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Abstract—Traditional network topology inference aims at
reconstructing the routing trees rooted at each probing source
from end-to-end measurements. However, due to emerging tech-
nologies such as network function virtualization, software defined
networking, and segment routing, many modern networks are
capable of supporting generalized forwarding that can create
complex routing topologies different from routing trees. In this
work, we take a first step towards closing this gap by proposing
methods to infer the routing topology (referred to as 1-1-N
topology) from a single source to multiple destinations, where
routes may be required to traverse a given waypoint. We first
thoroughly study the special case of 1-1-2 topologies, showing
that even this seemingly simple case is highly nontrivial with 36
possibilities. We then demonstrate how the solution to the special
case can be used as building blocks to infer 1-1-N topologies. The
inferred topology is proved to be equivalent to the ground truth
up to splitting/combining edges in the same category.

Index Terms—Topology inference, waypoint-based routing,
graphlet, 1-1-N topology.

I. INTRODUCTION

Topology information is a critical part of network state
that supports a variety of network management tasks such
as service placement, routing, overlay construction, and load
balancing. In single-domain networks where all the devices
are owned and managed by the same provider, topology
information can be directly collected, e.g., via the help of
local monitoring agents running Simple Network Management
Protocol (SNMP). In contrast, obtaining accurate topology
information for public/shared networks such as the Internet
is much more challenging due to the lack of local support.

Network tomography provides a promising approach to
address this challenge by inferring the internal topology of a
target network from end-to-end measurements collected from
a subset of nodes. Since introduced in the 1990s to infer mul-
ticast trees from losses observed at multicast receivers [1], [2],
the technique has been extended to exploit a variety of multi-
cast and unicast measurements [3]–[6], and to infer more com-
plicated topologies beyond multicast trees by jointly consider-
ing measurements from multiple sources [7]–[11]. However,
all these works relied on a critical assumption that the moni-
tored network employs destination-based forwarding along a
set of predetermined (although unknown) routing trees.
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While mostly satisfied in traditional IP networks, the as-
sumption of tree-based routing is no longer valid in new
networking paradigms such as Software Defined Networking
(SDN) [12] and Network Function Virtualization (NFV) [13],
where packets can be steered along non-tree routing topolo-
gies. In our previous work [14], we verified that for such
networks, existing tree-based topology inference algorithms
cannot even guarantee a feasible solution that is consistent
with all the end-to-end measurements. Based on a two-step
approach of first inferring the so-called category weights
and then embedding the category weights into a constructed
topology, we were able to guarantee that the constructed
topology is always consistent with all the measurements. It
is, however, not necessarily the same as the ground-truth
topology, due to the existence of many equivalent topologies
that could have generated the measurements.

In this work, we aim at improving the inference accuracy by
developing new topology inference algorithms. To reduce the
ambiguity caused by the existence of equivalent topologies,
we impose the constraint that each path must traverse a
predetermined sequence of waypoints, and the routing be-
tween waypoints must follow the default routing protocol
(e.g., shortest path routing). Waypoint-based routing models a
variety of practical scenarios that cannot be modeled by simple
destination-based forwarding. For example, in networks em-
ploying NFV, a flow may need to traverse a chain of virtual-
ized network functions (VNFs) before going to the destination.
Moreover, in IP networks employing segment routing [15], an
ingress node may prepend a list of segments to the header of
each packet to specify the list of network elements the packet
must traverse. In these examples, the VNFs and the segments
serve as waypoints, which are connected by the default routing
paths (e.g., IGP shortest paths).

To discover the routing topologies of such networks, we
address, for the first time, topology inference under waypoint-
based routing. As a first step towards solving this problem,
we consider a simple setting where there is only one probing
source, one waypoint, and N (N ≥ 2) destinations, referred to
as the case of 1-1-N topology. We show that the introduction
of a waypoint significantly complicates the problem, and even
the simplest case of 1-1-2 topology (called graphlet) has 36
possibilities. We then demonstrate how to use the graphlets as
building blocks to infer 1-1-N topologies for an arbitrary N .

A. Related Work

Topology inference using end-to-end measurements was
initially studied for multicast probing [1], [2], where corre-



lation among losses observed at multicast receivers is used
to infer the multicast tree. Over the years, the technique
was extended to exploit a variety of multicast measurements,
including losses [3], delays [4], and a combination of losses
and delays [5]. Due to the limited support of multicast,
unicast-based solutions were developed, using stripes of back-
to-back unicast packets to emulate a multicast [6].

Recent works focused on handling underlying topologies
that are not trees [7]–[11], by utilizing measurements from
multiple sources. Solutions in [7]–[9] constructed directed
acyclic graphs (DAGs) by merging 2-by-2 topologies (i.e.,
quartets) depicting the connections between two sources
and two destinations. Given 1-by-2 and 2-by-1 topologies,
[10] presented a necessary and sufficient condition for the
underlying topology to be identifiable and an algorithm to
do so. With the additional requirement that internal nodes
support network coding, DAGs can be inferred at improved
accuracy and reduced complexity [11]. However, all the above
solutions assumed that there is a single route for every source-
destination pair, and the routes from each source or to each
destination form a tree.

To our knowledge, the only existing work considering non-
tree-based routing is our previous work [14]. It proposed a
two-step approach to construct a weighted topology that is
consistent with all the end-to-end measurements taken from
an arbitrary underlying topology with arbitrary routing. The
constructed topology, however, is not guaranteed to resemble
the ground-truth topology. In this work, we aim at improving
the inference accuracy by considering waypoint-based routing.

B. Summary of Contributions

Our contributions are four-fold:
1) We are the first to tackle the problem of topology in-

ference from end-to-end measurements under waypoint-
based routing.

2) We discover all the possibilities of 1-1-2 topologies
(called graphlets), and prove that these topologies are
uniquely identifiable based on multicast probes.

3) We demonstrate that graphlets can be used as building
blocks to identify 1-1-N topologies for a general N ≥ 2.

4) We validate the accuracy of our topology inference
algorithm based on real ISP topologies.

II. PROBLEM FORMULATION

A. Network Model

We model the network (routing) topology as an edge-
weighted directed graph G = (V,E). Each vertex v ∈ V
represents a source, a destination, a waypoint, or a branch-
ing/joining point between at least two measurement paths.
Consider the case where there is one probing source s, one
waypoint f , and N (N ≥ 2) destinations {t1, . . . , tN}. We
refer to such a topology as a 1-1-N topology. Each edge e ∈ E
represents a connection between two adjacent vertices, which
may map to a sequence of links in the physical topology.
Given an edge e, let ue denote its weight, which can represent
various performance metrics as explained in [14].
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Fig. 1. Subgraph connecting waypoint f to the rest of the network (ue2 ≡ 0).

We assume that the edge weight has the properties that (i) it
is non-negative, and (ii) the sum weight over edges traversed
by a multicast probe can be estimated consistently from end-
to-end measurements. As a concrete example, consider the
definition that ue := − logαe, where αe is the probability for
edge e to be in a “good” state (e.g., no loss, no queueing,
no congestion). This weight is by definition non-negative.
Moreover, if C denotes the set of paths probed in a given
multicast, then the sum weight φC of edges in the multicast
tree, referred to as the cast weight, equals

φC :=
∑

e∈
⋃

p∈C p

ue=− log

 ∏
e∈

⋃
p∈C p

αe

=− log(Pr{XC =1}), (1)

where XC ∈ {0, 1} is the indicator that all the destina-
tions of paths in C receive a multicast probe with “good”
performance, i.e., without loss if αe denotes the no-loss
probability, without queueing delay if αe denotes the no-
queueing probability, and without congestion if αe denotes
the no-congestion probability. Therefore, as the number of
multicast probes sent on C increases, the estimated cast
weight φ̂C := − log(P̂r{XC = 1}) (P̂r{XC = 1}: empirical
probability of XC = 1) will converge to the true value.
Similarly, for any subset of paths A ⊆ C, we can also measure
the indicator XA that all the destinations of paths in A receive
a multicast probe with good performance to obtain a consistent
estimate of φA :=

∑
e∈

⋃
p∈A p ue.

We assume that the waypoint f connects to the rest of the
network via the subgraph in Fig. 1, i.e., a two-hop cycle. This
is used to model cases where probes can incur nontrivial per-
formance cost (e.g., loss, queueing) at the waypoint, e.g., when
the waypoint represents a VNF. We model the performance
cost due to processing at f by the weight of the incoming edge
e1, leaving the weight of e2 to zero. In this way, all possible
performance costs are modeled by edge weights. This struc-
ture also allows a probe to skip the waypoint in any topology.

B. Observation Model

Source s wants to learn the network topology G. Other than
the destinations and the waypoint, it cannot observe the inter-
nal vertices (i.e., branching/joining points), the edges, or the
edge weights. Instead, it can probe the destinations, possibly
via the waypoint. We refer to the source, the destinations,
and the waypoint as observable vertices. We assume that
the source can specify the destination for each measurement
path and whether or not the path traverses the waypoint.
However, routing between consecutively traversed observable
vertices is uncontrollable and governed by the underlying
routing protocol, which is assumed to follow deterministic
destination-based forwarding (e.g., shortest path routing). We
assume that the underlying routing protocol is consistent (i.e.,
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Paths:
𝑝1: 𝑠 → 𝑡1
𝑝2: 𝑠 → 𝑡2
𝑝3: 𝑠 → 𝑓 → 𝑡1
𝑝4: 𝑠 → 𝑓 → 𝑡2
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Fig. 2. Example of a possible 1-1-2 topology.

always taking the same path between a pair of vertices). We
further assume that all the end-to-end paths are cycle-free
except for the two-hop cycle containing the waypoint1. We
denote the path traversing observable vertices v1, . . . , vn by
v1 → . . .→ vn, e.g., the path from source s to destination tj
via waypoint f is s→ f → tj .

We further assume that the source can perform multi-
cast probing, or approximated multicast probing via back-to-
back unicast probes. It is known [6]that back-to-back unicast
probes can emulate multicast probes in terms of end-to-
end measurements. As explained in (1), the performances of
these (approximated) multicast probes can be used to obtain
consistent estimates of the cast weights, each being the sum
of edge weights over any subset of the probed paths.

C. Topology Inference Problem

Our goal is to develop a probing-based topology inference
algorithm to infer the 1-1-N topology.

1) Existing Results: We will leverage our previous work
[16] to transform our observations from cast weights to
quantities at a finer granularity, defined as follows.

Definition 1. Given a set C of paths probed in a multicast,
we define the following:

1) a category ΓA
C

for A ⊆ C and A 6= ∅ is the set of
edges traversed by and only by paths in A when the
set of probed paths is C, i.e., ΓA

C
:= {e ∈ E : e ∈

p for all p ∈ A, e 6∈ p for all p ∈ C \A};
2) the category weight for category ΓA

C
, denoted by wA

C
, is

the sum weight for the edges in ΓA
C

.

Let C := 2C \ {∅} denote all the nonempty subsets of C.

The subscript “A
C ” indicates that which edges belong to a

category depends not only on A, but also on C. To simplify the
notation, when a measurement path s→ f → tj (or s→ tj)
appears in the subscript, we will denote it by (f, tj) (or (tj)),
omitting the source s as it is implicit. However, we still need
to specify the entire sequence of traversed observable vertices
in other places to denote a subpath (e.g., f → tj) that does
not start from s.

Theorem II.1 (Theorem III.1 in [16]). Given the cast weights
(φA)A∈C obtained from multicast probes on C, all the cate-
gory weights (wA

C
)A∈C can be uniquely determined.

Example: Consider the example in Fig. 2 with four possible
measurement paths. Using multicast probing on all the four

1While it is possible to construct waypoint-based routing paths that are not
cycle-free, we note that such paths are undesirable for performance reasons
and generally avoidable via proper waypoint placement.

TABLE I
NOTATIONS

TN s→ t1
⋃
. . .

⋃
s→ tN

T ′
N s→ f → t1

⋃
. . .

⋃
s→ f → tN

Btitj the branching point2between s→ ti and s→ tj
BfT the branching point between s→ f and TN
Bftjtk the branching point between f → tj and f → tk
Jftj the joining point between f → tj and s→ tj

paths, we can consistently estimate the cast weight for any
subset of these paths, e.g., the cast weight φ{(t1),(t2)} gives
the sum weight of edges (s, v1), (v1, v2), (v2, t1), and (v2, t2).
Edges (s, v1) and (v1, v2) are in category Γ {(t1),(t2),(f,t1),(f,t2)}

{(t1),(t2),(f,t1),(f,t2)}

as they are traversed by all the four paths, edges (v1, f) and
(f, v1) are in category Γ {(f,t1),(f,t2)}

{(t1),(t2),(f,t1),(f,t2)}
, edge (v2, t1) is in

category Γ {(t1),(f,t1)}
{(t1),(t2),(f,t1),(f,t2)}

, and edge (v2, t2) is in category
Γ {(t2),(f,t2)}

{(t1),(t2),(f,t1),(f,t2)}
. Theorem II.1 says that we can uniquely

determine all the category weights from the cast weights.
We will leverage this result by assuming the input of the

topology inference algorithms to be the category weights for
each category defined by a multicast. By Definition 1, edges
in the same category are interchangeable in that they have
the same influence on the measurements. Thus, we consider
the ground truth G identified if the inferred topology is
equivalent to G after splitting/combining edges in the same
category (excluding edges to/from a waypoint as in Fig. 1).

III. INFERENCE OF 1-1-N TOPOLOGY

We will first examine the special case of 1-1-2 topologies,
and then demonstrate how these topologies can be used as
building blocks to infer 1-1-N topologies. To ease presenta-
tion, we introduce a few notations in Table I.

A. 1-1-2 Topology

We first consider the special case with one source s, one
waypoint f , and two destinations t1, t2, and we call this topol-
ogy a graphlet. To infer the graphlet, we first infer a binary
tree T2 formed by the paths from the source directly to each
of the two destinations without traversing any waypoint by
an existing algorithm called Rooted Neighbor-Joining (RNJ)
[6]. We then infer how f is connected to this tree by sending
multicast probes on paths s → t1, s → t2, s → f → t1,
and s → f → t2, indexed as p1, . . . , p4, and measuring the
category weights.

Theorem III.1. By sending multicast probes on paths s→ t1,
s → t2, s → f → t1, s → f → t2, the 1-1-2 topology (i.e.,
graphlet) can be uniquely identified if all the edges (except
for the outgoing edge of f ) have non-zero weights.

Proof. Based on all possible locations of the branch-
ing/joining points, we show in Lemma III.2 in [17] that there
are 36 possible graphlets. Fig. 3 illustrates 20 of them, and
there are 16 more graphlets that are symmetric counterparts

2For a path p and a graph Q (which may be a path), their branching point is
the last vertex they share, and their joining point is the first vertex they share.



Graphlet 1 Graphlet 2 Graphlet 4 Graphlet 6 Graphlet 7

Graphlet 9 Graphlet 11 Graphlet 13 Graphlet 15 Graphlet 17

Graphlet 20 Graphlet 22 Graphlet 24 Graphlet 26Graphlet 18

Graphlet 31Graphlet 27 Graphlet 29 Graphlet 33 Graphlet 35

s

f

t1 t2

Fig. 3. Possible types of graphlets (excluding symmetric counterparts).

 

Fig. 4. Number of edges in each category for each graphlet.

of some of the illustrated graphlets. Specifically, for graphlet
2, there exists a symmetric graphlet indexed as graphlet 3 that
exchanges the locations of3 t1 and t2. Similarly, for each of
graphlets 4, 7, 9, 11, 13, 15, 18, 20, 22, 24, 27, 29, 31, 33,
35, there exits a symmetric graphlet, indexed as graphlet 5, 8,
10, 12, 14, 16, 19, 21, 23, 25, 28, 30, 32, 34, 36, respectively.
Note that graphlets 1, 6, 17, and 26 are already symmetric with
respect to (wrt) t1 and t2. By Theorem II.1, we can accurately
estimate the category weights from sufficiently many multicast
probes. Under the assumption that all the edges (except the
outgoing edge of f ) have non-zero weights, we can detect
which categories are nonempty (i.e., there exists at least one
edge in the ground truth graphlet in that category), as a

3Graphlet 3 is not equivalent to graphlet 2 because the destinations are
observable vertices.

category has a non-zero weight if and only if it is nonempty.
Fig. 4 lists the number of edges in each category in

each graphlet. Here, as the set of probed paths is always
{p1, p2, p3, p4}, we omit C and only specify A for each
category in terms of path indices, e.g., column {1} is the
number of edges traversed by p1 but no other path. We find
that these 36 different types of graphlets correspond to 36
different combinations of nonempty categories. Therefore, we
can uniquely determine the type of the ground truth graphlet
from the inferred set of nonempty categories.

We call edges in categories Γ {(t1),(f,t2)}
{(t1),(t2),(f,t1),(f,t2)}

and

Γ {(t2),(f,t1)}
{(t1),(t2),(f,t1),(f,t2)}

(i.e., columns {1, 4} and {2, 3} in Fig. 4)
floating edges, as the weights of the edges before and after
them cannot be determined individually (see Step 3 in the
proof of Theorem III.2 in [17] for details).

B. 1-1-N Topology

Now we will consider the topology with one source
s, one waypoint f , and N (N ≥ 2) destinations t1, · · · , tN .

Theorem III.2. If all the edges (except for the outgoing edge
of f ) have non-zero weights, then the 1-1-N topology can be
uniquely identified by sending multicast probes on up to four
paths at a time, up to permutations of floating edges that are
mapped onto the same edge in TN .

Sketch of proof. Due to space limitation, we only provide a
sketch of proof here and refer to [17] for detail.

By the assumption in Section II-B, the routing topology TN
from s to t1, . . . , tN without any waypoint is a tree, and thus
can be inferred by the existing algorithm Rooted Neighbor-
Joining (RNJ) [6]. Without loss of generality, we assume TN
to be a binary tree. We use Ml to denote a branching point
in TN . Starting from the root s, let the first branching point
be M1. Let the left child of Ml be Ml1, and the right child
of Ml be Ml2.

Similarly, routes from f to t1, t2, · · · , tN form a tree,
denoted by Tf . Without loss of generality, we assume Tf to
be a binary tree. We use M ′

l to denote a branching point in
Tf . Starting from the root f , let the first branching point be
M ′

1. Let the left child of M ′
l be M ′

l1, and the right child of
M ′

l be M ′
l2. Paths s → f → t1, . . . , s → f → tN share the

same subpath s→ f . Thus, we can still use RNJ [6] to infer
T ′
N (defined in Table I)4, which is simply (s→ f)

⋃
Tf .

To infer the 1-1-N topology, it suffices to combine T ′
N

with TN . We are going to consider the following steps:
1) determine where BfT is located in TN ; 2) determine
where each M ′

l is located wrt TN (possibly not in TN ); 3)
determine how each M ′

l that is adjacent to a destination in
Tf is connected to the destination in the combined graph;
4) determine how neighboring branching points M ′

l and M ′
k

are connected to each other in the combined graph. A basic
building block is to infer the graphlet formed by paths
{s → ti, s → tj , s → f → ti, s → f → tj} from multicast

4Precisely, RNJ will give a tree equivalent to T ′
N after contracting s→M ′

1
into a single edge.



probes on these paths as shown in the proof of Theorem III.1.
We will denote the resulting graphlet by Gij and its index
(among the 36 possible graphlets) by Rij .

Step 1). By definition, BfT must lie on TN . We start
from M1, choosing one (arbitrary) destination ti from the left
branch of M1 and one destination tj from the right branch
of M1. Then we send multicast probes to infer the graphlet
index Rij for this pair of destinations. If Rij ∈ {1, 4–10,
15–19, 22–26}, then BfT is above M1 (i.e., between s and
M1). If Rij ∈ {2, 11, 13, 20, 27, 29, 31, 33, 35}, then BfT

is on the left branch of M1. If Rij ∈ {3, 12, 14, 21, 28,
30, 32, 34, 36}, then BfT is on the right branch of M1.
Because of the symmetry, we will only consider the case
when BfT is on the left branch. In this case, we find the
left child of M1, denoted by M11, and choose one destination
ti′ from the left branch of M11 and one destination tj′ from
the right branch of M11. Then we send multicast probes on
paths {s → ti′ , s → tj′ , s → f → ti′ , s → f → tj′}, and
apply the above analysis to infer if BfT is above M11 (i.e.,
between M11 and M1), on the left branch of M11, or on the
right branch of M11. Applying this method iteratively will
uniquely locate BfT onto an edge of TN .

Step 2). To discover the position of each M ′
l wrt TN , we

perform bottom-up probing, each time randomly choosing a
pair of candidate vertices (t′i, t

′
j) that are siblings on Tf for

probing. The candidate vertices include the destinations and
the branching points in Tf that have been located wrt TN
(initially, the candidate vertices only include the destinations).
Here, we treat a located branching point as a representative
of the destinations under it. The selected probing destinations
will be ti and tj , where ti = t′i if t′i is a destination, or
an arbitrary destination under t′i if t′i is a branching point,
and similarly for tj . Then we send multicast probes on path
{s → ti, s → tj , s → f → ti, s → f → tj} to discover
the corresponding graphlet Gij , with index Rij . The above
selection process ensures that the branching point Bftitj in
Gij is the parent of t′i and t′j in Tf .

We observe that Rij helps to locate Bftitj wrt TN .
Specifically, if Rij ∈ {1, 6}, we know that Bftitj co-
incides with Btitj (a branching point in TN ). If Rij ∈
{2, 7, 12, 15, 18, 20, 24, 29, 32}, then Bftitj is on path
Btitj → ti, at a distance w {(ti),(f,ti)}

{(ti),(tj),(f,ti),(f,tj)}
away from

ti, since edge (Bftitj , ti) is the only edge in category
Γ {(ti),(f,ti)}

{(ti),(tj),(f,ti),(f,tj)}
in these graphlets. A symmetric case is

when Rij ∈ {3, 8, 11, 16, 19, 21, 25, 30, 31}, which uniquely
localizes Bftitj at a point between Btitj and tj . If Rij ∈ {4,
5, 9, 10, 13, 14, 17, 22, 23, 26–28, 33–36}, then Bftitj may
not be on5 TN .

Step 3). This step identifies the path Bftitj → tj for each
pair of branching point Bftitj and destination tj that are
adjacent in Tf . Although path Bftitj → tj may join and
branch from TN multiple times, we haven shown in [17] that

5Precisely, Gij implies that Bftitj is not on the tree s → ti
⋃

s → tj .
It is possible that Bftitj is on s → tk for some tk 6= ti or tj , or Bftitj
is not on TN at all. We will resolve this uncertainty in subsequent steps.

Algorithm 1: 1-1-N topology inference
input : Source s, waypoint f , destinations t1, . . . , tN
output: 1-1-N topology G

1 infer TN and T ′
N by algorithm RNJ in [6];

2 initialize G to TN ;
Step 1):

3 locate BfT in G by Algorithm 2 in [17];
4 connect BfT to f by the structure in Fig. 1;
Step 2):

5 locate branching points of T ′
N wrt G by Algorithm 3 in [17];

Step 3):
6 construct paths in G to connect the vertices corresponding to

bottom-level branching points in T ′
N to the underlying

destinations by Algorithm 4 in [17];
Step 4):

7 construct paths in G to connect the vertices corresponding to
adjacent branching points in T ′

N by Algorithm 5 in [17];
8 return G;

the positions of these joining and branching points can be
almost uniquely determined.

Step 4). This step determines the paths between neighbor-
ing branching points of Tf . In [17], we provide a method to
determine the path between a branching point Bftitj whose
paths to destinations ti and tj are already determined, and a
branching point Bftitk that is the parent of Bftitj . Applying
this method from the bottom of Tf up will determine the paths
between all the neighboring branching points of Tf .

1) Topology inference algorithm: The proof of Theo-
rem III.2 already gives an algorithm to infer the 1-1-N
topology, formalized in Algorithm 1. Theorem III.2 guarantees
that the algorithm is accurate (up to permutations of floating
edges), if all the edges that represent real paths or processing
units have non-zero weights. As real paths or processing units
inevitably incur some performance cost to probes traversing
them, this condition should be satisfied with high probability
with sufficiently many probes.

Remark: Algorithm 1 only performs multicast on up to four
paths at a time (i.e., 4-cast). Compared to arbitrary multicast,
k-cast for a small constant k has the advantage that it can
be accurately emulated by back-to-back unicast probes [6],
making it more applicable in practice.

IV. PERFORMANCE EVALUATION

Benchmark: As we are the first to study topology infer-
ence under waypoint-based routing, we use a state-of-the-art
topology inference algorithm designed for destination-based
forwarding as the benchmark. The algorithm is called Rooted
Neighbor-Joining (RNJ) [6], which infers a tree topology
using bi-cast probing, and is guaranteed to be accurate when
the ground truth topology is a canonical tree.

Simulation setting: Our simulation is conducted
on Internet Service Provider (ISP) topologies from
the Rocketfuel project [18], which are router-level
topologies collected from diverse ISPs. We leave evaluations
on newer datasets to future work. In our experiment,
we choose topology AS6461, which represents the
ISP Abovenet in US with 182 vertices and 294 edges. The



weight of each edge is uniformly distributed in [0.005, 0.05],
which means that the probability for each edge to be in a
“good” state (e.g., lossless) ranges from 95.12% to 99.50%.

In our simulation, we randomly choose a source and N
destinations from nodes with degree ≤ 2, and a waypoint
from nodes with degree ≥ 6. We use Dijkstra’s algorithm
(based on hop count) to route between the selected vertices,
which generates piecewise shortest paths. The ground truth is
preprocessed to contract consecutive edges in the same cate-
gory.All our results are averaged over 10 Monte Carlo runs.

Results: We measure the accuracy of reconstructing typical
graph parameters, e.g., number of vertices, number of edges,
and average degree, when varying the number of destinations.
For each parameter ρ, we measure the relative error defined
as |ρ̂ − ρ|/ρ, where ρ̂ is the corresponding parameter in the
inferred topology. The result, shown in Fig. 5, shows that
the topology inferred by our algorithm is much closer to the
ground truth than that by RNJ.

We have also examined the inferred topologies in detail. We
find that graphlets 4, 5, 18, 19, and 22–36 are very rare in
practice. Most errors of our algorithm are because the ground
truth topology does not contain all the edges in a category. For
example, in Fig. 6, the green edges in the inferred topology be-
long to the same category (also the same as the green edge in
the ground truth), but one of them does not exist in the ground
truth. Thus, combining these green edges (i.e., contracting the
top edge and shifting its weight to the bottom edge) will make
the inferred topology identical to the ground truth.
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Fig. 5. Accuracy of inferring 1-1-N topology.

V. CONCLUSION

We tackled, for the first time, the problem of topology
inference under waypoint-based routing. We showed that
using a novel notion called category weights that can be
consistently estimated from end-to-end measurements, we
could identify the 1-1-N topology depicting the connections
between a source, a waypoint, and multiple destinations. Our
algorithm was shown to be accurate (up to splitting/combining

t1 t2 t3 t4 t5

f

s

(a) ground truth
t1 t2 t3 t4 t5

f

s

(b) inferred topology
Fig. 6. Example: The inferred topology is equivalent to the ground truth after
combining edges in the same category (in green).

edges in the same category) both theoretically and empirically.
Our result provides a stepping stone towards inferring more
general topologies with multiple waypoints.
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