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Abstract—The rapid development of network function virtu-
alization (NFV) enables a communication network to provide
in-network services using virtual network functions (VNFs)
deployed on general IT hardware. While existing studies on
NFV focused on how to provision VNFs from the provider’s
perspective, little is known about how to validate the provisioned
resources from the user’s perspective. In this work, we take a first
step towards this problem by developing an inference framework
designed to “look into” the NFV network. Our framework infers
the structure and state of the overlay formed by VNF instances,
ingress/egress points of measurement flows, and critical points
on their paths (branching/joining points). Our solution only uses
external observations such as the required service chains and
the end-to-end performance measurements. Besides the novel
application scenario, our work also fundamentally advances the
state of the art on topology discovery by considering (i) general
topologies with general measurement paths, and (ii) information
of service chains. Evaluations based on real network topologies
show that the proposed solution significantly improves the accu-
racy over existing solutions, and service chaining information is
critical in revealing the structure of the underlying topology.

I. INTRODUCTION

Modern communication networks have outgrown empty
bit pipes. Increasingly, network providers use network ap-
pliances (a.k.a. middleboxes) to provide in-network services,
e.g., Network Address Translators (NATs), firewalls, Intru-
sion Detection Systems (IDSs), Intrusion Prevention Systems
(IPSs), Deep Packet Inspectors (DPIs), web proxies, and
WAN optimizers [1]. While traditionally deployed as physical
middleboxes implemented by special-purpose hardware, next-
generation network appliances are increasingly deployed as
software middleboxes, referred to as Virtual Network Func-
tions (VNFs), running on general-purpose servers. This tech-
nology, known as Network Function Virtualization (NFV)
[2], is empowering network providers to partner with cloud
providers and software vendors to provide innovative value-
adding services within the communication network [3].

On one hand, NFV opens up a whole new solution space
for configuring the network. Encapsulated as virtual machine
(VM) instances, VNFs can be scaled up/down, replicated,
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and/or migrated to suit the current demands. Moreover, multi-
ple VNFs can be organized into a chain (a.k.a. service chain)
to serve flows with multiple processing needs. Solutions have
been developed to exploit the enlarged solution space from the
provider’s perspective, by optimizing the placement of VNFs
[4], the routing among VNFs [5], or a combination of these
actions [6], [7].

On the other hand, the presence of (virtual or physical)
network appliances significantly complicates network manage-
ment. Due to the widespread deployment of network appli-
ances, the network administrator needs to manage not only
routers and switches, but also a variety of network appli-
ances, leading to high operational expenses and administrative
headaches [1]. The problem remains even with the virtual-
ization of network appliances, as the network administrator
still needs to manage VNFs based on software that is often
developed by independent vendors [3]. Furthermore, as NFV
becomes widely adopted by network providers, there will
be needs for a client (network administrator) to validate the
service received from its network provider, or for a network
provider to validate the service received from its peers, just as
in today’s Internet. It is therefore highly desirable to have a
method that can “look into” the NFV network without directly
measuring individual routers or VNF instances.

In this work, we take a first step towards addressing this
problem by jointly inferring the internal structure and state of
an NFV network using external observations. We consider two
types of observations: (i) parameters of flow demands (e.g.,
ingress/egress points and service chains) and (ii) end-to-end
performance measurements (e.g., delays and losses). While
these observations do not directly specify the physical network
topology, we argue that they can provide useful information
about the VNF overlay, such as: the deployment of VNF
instances, the chaining of these instances for each flow, and the
performance of each VNF instance in processing the traffic.

We model the above information by a directed, vertex-
labeled, and edge-weighted graph, referred to as the VNF
topology, where the graph topology represents the intercon-
nections between VNF instances, the vertex labels represent
the (logical) VNF placement, and the edge weights represent
the VNF performances1. We refer to the problem of inferring

1More precisely, the weight of an edge e = (s(e), t(e)) represents the
overall performance for data transfer on e and data processing at t(e), the
physical meaning of which will be explained in Section II-C.



the VNF topology as the VNF topology discovery problem.

A. Related Work
NFV resource management: From an application perspec-

tive, our work is related to network management in NFV. Ex-
isting works on this topic have addressed VNF placement [4],
admission control and path selection [5], and joint optimization
of multiple control knobs [6], [7]. Specifically, [6] jointly
optimizes VNF placement, routing, and admission control
under hard capacity constraints, and [7] jointly optimizes VNF
placement, routing, and resource allocation under soft capacity
constraints. However, all the above are from the provider’s
perspective. To our knowledge, we are the first to investigate
the monitoring of NFV network structure and state from an
outsider’s perspective.

Network topology discovery: Technically, our work is
more related to topology discovery based on end-to-end
measurements. In communication networks, the problem was
initially studied based on multicast probing [8], where corre-
lation among losses observed at multicast receivers is used
to infer the multicast tree. Over the years, the technique
was extended to exploit a variety of multicast measurements,
including losses [9], delays [10], and a combination of these
[11]. Meanwhile, due to limited support of multicast, unicast-
based solutions were developed, using stripes of back-to-back
unicast probes [12] or “sandwiches” of small and large probes
[13]. Most of these algorithms are inspired by phylogenetic
tree algorithms, which aim at constructing a tree based on the
measured distances between leaf nodes [14].

Only a few works considered ground truth topologies that
are not trees, all based on measurements from multiple
sources. Solutions in [15], [16] still constructed tree topolo-
gies, except that the accuracy was analyzed with respect to
a ground truth that may not be a tree. Solutions in [17],
[18], [19], [20] constructed directed acyclic graphs (DAGs)
by merging 2-by-2 topologies (i.e., quartets) depicting the
connections between two sources and two destinations, and
a similar idea was used in [21] by merging 1-by-3 topologies.
Assuming measurements of 1-by-2 and 2-by-1 topologies, [22]
presented a necessary and sufficient condition for the underly-
ing topology to be identifiable and an algorithm to do so. How-
ever, all the above solutions assumed that there is a single route
for every source-destination pair, and the routes from/to each
node form a tree. In NFV networks, the requirement of VNF
traversals can cause flows to deviate from the default routes,
and hence the topology traversed by probes from a source (or
to a destination) may not be a tree. To our knowledge, we are
the first to investigate topology discovery based on end-to-end
measurements for arbitrary topologies under arbitrary routing.

B. Summary of Contributions
The main contributions of this work are:
1) We are the first to consider external observation-based

topology discovery in NFV networks.
2) We show that the approach of tree approximation, as is

used by existing solutions, is insufficient for NFV networks,
and we propose a two-step solution, which gives a near-
smallest logical topology that is equivalent to the ground truth.
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Fig. 1. Topologies of the physical substrate and the VNF overlay.

3) We extend our solution to incorporate service chains,
by reformulating our problem as a novel string augmentation
problem that can be solved as integer linear programs (ILPs).

4) Via simulations based on real topologies, we verify
that our solution significantly outperforms a state-of-the-art
solution in both fitting the measurements and approximating
the ground truth, and service information plays a critical role.

Although motivated by NFV, our solution is equally
applicable to networks with traditional network appliances.

Roadmap. Section II formalizes our problem. Section III
addresses a simplified version of our problem in a classical
setting, and Section IV addresses the full version that incor-
porates service information. Section V evaluates the proposed
solution against benchmarks. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the VNF overlay, illustrated in Fig. 1, by
a directed, vertex-labeled, and edge-weighted graph G =
(V,E, L,W ), referred to as the VNF topology. The vertex
set V denotes the set of VNF instances and critical points
on measurement paths (sources, destinations, and branch-
ing/joining points), and the edge set E denotes the connections
between these points. The label set L denotes the VNF
placement, where lv ∈ L denotes the type of VNF at vertex
v ∈ V . Let F = {f1, f2, . . .} be the set of all types of
VNFs supported by the network. As measurement paths may
branch/join at a point that does not run any VNF (e.g., a
pure router/switch), we introduce a dummy VNF f0 6∈ F to
label such vertices. Lastly, the weight set W represents the
network performance as a multi-set of edge weights, where
we ∈ W for edge e = (s(e), t(e)) ∈ E models the overall
performance in transferring a packet from s(e) to t(e) and
processing the packet at t(e). In this work, we consider a
family of performance metrics that can be modeled as additive
edge weights as detailed in Section II-C. We assume that the
sources/destinations of measurement paths do not run VNFs
and are observable; the rest of G is not observable.

B. Flow Model

We measure the network by monitoring a set of flows
D = {di}ni=1, each demanding a source (or ingress point)
si, a destination (or egress point) ti, and a service chain
ci = (ci,j)

ni
j=1, where ci,j ∈ F is the type of VNF required at

step j of processing flow di. As the flow demands are provided
by the users (or their proxy), they are assumed to be observable
to the inference engine. After a flow di is admitted by the
network, it is mapped onto a path pi that goes from si to ti and
traverses the service chain ci in between. The internal portion



of pi (i.e., excluding si and ti) is not observable. Note that due
to the VNF traversal requirements, a flow may follow a non-
simple path which may traverse a vertex/edge multiple times.

C. Performance Model

We consider a family of edge weights with two properties:
(i) the weights are nonnegative and additive, i.e., the path
weight equals the sum weight of the traversed edges, and (ii)
the weights can be reliably inferred (by an unbiased estimator)
from end-to-end measurements for each path and the shared
portion of each pair of paths. Let ρi denote the sum weight
for path pi, referred to as the path length, and ρij denote the
sum weight for the shared portion of paths pi and pj , referred
to as the shared path length.

It is known [12] that several important performance metrics
satisfy these requirements, listed below for completeness. In
the following, we use a “probe” to refer to the smallest
unit of measurement, e.g., one packet. As in [23], [12], we
assume that probes are sent in pairs on a pair of paths at a
time, so that probes in the same pair experience the same
performance at shared edges. Moreover, an edge performs
independently for different probe pairs, and different edges
perform independently. The definitions below can be modified
to account for imperfect correlation at shared edges [12].

1) Loss-based Weight: If we measure the end-to-end losses,
then the edge weight can be defined as we := − logαe, where
αe is the success rate of edge e (i.e., the probability for a
probe to successfully traverse edge e and get processed by the
VNF at vertex t(e)). Let Xp be the success indicator for path
p. Then we have

ρi =
∑
e∈pi

− logαe = − log Pr{Xpi = 1}, (1)

ρij =
∑

e∈pi∩pj

− logαe = − log

(
Pr{Xpi = 1}Pr{Xpj = 1}

Pr{Xpi = Xpj = 1}

)
. (2)

Thus, we can calculate the path lengths and the shared path
lengths by estimating the success probability of each path and
the joint success probability for each pair of paths from the
end-to-end losses. It is known that the unbiased estimators of
these probabilities are simply their empirical values.

2) Utilization-based Weight: If we measure the end-to-end
delays, then the edge weight can be defined as we := − log βe,
where βe is the no-queueing probability of edge e (i.e., the
probability that a probe incurs no queueing delay in traversing
edge e and getting processed at vertex t(e)). Let Yp be the no-
queueing indicator for path p. Then we have

ρi =
∑
e∈pi

− log βe = − log Pr{Ypi = 1}, (3)

ρij =
∑

e∈pi∩pj

− log βe = − log

(
Pr{Ypi = 1}Pr{Ypj = 1}

Pr{Ypi = Ypj = 1}

)
. (4)

Similar to loss-based weights, we can calculate the path
lengths and the shared path lengths by estimating the no-
queueing probabilities of each path and each pair of paths
from end-to-end queueing indicators. In practice, this can
be achieved by comparing each delay measurement with a
threshold representing the “maximum end-to-end delay” on

that path without queueing (estimated from delays measured
when the network is lightly loaded), and counting the fraction
of measurements below the threshold.

D. VNF Topology Discovery Problem

Given observations from a set of flows {di}i∈[n]
([n] := {1, . . . , n}), including the sources, the destinations, the
service chains, and the corresponding path lengths {ρi}i∈[n]
and shared path lengths {ρij}i,j∈[n], we want to infer the
underlying VNF topology and the paths of these flows.

Topology Selection Criteria: The solution to the VNF topol-
ogy discovery problem will not be unique, e.g., dummy VNFs
can be added without changing the service chains, and the
sum weight of two edges traversed by the same set of paths
can be split arbitrarily between them without affecting path
lengths or shared path lengths. This is an inherent limitation
of topology discovery problems [24], [19]. To resolve the
ambiguity, additional criteria are needed. Theoretically, the
optimal solution should maximize the likelihood of the given
measurements [13], [25]. In practice, however, simpler criteria
are often used to avoid requiring statistical knowledge of the
measurements (i.e., the likelihood function). In this work, we
adopt a set of such nonparametric criteria.

Generally, given a set of feasible topologies, each consistent
with all the observations, we want to select the topology that is:

1) a minimum weight representation that minimizes the total
edge weight, or

2) a minimum size representation that minimizes the number
of edges, or

3) a minimum order representation that minimizes the num-
ber of vertices.

Intuitively, (1) represents the “best-performing” topology in
terms of the total weight, and (2–3) represent the “simplest”
topology in terms of the number of edges or vertices. Any
topology discovery algorithm can only reconstruct the ground
truth up to its minimum weight/size/order representation.

Remark: Objective (1) is consistent with the minimum
spanning/Steiner tree model commonly used in phylogenetic
inference [26], where the goal is to use a minimum weight
tree to convey the relationships between species. Objective
(2) is consistent with the penalized likelihood criterion in [13]
(where the penalty is the number of edges) and the notion of
“simplest topology” in [21]. Objective (3) is the same as the
“minimal representation” criterion used in [19], where the goal
is to reconstruct the measured distances between participating
nodes using a minimum number of hidden nodes. We have
renamed these criteria in the convention of graph theory.

III. SOLUTIONS BASED ON PATH LENGTH INFORMATION

We begin with a simplified version of the problem, where
only path lengths and shared path lengths are used as in
classical topology discovery problems [12], [22]. Accordingly,
the goal is reduced to inferring a directed, edge-weighted
graph G = (V,E,W ), such that the flows can be mapped
to paths in this graph that match the given path lengths and
shared path lengths. Although this problem has been studied
outside the context of NFV, existing solutions assumed that the
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Fig. 2. Counterexample for tree approximation.

underlying topology is either a tree or a union of single-source
trees (see Section I-A), neither valid in the context of NFV.

A. Deficiency of Tree Approximation

We use an example to illustrate that it is not always possible
to match the given path lengths and shared path lengths by
constructing a tree. Consider the ground truth in Fig. 2 (a)
with a single source, where wi denotes the weight of edge ei.
Ignoring measurement errors, we will observe the following:
ρ1 = 4, ρ2 = 6, ρ3 = 3, ρ12 = 4, ρ13 = 1, and ρ23 = 3.

Existing solutions will attempt to use an edge-weighted
rooted tree to reconstruct these lengths. In particular, the
Rooted Neighbor-Joining (RNJ) algorithm [12] guarantees cor-
rect reconstruction if the ground truth topology is a canonical
tree and there is no measurement error. In this case, it returns
a topology in Fig. 2 (b), which does not resemble the ground
truth. Furthermore, the inferred topology does not match the
measurements either, as ρ′13 = 2 6= ρ13 and ρ′23 = 2 6= ρ23.
This is not just a limitation of RNJ: any tree topology will
require at least two shared path lengths to be equal, which is
inconsistent with the input. This is a fundamental limitation
of tree approximation, indicating the need of a new topology
discovery algorithm that can construct non-tree topologies.

B. Solution for General Topologies

We propose a solution for discovering a general topology
based on path lengths and shared path lengths. Our solution
consists of two steps: (1) weight inference, and (2) topology
construction, where step (1) aims at inferring edge weights at
the finest granularity, and step (2) aims at constructing a graph
based on the inferred weights to route the flows.

1) Weight Inference: We start by trying to infer edge
weights based on the given path length information. Despite
the unknown topology, we show that it is still possible to
deduce weights at a finer granularity than paths/shared paths.

Problem Definition: We partition the edges in the ground
truth topology into 2n − 1 categories (n: number of flows),
where each category A (A ⊆ [n], A 6= ∅) contains all the edges
traversed only by the paths in {pi : i ∈ A}. For example, for
n = 3, we have 7 categories, and category {1, 2} contains all
the edges traversed by p1 and p2 but not p3. Let wA denote
the sum weight for category-A edges, and A := 2[n]\∅ denote
all the categories.

The weight inference problem aims at determining
(wA)A∈A from the given path lengths and shared path lengths.
Note that the lengths only specify edge weights up to their sum
per category, as one can split each wA arbitrarily among edges
in category A without affecting any path length or shared path
length. In this sense, the weight inference problem aims at
inferring the edge weights at the finest granularity.

By definition, category-A edges are traversed by a path pi
if and only if i ∈ A. Similarly, category-A edges are shared
by paths pi and pj if and only if {i, j} ⊆ A. Therefore, we
can formulate the problem as solving the linear equations:∑

A:i∈A
wA = ρi, ∀i ∈ [n], (5a)

∑
A:{i,j}⊆A

wA = ρij , ∀i, j ∈ [n], (5b)

subject to (s.t.) the constraint that wA ≥ 0 (∀A ∈ A) due to
the nonnegativity of edge weights (see Section II-C).

Challenges: There are several practical challenges in solving
(5). First, there are exponentially many variables, suggesting
that solving this linear system will incur exponential complex-
ity. Moreover, there is only a quadratic number of equations,
and thus we generally have an under-constrained linear system
that does not have a unique solution. Furthermore, in practice
we can only estimate the values of ρi’s and ρij’s from raw
measurements, and the estimation errors can cause the linear
system to be infeasible.

Results: For the first challenge, we first note that for each
input, there is a solution where majority of the categories
have zero weight.

Lemma III.1. For each topology, there exists a feasible
solution to the weight inference problem that is (n +

(
n
2

)
)-

sparse, i.e., containing at most n+
(
n
2

)
non-zero variables (i.e.,

per-category weights). Moreover, there exists a solution with
the minimum total weight that is (n+

(
n
2

)
)-sparse.

Proof. We note that the entire set of feasible solutions given by
(5) and wA ≥ 0 (∀A ∈ A) is a bounded nonempty polytope in
R2n−1 space. Every vertex of this polytope, which is a feasible
solution, is given by a subset of 2n − 1 constraints, where
the inequality constraint wA ≥ 0 is satisfied with equality.
As at least 2n − 1 − n −

(
n
2

)
of these constraints are of the

form wA = 0, at most n+
(
n
2

)
variables can be non-zero, i.e.,

feasible solutions corresponding to vertices of the polytope are
(n+

(
n
2

)
)-sparse. The second claim follows from the fact that if

we further minimize
∑

A∈A wA over the polytope, optimality
can always be achieved at a vertex, which gives a minimum
weight solution that is (n+

(
n
2

)
)-sparse.

Meanwhile, we have shown that no category can be ignored,
i.e., with a weight always set to zero.

Lemma III.2. For each A ∈ A, there exists a ground truth
topology for which wA must be positive.

Proof. We prove the claim by contradiction. Suppose that
there exists a weight inference algorithm π that always sets
wA ≡ 0 for all inputs. Consider a ground truth topology where
only one edge in category A has a non-zero weight of 1; other
edge weights are zero. Thus, ρi = 1 if i ∈ A, and ρi = 0 other-
wise; ρij = 1 if {i, j} ⊆ A, and ρij = 0 otherwise. Let A′ be
the set of categories assigned non-zero weights by π. We argue
that

⋃
A′∈A′ A′ must equal A. Otherwise, we must have either

(i) i ∈
⋃

A′∈A′ A′\A, for which
∑

A′:i∈A′ wA′ > 0 but ρi = 0,
or (ii) i ∈ A \ (

⋃
A′∈A′ A′), for which

∑
A′:i∈A′ wA′ = 0 but

ρi = 1. If |A| = 1, then A′ = {A}, i.e., π assigns a non-zero



weight to category A, contradicting our assumption. If |A| >
1, we argue that for any {i, j} ⊆ A, @A′ ∈ A′ that contains i
but not j, because otherwise we must have ρi > ρij . It implies
that A′ = {A}, again contradicting our assumption.

Due to Lemma III.2, any solution to the weight inference
problem has to deal with exponentially many variables.
It remains open whether given an input, one can find, in
polynomial time, a polynomial number of categories such that
it suffices to only give positive weights to these categories.

To address the second and the third challenges, we first relax
the requirements from perfect reconstruction as in (5) to best-
effort reconstruction, formulated as a constrained optimization:

min
∑
i∈[n]

|
∑

A:i∈A
wA − ρi|+

∑
i,j∈[n]

|
∑

A:{i,j}⊆A

wA − ρij | (6a)

s.t. wA ≥ 0, ∀A ∈ A. (6b)

This is a convex optimization that can be solved by convex op-
timization solvers (with input size exponential in n). We note
that the `-1 norm in (6a) can be replaced by other norms. The
optimal value of (6), denoted by ε∗, gives the minimum recon-
struction error we have to tolerate due to measurement errors.

We then revisit the problem to include the intention of
minimizing the total weight:

min
∑
A∈A

wA (7a)

s.t.
∑
i∈[n]

|
∑

A:i∈A
wA − ρi|+

∑
i,j∈[n]

|
∑

A:{i,j}⊆A

wA − ρij | ≤ ε, (7b)

wA ≥ 0, ∀A ∈ A. (7c)

This optimization tries to minimize the total weight (7a)
subject to the constraints of approximately satisfying the mea-
surements (7b) and ensuring nonnegativity. The parameter ε is
used to trade off the reconstruction error and the total weight
of the inferred topology. At the minimum, it should account
for measurement errors, i.e., ε ≥ ε∗. As in (6), other norms
can be used instead of the `-1 norm in (7b). Problem (7) is
again a convex optimization (with input size exponential in n).

Remark: In cases that the distribution g(·) of measurement
errors is known, we can incorporate this information by per-
forming the maximum likelihood estimation (MLE) of the per-
category weights. This is a constrained optimization similar to
(6), with the objective (6a) replaced by max g((

∑
A:i∈AwA−

ρi)i∈[n], (
∑

A:{i,j}⊆AwA−ρij)i,j∈[n]). Similarly, we can com-
pute a minimum weight representation by solving a variation
of (7), with (7b) replaced by a constraint of the form g(·) ≥ δ,
where δ is no greater than the maximum likelihood.

2) Topology Construction: Given the per-category weights
(wA)A∈A, there are many topologies satisfying these weights,
and our objective is to find the “simplest” topology in the sense
of minimum size/order representation. If a topology contains
at least one edge in category A, we say that category A is
represented in this topology. Although the optimal solutions
for these representations need not be the same, we are able
to develop an algorithm that is both near-optimal for mini-
mum order representation and asymptotically near-optimal for
minimum size representation.

Algorithm: Our idea is to embed edges representing the
categories with non-zero weights into the minimum clique

Algorithm 1: Clique Embedding (CE)
input : Number of measurement flows n and per-category

weights (wA)A∈A
output: Inferred topology G and flow paths {pi}ni=1

1 find the minimum directed clique C with at least
|{A ∈ A : wA > 0}| edges;

2 foreach A ∈ A such that wA > 0 do
3 randomly select an unselected edge in C, and assign it

category A and weight wA;
4 create a new vertex r;
5 foreach i = 1, . . . , n do
6 find continuous edge sequences {pi,j}mi

j=1 that are
formed by edges assigned to categories
{A ∈ A : i ∈ A};

7 foreach edge sequence pi,j do
8 create an edge from r to the beginning of pi,j and an

edge from the end of pi,j to r, both of zero weight;
9 pi is the concatenation of the cycles formed by going

from r to pi,j and back to r for j = 1, . . . ,mi;
10 G consists of all the selected edges in C, vertex r, and all the

edges between r and C;

pi,1
pi,2

pi,3

r

Fig. 3. Illustration of Clique Embedding.

that has sufficiently many edges. This idea is based on the
observations that we must construct at least one edge for
each category with non-zero weight, and the directed clique
(i.e., complete directed graph) is the smallest directed graph
that can embed a given number of edges. This is the initial
idea behind our topology construction algorithm, referred to
as Clique Embedding (CE), shown in Algorithm 1.

However, the embedded edges may not form valid paths,
i.e., for a given i ∈ [n], the embedded edges in categories
{A ∈ A : i ∈ A} may not form a sequence of pairwise
adjacent edges. To generate valid paths, we construct a special
vertex r (line 4), which is connected to/from each continuous
sequence of embedded edges that need to be traversed by pi
(lines 7–8). Thus, we can “stitch together” the edge sequences
via r to form a valid path (line 9). Fig. 3 illustrates the idea:
if the embedding generates three continuous edge sequences
pi,1, pi,2, and pi,3 for some i ∈ [n], then the constructed path
pi goes from r to pi,1 and back to r, then to pi,2 and back
to r, and finally to pi,3 and back to r.

Given the set Ei of embedded edges that need to be
traversed by pi (i.e., in categories {A ∈ A : i ∈ A}), we
can find the continuous edge sequences (line 6) as follows:
(i) initialize each edge sequence pi,j as a one-hop sequence
containing a randomly selected edge in Ei that has not been
covered by the existing edge sequences;
(ii) iteratively extend pi,j by adding one edge at a time to
either endpoint from the uncovered edges in Ei, until no more
extension can be made;
(iii) if there are still uncovered edges in Ei, repeat (i–ii).

Performance: Among all the feasible topologies, Algo-
rithm 1 gives a near-optimal representation of the ground truth
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topology in the following sense.

Theorem III.3. The topology G given by Algorithm 1 is

(a) near-optimal in minimizing the order, in that G has at most
one more vertex than the minimum order representation, and
(b) asymptotically near-optimal in minimizing the size, in
that for any ε > 0, the number of edges in G is no more
than (1 + ε) times the number of edges in the minimum size
representation for all sufficiently large |{A ∈ A : wA > 0}|.

Proof. Let ke := |{A ∈ A : wA > 0}| and h(ke) := min{m :
m(m − 1) ≥ ke} be the number of vertices in the minimum
clique with at least ke edges.

First, the minimum order representation needs at least one
edge in each positive-weight category, and hence its number of
vertices is at least h(ke). The topology given by Algorithm 1
contains h(ke) + 1 vertices. Hence, claim (a) holds.

Moreover, Algorithm 1 constructs at most ke+2h(ke) edges,
as there are at most 2h(ke) edges between r and vertices in
the clique. The minimum size representation has at least ke
edges. The approximation ratio is thus upper-bounded by 1+
2h(ke)/ke. As h(ke) = O(

√
ke), for every ε > 0, ∃k0 such

that 2h(ke)/ke ≤ ε for all ke ≥ k0, proving claim (b).

Example: Consider the input of n = 3 and wA > 0 for all
A ∈ A. Fig. 4 illustrates a possible outcome of Algorithm 1,
together with the set of embedded edges that need to be
traversed by each path. In this case, there is actually no need
to add vertex r, i.e., G − r is still a feasible solution, as the
embedded edges for each i already form a valid path.

IV. SOLUTIONS BASED ON PATH LENGTH AND SERVICE
INFORMATION

We now revisit the problem when information about the
services required by each flow is also used for inference,
including the source si, the destination ti, and the service
chain ci (i ∈ [n]).

While the service information distinguishes our problem
from all the existing topology discovery problems, we can
still reuse some of the previous solutions. Specifically, as the
service information does not inform us about the edge weights,
we can still divide the problem into two subproblems: (1)
weight inference, and (2) VNF topology construction. Subprob-
lem (1) has the same input and output as in Section III-B1,
and hence results therein apply. Subproblem (2) takes both
the inferred per-category weights and the service information
as input, and outputs a directed, vertex-labeled and edge-
weighted graph G = (V,E,L,W ) that represents the VNF
overlay topology. The focus here is subproblem (2).

We note that the graph formed by the union of service chains
may not be a feasible solution, e.g., two flows with disjoint
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Fig. 5. Merge operation (f1i , f2i : instances of the same VNF; f10 : dummy).

service chains may share a subpath and thus have a positive
shared path length. The challenge in VNF topology construc-
tion is to preserve the service chains while constructing at least
one edge in each positive-weight category.

A. Existence of Single-copy Representation

While the ground truth topology may contain multiple
instances of the same VNF, we show that it is always possible
to construct an equivalent topology that contains at most one
instance per VNF, referred to as a single-copy representation.

Theorem IV.1. For each VNF topology G, there exists an
equivalent single-copy representation G̃, i.e., each fi ∈ F is
assigned to at most one vertex in G̃.

Proof. We prove by construction. Consider an arbitrary VNF
topology G. Let N−(v) and N+(v) denote the incom-
ing/outgoing neighbors of vertex v, i.e., vertices with edges
to/from v. For every two vertices labeled by the same (non-
dummy) VNF fi, denoted by f1i and f2i , we have four cases:
(1) N−(f1i ) ∩ N−(f2i ) = ∅ and N+(f1i ) ∩ N+(f2i ) = ∅,
(2) N−(f1i ) ∩ N−(f2i ) 6= ∅ and N+(f1i ) ∩ N+(f2i ) = ∅, (3)
N−(f1i ) ∩ N−(f2i ) = ∅ and N+(f1i ) ∩ N+(f2i ) 6= ∅, and
(4) N−(f1i ) ∩N−(f2i ) 6= ∅ and N+(f1i ) ∩N+(f2i ) 6= ∅. We
“merge” f1i and f2i as in Fig. 5: in case (1), we directly merge
them; in case (2), we replace f1i by a dummy denoted by f10 ,
which is connected to f2i , and rewire outgoing edges of f1i to
start from f2i ; in case (3), we replace f1i by a dummy f10 , con-
nected from f2i , and rewire incoming edges of f1i to end at f2i ;
in case (4), we replace f1i by a dummy f10 , connected to/from
f2i . Each path traversing f1i will traverse (f10 , f

2
i ) in case (2),

(f2i , f
1
0 ) in case (3), and (f10 , f

2
i , f

1
0 ) in case (4). Each merge

operation reduces the number of duplicate VNF instances by
one, while preserving the service chains and the represented
categories. Repeatedly applying this operation will then give
a single-copy representation that is equivalent to G.

Moreover, the simplest single-copy representation is nearly
as simple as the overall simplest representation.

Corollary IV.2. a) The minimum order single-copy represen-
tation has as few vertices as the minimum order representation.

b) The minimum size single-copy representation has at most
2R more edges than the minimum size representation G∗,
where R is the number of duplicate VNF instances in G∗.

Proof. As the merge operation defined in the proof of
Theorem IV.1 reduces the number of duplicates by one, while
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creating no extra vertex and at most 2 extra edges, applying it
to the minimum order/size representation yields the result.

B. Construction of Single-copy Representation
Although we can extend CE to construct a feasible single-

copy representation by incorporating service chains, this solu-
tion may introduce more vertices/edges than necessary. In the
sequel, we present an optimization-based approach to construct
the minimum order/size single-copy representation.

1) String Augmentation Problem (SAP): Let A+ be the
set of categories with positive weights, and p′i := si ⊕ ci ⊕ ti
(⊕: concatenation) be the service chain of flow di plus
the endpoints. Viewing each path as a string of vertices,
we can interpret the problem of constructing a single-
copy representation as a string augmentation problem
(SAP): augment strings (p′i)i∈[n] by inserting dummy letters
f10 , f

2
0 , . . . (each can be inserted multiple times) such that

every A ∈ A+ is represented, i.e., ∃ a pair of letters (f1, f2)
which appear consecutively in string i (i ∈ [n]) if and only
if i ∈ A. Fig. 6 gives an example of the input/output of SAP.
The augmented strings provide a VNF topology, where each
letter corresponds to a vertex and each string to a path.

The minimum order objective transforms into minimizing
the number of distinct dummy letters, and the minimum size
objective transforms into minimizing the number of distinct
pairs of consecutive letters.

2) Integer Linear Programming (ILP) Formulation: We
can formulate SAP as ILPs with a polynomial number of
variables and constraints. Our formulation assumes that the
service chains are cycle-free (i.e., no duplicate letters in p′i).
Let mmax be an upper bound on the number of dummy letters
and lmax an upper bound on the length of each string. Let
B := {si, ti}i∈[n] ∪ F ∪ {fk0 }k∈[mmax] denote the set of all
the letters. Based on the extension of CE, we know that
mmax = O(n) and lmax = O(|F|+ n2) suffice.

Variables: We use variable xfi,j ∈ {0, 1} to denote if the j-th
letter in string i is f . Moreover, we use variable δk ∈ {0, 1} to
indicate if dummy fk0 is used in any string, and δf1,f2 ∈ {0, 1}
to indicate if (f1, f2) is used (consecutively) in any string.

Constraints: The first constraint is that there is at most one
letter in each position of each string:∑

f∈B
xfi,j ≤ 1, ∀i ∈ [n], j ∈ [lmax], (8)

and the first (or last) letter must correspond to the source (or
destination) of the flow:

x
si
i,1 = 1, x

ti
i,lmax

= 1, ∀i ∈ [n]. (9)

We allow
∑

f∈B x
f
i,j = 0 in (8) to denote that there might be

no letter in a position (and hence the augmented string can be
shorter than lmax). The second constraint is that service chains
must be preserved:∑

1≤j1<j2≤lmax

xf1i,j1 · x
f2
i,j2

= 1, ∀i ∈ [n], (f1, f2) ∈ p′i, (10)

∑
j∈[lmax]

xfi,j = 1(f ∈ p′i), ∀i ∈ [n], f ∈ {si, ti}i∈[n] ∪ F , (11)

which includes preserving the set of non-dummy letters (11)
and the order of them (10). Here 1(·) is the indicator function.
The third constraint is that each positive-weight category must
be represented:∑

f1,f2∈B

∏
i∈A

1(

lmax−1∑
j=1

xf1i,jx
f2
i,j+1>0) ·

∏
i 6∈A

1(

lmax−1∑
j=1

xf1i,jx
f2
i,j+1=0)>0,

∀A ∈ A+, (12)

where
∑lmax−1

j=1 xf1i,jx
f2
i,j+1 is the number of times (f1, f2)

appears consecutively in string i. Additionally, for minimum
order representation, we need

x
fk
0

i,j ≤ δk, ∀k ∈ [mmax], i ∈ [n], j ∈ [lmax], (13)

and for minimum size representation, we need

1(

lmax−1∑
j=1

xf1i,jx
f2
i,j+1>0) ≤ δf1,f2 , ∀f1, f2 ∈ B and i ∈ [n]. (14)

Objective: For minimum order representation, the objec-
tive is to minimize

∑mmax

k=1 δk s.t. constraints (8–13). For
minimum size representation, the objective is to minimize∑

f1,f2∈B δf1,f2 s.t. constraints (8–12) and (14).
Linearization: Constraints (10,12,14) are non-linear. To lin-

earize them, we introduce the following dependent variables,
all in {0, 1}. Variable γif1,f2,j1,j2 s.t.

γif1,f2,j1,j2 ≤ x
f1
i,j1

, (15a)

γif1,f2,j1,j2 ≤ x
f2
i,j2

, (15b)

γif1,f2,j1,j2 ≥ x
f1
i,j1

+ xf2i,j2 − 1 (15c)

replaces xf1i,j1 · x
f2
i,j2

. Variable ζif1,f2 s.t.
lmax−1∑

j=1

γif1,f2,j,j+1 ≤ lmaxζ
i
f1,f2

, (16a)

lmax−1∑
j=1

γif1,f2,j,j+1 ≥ ζ
i
f1,f2

(16b)

replaces 1(
∑lmax−1

j=1 xf1i,jx
f2
i,j+1>0). Variable ξAf1,f2 s.t.

ξAf1,f2 ≤ ζ
i
f1,f2

, ∀i ∈ A, (17a)

ξAf1,f2 ≤ 1− ζif1,f2 , ∀i 6∈ A, (17b)

ξAf1,f2 ≥
∑
i∈A

ζif1,f2 +
∑
i 6∈A

(1− ζif1,f2 )− n+ 1 (17c)

replaces ∏
i∈A1(

∑lmax−1
j=1 xf1i,jx

f2
i,j+1 > 0)

·
∏

i 6∈A1(
∑lmax−1

j=1 xf1i,jx
f2
i,j+1 = 0).

Using these variables, we can rewrite (10,12,14) as∑
1≤j1<j2≤lmax

γif1,f2,j1,j2 = 1, ∀i ∈ [n], (f1, f2) ∈ p′i, (18)

∑
f1,f2∈B

ξAf1,f2 > 0, ∀A ∈ A+, (19)

ζif1,f2 ≤ δf1,f2 , ∀f1, f2 ∈ B and i ∈ [n], (20)



TABLE I
PARAMETERS OF AS TOPOLOGIES

AS ISP #nodes #links
1755 Ebone (Europe) 172 381
6461 Abovenet (US) 182 294
3967 Exodus (US) 201 434

which converts the problem of constructing the minimum
order/size single-copy representation into ILPs.

Complexity: The number of variables in these ILPs is
O(|B|2(nl2max + |A+|)), and the number of constraints is
O(n|B|2(l2max + |A+|)). As |B| = O(n + |F|), lmax =
O(|F| + n2), and |A+| = O(n2), both numbers are in
O(n(n + |F|)2(n2 + |F|)2). This implies that the heuristic
of LP relaxation with rounding will have a polynomial com-
plexity. We conjecture that SAP is generally NP-hard.

V. PERFORMANCE EVALUATION

Setting: We evaluate the proposed solutions on Rocketfuel
Autonomous System (AS) topologies [27], which represent IP-
level connections between routers of several Internet service
providers (ISPs). Parameters of the considered topologies are
given in Table I. We randomly assign each link a (symmetric)
weight in [0.02, 0.1], and treat these topologies as substrates.

We generate VNF overlays by randomly selecting S of the
high-degree nodes (degree ≥ 9) as servers, and randomly
placing |F| types of VNF instances at these servers (one per
server), while ensuring at least one instance per type. We then
randomly select n+1 of the low-degree nodes (degree ≤ 2) as
endpoints, where one is designated as the source and the rest
as destinations. Each service chain is a random permutation
of |ci| different VNFs, where |ci| is uniformly distributed in
{1, . . . , |F|}. The path of each flow is a concatenation of
the shortest (hop count) paths from the source to the nearest
instance of the first VNF, then to the nearest instance of the
second VNF, etc. All results are averaged over at least 10
Monte Carlo runs. We use “node/link” to refer to elements in
the substrate, and “vertex/edge” to refer to those in the overlay.

Benchmark: We use Rooted Neighbor-Joining (RNJ) [12] as
the benchmark. RNJ represents the state of the art, as all exist-
ing solutions for single-source probing assume tree topology,
and RNJ guarantees correct reconstruction in this case.

Reconstruction Accuracy: First, we compare the accuracy
of the proposed solution (by solving (7) with ε = 0) against
RNJ in reconstructing the given path and shared path lengths,
where we assume accurate measurements for both algorithms.
Fig. 7 (a) shows the success rate, defined as the fraction of
time that all the lengths are reconstructed correctly. Fig. 7 (b)
shows the normalized reconstruction error, defined as ||ρ̂ −
ρ||1/||ρ||1, where ρ is the vector of given path/shared path
lengths, and ρ̂ the reconstructed values. RNJ fails to match the
measurements when the ground truth topology is no longer a
tree, while our solution is always accurate. This highlights the
need to consider general graphs in VNF topology discovery.

Inference Accuracy: Next, we compare RNJ, CE
(Algorithm 1), and SAP (Section IV-B2) in the accuracy of the
inferred topology. We extend CE to connect vertex r from/to
each source/destination with zero-weight edges. We solve SAP
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Fig. 7. Accuracy of reconstructing path/shared path lengths (|F| = 5, S = 5).

with the minimum order objective by the CPLEX Optimizer.
To measure the accuracy, we evaluate the normalized error
in several graph properties, including #vertices, #edges, and
average vertex degree (including in/out-degree). Moreover,
we evaluate the graph edit distance, defined as the minimum
number of graph edits (vertex/edge insertion, deletion,
substitution) to make the inferred topology identical to the
ground truth, up to a permutation of internal vertices.

Fig. 8 shows the result when varying the number of paths n.
RNJ incurs substantial error, as it significantly underestimates
the complexity of the ground truth topology by only construct-
ing trees. Meanwhile, CE tends to give overly dense topologies
as it aims at embedding the positive-weight categories into the
smallest graph. By jointly considering path length information
and service information, SAP achieves the best accuracy. We
have verified the comparison when varying the number of
servers S, which also shows that while SAP only constructs
single-copy representations, its accuracy is not sensitive to the
replication of VNFs. We note that although RNJ and SAP have
similar edit distances, they differ significantly in the structure
of the inferred topology (tree vs. general graph). As shown
in Fig. 9, only SAP resembles the structure of the ground
truth, where the source and the destinations are connected via
a densely-connected core that hosts the VNFs.

Impact of Measurement Error: Finally, we repeat the
comparison by packet-level simulations. We send N pairs of
probes on each pair of paths to estimate the path/shared path
lengths as described in Section II-C1 (discarding negative
values), where an edge with weight we drops packets with
probability 1− e−we . Fig. 10 (a) shows the normalized error
in estimating the path/shared path lengths, and Fig. 10 (b)
shows the topology inference accuracy measured by graph
edit distance. We see that SAP starts to outperform the other
algorithms once the estimation error goes below 30%.

VI. CONCLUSION

We consider, for the first time, inferring the structure and
state of NFV networks based on the service chains and the
end-to-end performances of measurement flows. We show
that existing tree-based algorithms cannot guarantee a feasible
solution that is consistent with all the observations, which
motivates us to propose a novel two-step solution designed
to construct the simplest logical topology that is equivalent to
the ground truth with respect to the given observations. Exten-
sive evaluations show that the proposed solution significantly
improves the accuracy over a state-of-the-art algorithm.
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Fig. 8. Accuracy of reconstructing topology as n varies (AS6461, |F| = 5, S = 5, (a-c) are normalized by ground truth).
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Fig. 10. Results of packet-level simulation (AS6461, |F| = 5, S = 5,
n = 3).
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