Award at the 2005 International Conference on Acoustic,
Speech and Signal Processing (ICASSP).

Shiqiang Wang (M’15) received his Ph.D. from
the Department of Electrical and Electronic Engi-
neering, Imperial College London, United Kingdom,
in 2015. Before that, he received his master’s and
bachelor’s degrees at Northeastern University, China,
in 2011 and 2009, respectively. He joined IBM T.
J. Watson Research Center in 2016 as a Research
Staff Member, where he was also a Graduate-level
Co-op in the summers of 2014 and 2013. In the
fall of 2012, he was at NEC Laboratories Europe,
Heidelberg, Germany. His current research focuses

on theoretical and practical aspects of mobile edge computing, cloud com-
puting, and machine learning. Dr. Wang currently serves as an associate
editor of IEEE Access. He served as a technical program committee (TPC)
member of several international conferences including IEEE ICDCS, IJCAI,
WWW, IFIP Networking, IEEE GLOBECOM, IEEE ICC, and as a reviewer
for a number of international journals and conferences. He received the
IBM Outstanding Technical Achievement Award (OTAA) in 2019, multiple
Invention Achievement Awards from IBM since 2016, Best Paper Finalist of
the IEEE International Conference on Image Processing (ICIP) 2019, and Best
Student Paper Award of the Network and Information Sciences International
Technology Alliance (NIS-ITA) in 2015.

Kevin Chan (SM’18) received the B.S. degree in
electrical and computer engineering and engineering
and public policy from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2001, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta,
GA, USA, in 2003 and 2008, respectively. He is
currently a Research Scientist with the Computa-
tional and Information Sciences Directorate, U.S.
Army Combat Capabilities Development Command,
Army Research Laboratory, Adelphi, MD, USA. He

is actively involved in research on network science, distributed analytics, and
cybersecurity. He has received multiple best paper awards and the NATO
Scientific Achievement Award. He has served on the Technical Program Com-
mittee for several international conferences, including IEEE DCOSS, IEEE
SECON, and IEEE MILCOM. He is a Co-Editor of the IEEE Communications
MagazineMilitary Communications and Networks Series.

Stephen Pasteris gained a BA+MA in Mathematics
from Kings College of the University of Cambridge.
After completing his BA he then went on to gain a
PhD in Computer Science from University College
London: his thesis focusing on the development of
efficient algorithms for machine learning on net-
worked data. Stephen is now a Research Associate
at University College London where he primarily
researches online machine learning.

1

Looking Glass of NFV: Inferring the Structure and

State of NFV Network from External Observations

— Supplementary File
Yilei Lin, Student Member, IEEE, Ting He, Senior Member, IEEE, Shiqiang Wang, Member, IEEE, Kevin Chan,

Senior Member, IEEE, and Stephen Pasteris

Algorithm 1: Clique Embedding++ (CE++)

input : Service chains (p′i)i∈[n] and category weights
(wA)A∈A

output: Inferred VNF topology G and flow paths {pi}i∈[n]

1 Gc ←
⋃

i∈[n] p
′
i;

2 find the set {ΓA : A ∈ A′} of positive-weight categories not
represented in Gc;

3 embed A′ into the minimum clique C with at least |A′| edges
as in lines 1–3 of Algorithm 1;

4 foreach e ∈ E0 do
5 create a vertex ue, and replace edge e by edges (s(e), ue)

and (ue, t(e));
6 foreach i = 1, . . . , n do
7 connect uei to/from the beginning/end of each edge

sequence in C formed by edges in categories
{ΓA : A ∈ A′, i ∈ A};

8 pi is the concatenation of (si, uei), cycles starting/ending
at uei that traverse each of the above edge sequences,
(uei , ci,1), and the rest of p′i;

9 G =
⋃

i∈[n] pi, where vertices in Gc (excluding

sources/destinations) are labeled by their corresponding VNFs,
all other vertices are labeled by the dummy f0, and each wA

(A ∈ A) is split evenly among edges in category ΓA;

This is a supplementary file of [1].

EXTENSION OF CLIQUE EMBEDDING

We will show that one can build a feasible solution by

extending algorithm Clique Embedding (CE).

Algorithm: Let p′i := si ⊕ ci ⊕ ti be the service chain for

flow di (⊕: concatenation), augmented with its source and

destination. Let ei := (si, ci,1) be the first-hop edge on p′i,

and E0 := {ei}i∈[n] be the set of distinct first-hop edges.

As presented in Algorithm 1, the idea is to use one subgraph

to represent the service chains (line 1) and another subgraph

to represent the positive-weight categories not represented in

the first subgraph (lines 2–3). Then each path pi is formed

by concatenating edge sequences that need to be traversed by

flow di in both subgraphs (lines 6–8), as illustrated in Fig. 1.

Clearly, the constructed topology contains at most one

instance per type of VNF. Meanwhile, each pi is a valid path

Y. Lin (yjl5282@psu.edu) and T. He (tzh58@psu.edu) are with the Penn-
sylvania State University. S. Wang (wangshiq@us.ibm.com) is with IBM
T. J. Watson Research Center. K. Chan (kevin.s.chan.civ@mail.mil) is with
US Army Research Laboratory. S. Pasteris (s.pasteris@cs.ucl.ac.uk) is with
University College London.

This research was partly sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views
and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

si ci,1 ci,2 tie

ue

c

pi,1 pi,2

Fig. 1. Illustration of Clique Embedding++.

1,2

2,3

2,3 1,2,3

dummy

1
1

p’1: s f1 f2 f3 t

p’2: s f2 f1 f4 t

p’3: s f4 f2 f3 t

wA>0 ∀A∈
(a) input (b) output (c) a simpler single-

copy representation

s

f1 f2

f3f4

t

1

2

3

2

2

2

3

1,3

1,3

3

2

1,2

s

f1 f2

f3f4

t

2,3

2

1

3

1,3

1,3

1,2,31,2

2

11 2 2

3

3

Fig. 2. Suboptimality of CE++ (edge label denotes its category index).

that traverses the service chain for flow di, and each category

with positive weight contains at least one edge. Note that the

category of a removed edge e ∈ E0 is represented by its

replacement edges (s(e), ue) and (ue, t(e)).
Remark: Given an O(n2)-sparse solution to the weight

inference problem (Proposition III.2), the above construction

introduces O(n) extra vertices (all labeled f0) and O(n2) extra

edges compared to the union of the service chains.

Suboptimality: While CE++ gives a feasible solution, it may

introduce more vertices/edges than necessary. For example,

consider the input in Fig. 2 (a), which specifies the service

chains for three flows between the same source and the same

destination. The output of CE++ is given in Fig. 2 (b), which

has 12 vertices and 22 edges. However, Fig. 2 (c) is also a

feasible solution, but has only 7 vertices and 11 edges. Our

goal is to find the simplest solution in terms of the minimum

order/size single-copy representation.

Note that our reason to introduce CE++ is to demonstrate

that it is possible to augment a topology inferred from path

length information alone to incorporate the information on

service chains. As shown in the paper, a clean-slate solution

(SAP) that jointly considers both types of information actually

performs better in terms of inference accuracy.

REFERENCES

[1] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris, “Looking glass of
NFV: Inferring the structure and state of NFV network from external
observations,” IEEE/ACM Transactions on Networking, 2020, accepted
for publication.

