
1

Model Pruning Enables Efficient Federated
Learning on Edge Devices

Yuang Jiang, Shiqiang Wang, Vı́ctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, Leandros Tassiulas

Abstract—Federated learning (FL) allows model training from
local data collected by edge/mobile devices while preserving
data privacy, which has wide applicability to image and vision
applications. A challenge is that client devices in FL usually have
much more limited computation and communication resources
compared to servers in a datacenter. To overcome this challenge,
we propose PruneFL – a novel FL approach with adaptive and
distributed parameter pruning, which adapts the model size dur-
ing FL to reduce both communication and computation overhead
and minimize the overall training time, while maintaining a
similar accuracy as the original model. PruneFL includes initial
pruning at a selected client and further pruning as part of the
FL process. The model size is adapted during this process, which
includes maximizing the approximate empirical risk reduction
divided by the time of one FL round. Our experiments with
various datasets on edge devices (e.g., Raspberry Pi) show
that: (i) we significantly reduce the training time compared to
conventional FL and various other pruning-based methods; (ii)
the pruned model with automatically determined size converges
to an accuracy that is very similar to the original model, and it
is also a lottery ticket of the original model.

Index Terms—Efficient training, federated learning, model
pruning.

I. INTRODUCTION

THE past decade has seen a rapid development of machine
learning algorithms and applications, particularly in the

area of deep neural networks (DNNs) [1]. However, a huge
volume of training data is usually required to train accurate
models for complex tasks such as image classification and
computer vision. Due to limits in data privacy regulations and
communication bandwidth, it is usually infeasible to transmit
and store all training data at a central location. To address this
problem, federated learning (FL) has emerged as a promising
approach of distributed model training from decentralized
data [2]–[6]. In a typical FL system, data is collected by
client devices (e.g., cameras) at the network edge; the training
process includes local model updates using each client’s own
data and the fusion of all clients’ models typically through a
server. In this way, the raw data remains local in clients.

Client devices in FL are usually much more resource-
constrained than server machines in a datacenter, in terms of

Y. Jiang, V. Valls, and L. Tassiulas are with Yale University, New Haven,
CT, USA.

S. Wang and W.-H. Lee are with IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA.

B. J. Ko was with Stanford Institute for Human-Centered Artificial Intelli-
gence (HAI), Stanford, CA, USA when contributing to this work.

K. K. Leung is with Imperial College London, UK.
Contact authors: Y. Jiang (yuang.jiang@yale.edu) and S. Wang

(wangshiq@us.ibm.com)
Accepted for publication in IEEE Transactions on Neural Networks and

Learning Systems (TNNLS)

computation power, communication bandwidth, memory and
storage size, etc. Training DNNs that can include over millions
of parameters (weights) on such resource-limited edge devices
can take prohibitively long and consume a large amount of
energy. Therefore, a natural question is: how can we perform
FL efficiently so that a model is trained within a reasonable
amount of time and energy?

Some progress has been made towards this direction re-
cently using model/gradient compression techniques, where
instead of training the original model with full parameter
vector, either a small model is extracted from the original
model for training or a compressed parameter vector (or its
gradient) is transmitted in the fusion stage [7]–[10]. However,
the former approach may reduce the accuracy of the final
model in undesirable ways, whereas the latter approach only
reduces the communication overhead and does not generate
a small model for efficient computation. Furthermore, how to
adapt the compressed model size for the most efficient training
remains a largely unexplored area, which is a challenging
problem due to unpredictable training dynamics and the need
of obtaining a good solution in a short time with minimal
overhead.

To overcome these problems, we propose a new FL
paradigm called PruneFL, which includes adaptive and dis-
tributed parameter pruning as part of the FL procedure. We
make the following key contributions.

Distributed pruning. PruneFL includes initial pruning at
a selected client followed by further distributed pruning that
is intertwined with the standard FL procedure. Our experi-
mental results show that this method outperforms alternative
approaches that either prunes at a single client only or directly
involves multiple FL clients for pruning, especially when the
clients have heterogeneous data statistics and computational
power.

Adaptive pruning. PruneFL continuously “tracks” a model
that is small enough for efficient transmission and compu-
tation with low memory footprint, while maintaining useful
connections and their parameters so that the model converges
to a similar accuracy as the original model. The importance
of model parameters evolves during training, so our method
continuously updates which parameters to keep and the cor-
responding model size. The update follows an objective of
minimizing the time of reaching intermediate and final loss
values. Each FL round operates on a small pruned model,
which is efficient. A small model is also obtained at any time
during and after the FL process for efficient inference on edge
devices, which is a lottery ticket [11] of the original model as
we show experimentally.

2

Implementation. We implement FL with model pruning on
real edge devices, where we extend a deep learning framework
to support efficient sparse matrix computation. Our code is
available at: https://github.com/jiangyuang/PruneFL

II. RELATED WORK

Neural network pruning. To reduce the complexity of
neural network models, different ways of parameter pruning
were proposed in the literature. Early work considered approx-
imation using second-order Taylor expansion [12]. However,
the computation of Hessian matrix has high complexity which
is infeasible for modern DNNs. In recent years, magnitude-
based pruning has become popular [13], where parameters
with small enough magnitudes are removed from the network.
A finding that suggests a network that is pruned by magnitude
consists of an optimal substructure of the original network,
known as “lottery ticket hypothesis”, was presented in [11],
[14]. It shows that directly training the pruned network can
reach a similar accuracy as pruning a pre-trained original
network.

In addition to the above approaches that train until conver-
gence before the next pruning step, there are iterative pruning
methods where the model is pruned after every few steps of
training [15], [16]. There are also one-shot pruning approaches
including SynFlow [17] that prunes the model at model
initialization (before training), and SNIP [18] that prunes the
model using first training round’s gradient information. A
dynamic pruning approach that allows the network to grow
and shrink during training was proposed in [19]. Besides
these unstructured pruning methods, structured pruning was
also studied [20], which, however, often requires specific
network architectures and does not conform to the lottery
ticket hypothesis. The lottery ticket is useful for retraining a
pruned model on a different yet similar dataset [14]. The use
of pruning for efficient model training was discussed in [21],
where the optimal choice of pruning rate (or final model size)
remained unstudied.

These existing pruning techniques consider the centralized
setting with full access to training data, which is fundamentally
different from our PruneFL that works with decentralized
datasets at local clients. Furthermore, the automatic adaptation
of model size has not been studied before.

Efficient federated learning. The first FL method is known
as federated averaging (FedAvg) [2], where each “round” of
training includes multiple local gradient computation steps on
each client’s local data, followed by a parameter averaging
step through a server. This method can be shown to converge
in various settings including when the data at different clients
are non-identically distributed (non-IID) [22]–[24].

To improve the communication efficiency of FL, meth-
ods for optimizing the communication frequency were stud-
ied [25]–[27]. An approach of parameter averaging using
structured, sketched, and quantized updates was introduced
in [7], which belongs to the broader area of gradient compres-
sion/sparsification [28]–[33]. These techniques usually con-
sider a fixed degree of sparsity or compression that needs to be
configured as a hyperparameter. An online learning approach

that determines a near-optimal gradient sparsity was proposed
in [9], which includes exploration steps that may slow down
the training initially. This body of work does not address
computation efficiency.

To reduce both communication and computation costs,
efficient FL techniques using lossy compression and dropout
were developed [8], [10], where the final model still has
the original size and hence providing no benefit for efficient
inference after the model is trained. Moreover, because the
main goal of pruning is to remove less important weights from
the model, it is orthogonal to other acceleration methods such
as quantization [34], low-rank decomposition [35], etc., and
pruning can be applied together with these other methods. In
addition, since our approach considers acceleration for both
training and inference, methods that accelerate inference only,
e.g., knowledge distillation [36], runtime neural pruning [37],
and DNN partitioning and offloading [38], do not serve our
purpose. There are other distributed training methods, such as
split learning [39], which are beyond our scope since we focus
on FL in this paper.

Furthermore, most existing studies on FL are based on sim-
ulation. Only a few recent papers considered implementation
on real embedded devices [10], [26], but they do not include
parameter pruning.

Novelty of our work. The uniqueness of PruneFL is that we
jointly address communication and computation efficiency for
both training and inference phases, by extending FedAvg with
minimal extra overhead. Our two-stage distributed pruning
method is designed to address both data (statistical) and device
(system) heterogeneity including non-IID data distribution.
Our adaptive pruning method is uniquely based on gradient
information, which does not require sharing clients’ local
data, so that existing privacy preservation and secure aggre-
gation [40] methods for FL can be directly applied to the
gradient. Thus, our approach does not introduce extra privacy
concerns.

Roadmap. The remainder of this paper is organized as
follows. Section III provides preliminaries of FL and model
pruning. Section IV presents the proposed PruneFL approach
and its analysis. Implementation challenges are discussed in
Section V. Section VI presents the experimental setup and
results. Section VII draws conclusion.

III. PRELIMINARIES

Federated learning. We consider an FL system with N
clients. Each client n ∈ [N] := {1, 2, ..., N} has a local
empirical risk Fn(w) := 1

Dn

∑
i∈Dn

fi(w) defined on its local
dataset Dn (Dn := |Dn|) for model parameter vector w, where
fi(w) is the loss function (e.g., cross-entropy, mean square
error, etc.) that captures the difference between the model
output and the desired output of data sample i. The system
tries to find a parameter w that minimizes the global empirical
risk:

min
w

F (w) :=
∑

n∈[N]

pnFn(w) (1)

where pn > 0 are weights such that
∑

n∈[N] pn = 1. For
example, if Dn ∩ Dn′ = ∅ for n ̸= n′ and pn = Dn/D

https://github.com/jiangyuang/PruneFL

3

Fig. 1. Illustration and flowchart of PruneFL.

TABLE I
MAIN NOTATIONS.

Notation Definition

⊙ element-wise product of two vectors

n,N client index, total number of clients

k,K iteration index, total number of iterations

I number of local iterations

pn weight for client n (pn > 0, ∀n, and
∑

n pn = 1)

m(k) weight mask in iteration k (universal for all clients)

wn(k) client n’s parameter in iteration k

w(k) w(k) :=
∑N

n=1 pnwn(k)

w′
n(k), w

′(k) w′
n(k) = wn(k)⊙m(k), w′(k) = w(k)⊙m(k)

gn(w) client n’s stochastic gradient with parameter w

∇Fn(w) client n’s expected gradient with parameter w

∇F (w) ∇F (w) =
∑N

n=1 pnFn(w)

with D :=
⋃

nDn and D := |D|, we have F (w) =
1
D

∑
i∈D fi(w). Other ways of configuring pn may also be

used to account for fairness and other objectives [41].
In FL, each client n has a local parameter wn(k) in

iteration k. The aggregation of these local parameters is
defined as w(k) :=

∑
n∈[N] pnwn(k). The FL procedure

usually involves multiple updates of wn(k) using stochastic
gradient descent (SGD) on the local empirical risk Fn(wn(k))
computed by every client n, followed by a parameter fusion
step that involves the server collecting clients’ local param-
eters {wn(k) : ∀n ∈ [N]} and computing the aggregated
parameter w(k). After parameter fusion, the local parameters
{wn(k) : ∀n ∈ [N]} are all set to be equal to the aggregated
parameter w(k).

In the following, we call this procedure of multiple local
SGD iterations followed by a fusion step a round. We use I
to denote the number of local SGD iterations in each round.
The main notations in this paper are listed in Table I.

It is possible that each round only involves a subset of
clients, to avoid excessive delay caused by waiting for all the
clients [42]. It has been shown that FedAvg converges even
with random client participation, although the convergence rate
is related to the degree of such randomness [23].

Model pruning. In the iterative training and pruning ap-
proaches for the centralized machine learning setting, the
model is first trained using SGD for a given number of
iterations [13], [15], [16]. Then, a certain percentage (referred
to as the pruning rate) of weights that have smallest absolute
values within each layer is removed (set to zero). This training
and pruning process is repeated until a desired model size is
reached. The benefit of this approach is that the training and
pruning occurs at the same time, so that a trained model with
a desired (small) size can be obtained in the end. However,
existing pruning techniques require the availability of training
data at a central location, which is not applicable to FL.

IV. PRUNEFL

Our proposed PruneFL approach includes two stages: initial
pruning at a selected client and further pruning involving
both the server and clients during the FL process. The initial
pruning can be done with biased data at a single client that
has a relatively high computational capability, and the further
pruning stage will “remove” the bias and refine the model. We
use adaptive pruning in both stages. The illustration of the
overall procedure is presented in Fig. 1. In the following, we
introduce the two pruning stages (Section IV-A) and adaptive
pruning (Section IV-B).

A. Two-stage Distributed Pruning

Initial pruning at a selected client. Before FL starts, the
system selects a single client to prune the model using its
local data. This is important for two reasons. First, it allows
us to start the FL process with a small model, which can
significantly reduce the computation and communication time
of each FL round. Second, when clients have heterogeneous
computational capabilities, the selected client for initial prun-
ing can be one that is powerful and trusted, so that the time
required for initial pruning is short. We apply the adaptive
pruning procedure that we describe in Section IV-B, where
we adjust the original model iteratively while training the
model on the selected client’s local dataset, until the model
size remains almost unchanged.

4

Algorithm 1: Adaptive pruning

1 for k = 0 . . . ,K − 1 do
2 Initialize the set of importance measure on each

client: Zn ← ∅,∀n;
3 for each client n, in parallel do
4 Compute stochastic gradient

gn(w
′
n(k)) := gn(wn(k)⊙m(k));

5 Update local parameters:
wn(k + 1)← w′

n(k)− ηgn(w
′
n(k))⊙m(k);

6 Add importance measure zn to Zn:
zn := gn(w

′
n(k))⊙ gn(w

′
n(k));

Zn ← Zn ∪ zn;
7 if I | k + 1 then
8 Each client n sends wn(k + 1) to the server;
9 Server aggregates the parameters from each

client: w(k + 1)←
∑N

n=1 pnwn(k + 1);
10 if k + 1 is reconfiguration iteration then
11 Each client sends the averaged importance

measure zn :=
(∑

zn∈Zn
zn

)
/|Zn| to the

server;
12 Server aggregates the received importance

measure: z←
∑N

n=1 pnzn;
13 Reconfigure using Algorithm 2:

w′(k + 1),m(k + 1)←
reconfigure(w(k + 1), z);

14 Reset: Zn ← ∅,∀n;

15 else
16 No reconfiguration: w′(k+ 1)← w(k+ 1);

17 Server sends new parameters to each client:
w′

n(k + 1)← w′(k + 1),∀n;

Further pruning during FL process. The model produced
by initial pruning may not be optimal, because it is obtained
based on data at a single client. However, it is a good starting
point for the FL process involving all clients. During FL, we
perform further adaptive pruning together with the standard
FedAvg procedure, where the model can either grow or shrink
depending on which way makes the training most efficient. In
this stage, data from all participating clients are involved.

B. Adaptive Pruning

For our adaptive pruning method, the notion of pruning
broadly includes both removing and adding back parameters.
Hence, we also refer to such pruning operations as reconfigu-
ration. We reconfigure the model at a given interval of multiple
iterations. For initial pruning, the reconfiguration interval can
be any number of local iterations at the selected client. For
further pruning, reconfiguration is done at the server after
receiving parameter updates from clients (i.e., at the boundary
between two rounds), and the reconfiguration interval in this
case is always an integer multiple of the number of iterations
(i.e., I) in each round.

Definitions. Let k denote the iteration index, gn(w(k))
denote the stochastic gradient of Fn(w(k)) evaluated at w(k)

and computed on the full parameter space on client n. Also, let
mw(k) denote a mask vector that is zero if the corresponding
component in w(k) is pruned and one if not pruned, and ⊙
denote the element-wise product.

In each reconfiguration step, adaptive pruning finds an
optimal set of remaining (i.e., not pruned) model parameters.
Then, parameters are pruned or added back accordingly, and
the resulting model and mask are used for training until
the next reconfiguration step. This procedure is illustrated in
Algorithm 1, where a | b denotes that a divides b, i.e., b is an
integer multiple of a. More details are given in Appendix C.

Our goal is to find the subnetwork that learns the “fastest”.
We do so by estimating the empirical risk reduction divided
by the time required for completing an FL round, for any
given subset of parameters chosen to be pruned. Note that
at the beginning of each round (after averaging the clients’
parameters), all clients start with the same parameter vector w,
i.e., wn(k) = w(k) for all n if a new round starts at iteration k
(see Section III). For approximation purpose, we first consider
the change of empirical risk after one SGD iteration starting
with a common parameter w(k), for both initial and further
pruning stages. The full FL procedure will be considered later
in Theorem 2.

When the model is reconfigured at the end of iteration k,
parameter update in the next iteration will be done on the
reconfigured parameter w′(k), so we have an SGD update
step that follows:

w(k + 1) = w′(k)− η

N∑
n=1

pngn(w
′(k))⊙mw′(k)

= w′(k)− ηg(w′(k))⊙m(k) (2)

where η is the learning rate. For simplicity, we define
g(w′(k)) :=

∑N
n=1 pngn(w

′(k)), and we omit the subscript
w′ of m in the following when it is clear from the context.

Let M denote the index set of components that are not
pruned, which corresponds to the indices of all non-zero values
of the mask m(k).

Empirical risk reduction. To analyze the empirical risk
reduction, we use a first-order approximation, which is a
common practice in the literature [18], [43], [44]. We have

F (w(k + 1))

≈ F (w′(k)) + ⟨∇F (w′(k)),w(k + 1)−w′(k)⟩ (3)
= F (w′(k))− η⟨∇F (w′(k)),g(w′(k))⊙m(k)⟩ (4)

≈ F (w(k))− η∥g(w′(k))⊙m(k)∥2 (5)

where ⟨·, ·⟩ is the inner product, (3) is from Taylor expansion,
(4) is because of (2), and (5) is obtained by using the stochastic
gradient to approximate the actual gradient, i.e., g(w′(k)) ≈
∇F (w′(k)). Then, the approximate decrease of empirical risk
after the SGD step (2) is:

F (w′(k))− F (w(k + 1)) ≈ η∥g(w′(k))⊙m(k)∥2

∝ ∥g(w′(k))⊙m(k)∥2

=
∑
j∈M

g2j =: ∆(M) (6)

5

where gj is the j-th component of g(w′(k)) and we define
the set function ∆(M) in the last line. The learning rate η
is omitted since it is independent to the relative importance
between parameter components, no matter if it is constant or
varying. We use ∆(M) as the approximate risk reduction,
where we ignore the proportionality coefficient because our
optimization problem is independent of the coefficient. As
∆(M) is defined as the sum of g2j in (6), we use g2j as the
importance measure for the j-th component of the parameter
vector.

Remark. During the further pruning stage, the stochastic
gradient g(w′(k)) is the aggregated stochastic gradient from
clients in FL. Since clients cannot compute g(w′(k)) before
receiving w′(k) from the server, they compute g(w(k)) and
we use g(w′(k)) ≈ g(w(k)), both of which are denoted
by g(w′(k)) with components {gj} in the following. The
additional overhead for clients to compute and transmit gradi-
ents on the full parameter space in a reconfiguration is small
because pruning is done once in many FL rounds (the interval
between two reconfigurations is 50 rounds in our experiments).
Further details are given in Appendix C.

Time of one FL round. We define the (approximate) time
of one FL round when the model has remaining parameters
M as a set function T (M) := c+

∑
j∈M tj , where c ≥ 0 is

a fixed constant and tj > 0 is the time corresponding to the
j-th parameter component. Note that this is a linear function
which is sufficient according to our empirical observations (see
Appendix D1). In particular, the quantity tj has a value that
can be dependent on the neural network layer, and c captures a
constant system overhead. From our experiments, we observed
that tj remains the same for all j that belong to the same neural
network layer. Therefore, we can estimate the quantities {tj}
and c by measuring the time of one FL round for a small
subset of different model sizes, before the overall pruning and
FL procedure starts. An extension to the general case with
non-linear T (M) is also discussed in Appendix A.

Optimization of reconfiguration. We would like to find the
set of remaining parameters M that maximizes the empirical
risk reduction per unit training time. However, ∆(M) only
captures the risk reduction in the next SGD step when starting
from the reconfigured parameter vector w′(k), as defined
in (6). It does not capture the change in empirical risk
when using w′(k) instead of the original parameter vector
w(k) before reconfiguration. In other words, in addition to
maximizing Γ(M) := ∆(M)

T (M) , we also need to ensure that
F (w′(k)) ≈ F (w(k)).

To ensure F (w′(k)) ≈ F (w(k)) after reconfiguration, we
define an index set P to denote the parameters that are
not allowed to be pruned. Usually, P includes parameters
whose magnitudes are larger than a certain threshold, because
pruning them can cause F (w′(k)) to become much larger than
F (w(k)). Among the remaining parameters that can be pruned
(or added back if they are already pruned before), denoted by
P , we find which of them to prune to maximize Γ(M). This
yields the following optimization problem:

max
A⊆P

Γ
(
A ∪ P

)
(7)

Algorithm 2: Solving (7)

Input : importance measure g2j and time coefficient
tj , for each parameter index j

Output: the optimal subset of parameters A
1 A ← ∅;
2 S ← arg sortj∈P

g2
j

tj
; // ordered set

3 for j ∈ S do
4 if g2

j

tj
≥ Γ

(
A ∪ P

)
then

5 A ← A∪ {j};
6 else
7 break;

8 return A ; // final result

where A is the set of parameters in P that remain (i.e., are
not pruned). The final set of remaining parameters is then
M = A ∪ P . Note that P ∪ P is the set of all parameters in
the original model.

The algorithm for solving (7) is given in Algorithm 2, where
sorting is in non-increasing order and S is an ordered set that
includes the sorted indices. In essence, this algorithm sorts the
ratios of components in the sums of ∆(M) and T (M). When
the individual ratio g2j /tj is larger than the current overall
ratio Γ, then adding j to A increases Γ. The bottleneck of
this algorithm is the sorting operation. Hence, the overall time
complexity of this algorithm is O(|P| log |P|).

Theorem 1. We have Γ
(
A ∪ P

)
≥ Γ

(
A′ ∪ P

)
, where A

from Algorithm 2 and A′ is any subset of P with A′ ̸= A.

Theorem 1 shows that the result obtained from our Algo-
rithm 2 is a global optimal solution to (7).

Convergence of adaptive pruning. As adaptive pruning
can both increase and decrease the model size over time, a
natural question is whether the model parameter vector will
converge to a fixed value in a regular FL procedure with I ≥ 1
local SGD iterations in each round. We study this problem in
the following.

We first make the following minimal set of assumptions that
are common in the literature [22], [23].

Assumption 1.
(a) Smoothness:

∥∇Fn(w1)−∇Fn(w2)∥ ≤ β ∥w1 −w2∥ ,∀n,w1,w2,

where β is a positive constant.
(b) Lipschitzness:

∥F (w1)− F (w2)∥ ≤ L ∥w1 −w2∥ ,∀w1,w2 ,

where L is a positive constant.
(c) Unbiasedness:

E [gn(w)] = ∇Fn(w),∀n,w .

(d) Bounded variance:

E ∥gn(w)−∇Fn(w)∥2 ≤ σ2,∀n,w .

6

(e) Bounded divergence:∥∥∥∇F (w)−∇Fn(w)
∥∥∥2 ≤ ϵ2,∀n,w ,

where F (w) :=
∑N

n=1 pnFn(w) as defined in (1).
(f) Time independence in SGD: The stochastic gradients

obtained in different iterations are independent from
each other.

(g) Client independence: The stochastic gradients obtained
from different clients are always independent from each
other, even in the same iteration.

Theorem 2. When Assumption 1 holds, and η ≤ 1
2
√
6Iβ

, we
have

1

K

K−1∑
k=0

E
∥∥∇F (w′(k))⊙mw′(k)

∥∥2
≤ 2(F0 − F ∗)

ηK
+ αηβσ2 + 4β2

(
(1− α)Iσ2 + 3I2ϵ2

)
η2

+
2L

ηK

K−1∑
k=0

E ∥w(k)−w′(k)∥ , (8)

where α :=
∑N

n=1 p
2
n, F0 := F (w(0)), F ∗ := minw F (w),

and I is the number of iterations per round.

Under some conditions, this convergence can be bounded
asymptotically by O

(
1√
NK

)
+ O

(
1
K

)
, achieving linear

speedup1 with the number of clients N [31], [45] for suffi-
ciently large K. See Appendix B2 for more details.

If we do not reconfigure in an iteration k, we have w(k) =
w′(k). In the right-hand side (RHS) of (8), the first two terms
go to zero as K → ∞. The last term is related to how well
w′ approximates w after pruning. To ensure that the sum in
the last term grows slower than

√
K, the number of non-zero

prunable parameters (which belong to P) should decrease over
time. Note that we consider all zero parameters to be prunable
and they also belong to P , thus the size of P itself may not
decrease over time. This convergence result shows that the
gradient components corresponding to the remaining (i.e., not
pruned) parameters vanishes over time, which suggests that we
will get a “stable” parameter vector in the end, because when
the gradient norm is small, the change of parameters in each
iteration is also small. In addition to gradient convergence on
the subspace after pruning as suggested in Theorem 2, our
experiments show that our pruned model also converges to an
accuracy close to that of the full-sized model.

Tracking a small model. By choosing the size of P
properly over time, our adaptive pruning algorithm can keep
reducing the model size as long as such reduction does not
adversely impact further training. Intuitively, the model that
we obtain from this process is one that has a small size while
maintaining full “trainablity” in future iterations. Parameter
components for which the corresponding gradient components
remain zero (or close to zero) will be pruned.

1The dominant term is O
(

1√
NK

)
when K is sufficiently large. The notion

of linear speedup means that, to reach the same error bound, the total number
of rounds K can proportionally decrease as N increases.

In cases where a target maximum model size should be
reached at convergence (e.g., for efficient inference later),
we can also enforce a maximum size constraint in each
reconfiguration that starts with the full size and gradually
decreases to the target size as training progresses, which allows
the model to train quickly in initial rounds while converging
to the target size in the end.

V. IMPLEMENTATION

A. Using Sparse Matrices

Although the benefit of model pruning in terms of computa-
tion is constantly mentioned in the literature from a theoretical
point of view [13], most existing implementations substitute
sparse parameters by applying binary masks to dense param-
eters. Applying masks increases the overhead of computation,
instead of reducing it. We implement sparse matrices for model
pruning, and we show its efficacy in our experiments. We use
dense matrices for full-sized models, and sparse matrices for
weights in both convolutional and fully-connected layers in
pruned models.

B. Complexity Analysis

Storage, memory, and communication. We implement
two types of storage for sparse matrices: bitmap and value-
index tuple. Bitmap uses one extra bit to indicate whether the
specific value is zero. For 32-bit floating point parameter com-
ponents, bitmap incurs 1/32 extra storage and communication
overhead. Value-index tuple stores the values and both row and
column indices of all non-zero entries. In our implementation,
we use 16-bit integers to store row and column indices and
32-bit floating point numbers to store parameter values. Since
each parameter component is associated with a row index
and a column index, the storage and communication overhead
doubles compared to storing the values only. We dynamically
choose between the two ways of storage, and thus, the ratio
of the sparse parameter size to the dense parameter size is
min

{
2×d, 1

32+d
}

, where d is the model’s density (percentage
of non-zero parameters). This ratio is further optimized when
the matrix sparsity pattern is fixed (in most FL rounds, see
Appendix C). In this case, there is no extra cost since only
values of the non-zero entries need to be exchanged.

Computation. Because dense matrix multiplication is ex-
tremely optimized, sparse matrices will show advantage in
computation time only when the matrix is below a certain
density, where this density threshold depends on specific hard-
ware and software implementations. In our implementation,
we choose either dense or sparse representation depending
on which one is more efficient. The complexity (computation
time) of the matrix multiplication between a sparse matrix S
and a dense matrix D is linear to the number of non-zero
entries in S (assuming D is fixed).

C. Implementation Challenges

As of today, well-known machine learning frameworks have
limited support of sparse matrix computation. For instance, in
PyTorch version 1.6.0, the persistent storage of a matrix in

7

sparse form takes 5× space compared to its dense form; the
computations on sparse matrices are slow; and sparse matrices
are not supported for the kernels in convolutional layers,
etc. To benefit from using sparse matrices in real systems,
we extend the PyTorch library by implementing a more effi-
cient sparse storage, and the support for sparse convolutional
kernels. We only partially improve backward passes due to
implementation limitations (more details in Appendix C2).
This problem, however, can be improved in the future by
implementing and further optimizing efficient sparse matrix
multiplication on low-level software, as well as developing
specific hardware for this purpose. Nevertheless, the novelty
in our implementation is that we use sparse matrices in both
fully-connected and convolutional layers in the pruned model.

VI. EXPERIMENTS

In this section, we present the experimental setup and
results.

Datasets. We evaluate PruneFL on four image classification
tasks:

(a) Conv-2 model on FEMNIST [46],
(b) VGG-11 model [47] on CIFAR-10 [48],
(c) ResNet-18 model [49] on ImageNet-100 [50],
(d) MobileNetV3-Small model [51] on CelebA [46],

all of which represent typical FL tasks. Due to practical
considerations of edge devices’ training time and storage
capacity, we select data corresponding to 193 writers for
FEMNIST, and the first 100 classes of the ImageNet dataset
(referred to as ImageNet-100). We adapt some layers in VGG-
11, ResNet-18 and MobileNetV3-Small to match with the
number of output labels in our datasets.

When using full client participation, because we only have
10 clients in total, for FEMNIST, we partition all the 193
writers’ images into 10 clients (the first 9 clients each has 19
writers’ images and the last client has 22 writers’ images).
For CelebA, we partition all the 9,343 persons’ images into
10 clients (the first 9 clients each has 934 persons’ images
and the last client has 937 persons’ images). Note that such
partitioning is still non-IID.

Model architectures. The architecture details are pre-
sented in Table C.1 in the appendix. VGG-11 ResNet-18,
and MobileNetV3-Small are well-known architectures, and we
directly acquire Conv-2 from its original work [46].

Platform. To study the performance of our proposed ap-
proach, we conduct experiments in (i) a real edge computing
prototype, where a personal computer serves as both the server
and a client, and the other clients are Raspberry Pi devices,
and (ii) a simulated setting with multiple clients and a server,
where computation and communication times are obtained
from measurements involving either Raspberry Pi devices or
Android phones.

Unless otherwise specified, the prototype system includes
nine Raspberry Pi (version 4, with 2 GB RAM, 32 GB SD
card) devices as clients and a personal computer without GPU
as both a client and the server (totaling 10 clients). Three of
the Raspberry Pis use wireless connections and the remaining
six use wired connections. The communication speed is stable

and is approximately 1.4 MB/s. The simulated system uses the
same setting as in the prototype. We use time measurements
from Raspberry Pis, except for the ImageNet-100 dataset
where we replace the computation time by measurements from
Android virtual machine (VM).

We consider FL with full client participation in the main
paper and present results with random client selection [42] in
Appendix D2. The results are similar. FEMNIST and CelebA
data are partitioned into clients in a non-IID manner according
to writer/person identity, and CIFAR-10 and ImageNet-100 are
partitioned into clients in an IID manner.

Baselines. We compare the test accuracy vs. time curve
of PruneFL with five baselines: (i) conventional FL [2], (ii)
iterative pruning [13], (iii) online learning [9], (iv) SNIP [18],
and (v) SynFlow [17]. Because iterative pruning and SNIP
cannot automatically determine the model size, we consider
an enhanced version of these baselines that obtain the same
model size as PruneFL at convergence. Additional baselines
are also considered in Section VI-B.

Since our experiments try to minimize the training time
using pruning, there is no direct way of comparing with the
baselines that either are not specifically designed for pruning
(the online learning baseline) or do not adapt the pruned model
size (all other baselines). We compare with the baselines as
follows. In every round, the online learning approach produces
a model size for the next round, and we adjust the model
accordingly while keeping each layer’s density the same. To
compare with SNIP, after the first round, we let SNIP prune
the original model in a one-shot manner to the same density
as the final model found by our adaptive pruning method, and
keep the architecture afterwards. Similarly, to compare with
SynFlow, we let SynFlow prune the model (before training)
to the same density as the final model found by our adaptive
pruning method, and keep the architecture afterwards. To
compare with iterative pruning, we let the model be pruned
with a fixed rate for 20 times (at an equal interval) in the first
half of the total number of rounds, such that the remaining
number of parameter components equals that of the model
found by our adaptive pruning method, and the pruning rate
is equal across layers. See Fig. 9 for the illustration of the
baseline settings.

Pruning configurations. The initial pruning stage is done
on the personal computer client. We end the initial pruning
stage either when the model size is “stable”, or when it exceeds
certain maximum number of iterations. We consider the model
size as “stable” when its relative change is below 10% for 5
consecutive reconfigurations.

For adaptive pruning, to ensure convergence of the last term
on the RHS of (8) in Theorem 2, we exponentially decrease
the number of non-zero prunable parameters in P over rounds.
We note that P includes both zero and non-zero parameters,
hence the size of P itself may not decrease. For a given size
of P , the |P| parameters with the smallest magnitude belong
to P that can be pruned (or added back), and the rest belong
to P that cannot be pruned.

Biases (if any) in the DNNs are not pruned. In ResNet-18,
BatchNorm layers and downsampling layers are not pruned
since the number of parameters in such layers is negligible

8

TABLE II
EVALUATION CONFIGURATIONS (C.S. STANDS FOR CLIENT SELECTION; LR STANDS FOR LEARNING RATE).

Dataset FEMNIST CIFAR-10 ImageNet-100 CelebA

SGD params in round r LR = 0.25 LR = 0.1 · 0.5
r

10000 LR = 0.05 · 0.5⌊
r

1000
⌋·0.1 LR = 0.2

Fraction of non-zero prunable parameters in round r 0.3 · 0.5
r

10000 0.3 · 0.5
r

10000 0.3 · 0.5
r

10000 0.3 · 0.5
r

10000

Number of data samples used in initial pruning 200 200 500 500

Number of clients (Non-C.S., C.S.) 10, 193 10, 100 10, 100 10, 934

Mini-batch size, local iterations in each round 20, 5 20, 5 20, 5 20, 5

Reconfiguration every 50 rounds every 50 rounds every 50 rounds every 50 rounds

Total number of FL rounds 10,000 10,000 20,000 1,000

Evaluation
prototype (Pi 4),
simulation (Pi 4)

simulation (Pi 4) simulation (Android VM) simulation (Pi 4)

Fig. 2. Training time on Raspberry Pi 4 (FEMNIST).

Fig. 3. Inference time on Raspberry Pi 4 (FEMNIST).

compared to the size of convolutional and fully-connected
layers.

Lottery ticket analysis. To verify whether the final model
from adaptive pruning is a lottery ticket [11], [14], we reini-
tialize this converged model using the original random seed,
and compare its accuracy vs. round curve with (i) conventional
FL, (ii) random reinitialization (same architecture as the lottery
ticket but initialized with a different random seed), (iii) SNIP,
and (iv) SynFlow.

Hyperparameters. The hyperparameters above are chosen
empirically only with coarse tuning by experience. We observe
that our and other methods are insensitive to these hyperparam-
eters. Hence, we do not perform fine tuning on any parameter.

The detailed evaluation configurations are given in Table II.

A. Time Measurement

We present the time measurements of one FL round on the
prototype system to show the effectiveness of model pruning
on edge devices. We implement the full-sized Conv-2 model

Fig. 4. Comparing conventional FL and PruneFL with both prototype and
simulation results (FEMNIST).

in dense form as well as the pruned models in sparse form
at different densities, and measure the average elapsed time
of FL on these pruned models involving both the server and
clients over 10 rounds.

Fig. 2 shows the average total time, computation time,
and communication time in one round as we vary the model
density. Note that the model is in dense form at 100% on
the x-axis and sparse form elsewhere. We also plot the actual
size of the parameters that are exchanged between server and
clients in this figure for one FL round.

Computation time. We see from Fig. 2 that as the model
density decreases, the computation time (for five local itera-
tions) decreases from 11.24 seconds per round to 6.34 seconds
per round. This reduction in computation time is moderate
since our implementation of sparse computation only partially
improves backward passes (see Section V). Additionally, we
plot in Fig. 3 the total inference time and the number of
floating-point operations (FLOPs) for 200 data samples (see
Appendix C3 for details of FLOPs computation). The infer-
ence time result shows a similar trends as in Fig. 2, and the
number of FLOPs keeps decreasing as we reduce the model
size.

Communication time. Our implementation of sparse ma-
trices reduces the storage requirement significantly (see Sec-
tion V). Compared to computation time, the decrease in
the communication time is more noticeable. It drops from
35.88 seconds per round to 1.04 seconds per round.

Enabling FL on low-power edge device. In addition, we
ran experiments with the LeNet-300-100 [52] architecture, and
we observed that when training the MNIST [52] dataset on the

9

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. 5. Test accuracy vs. time results of four datasets.

Fig. 6. Test accuracy vs. accumulated FLOPs per client (FEMNIST).

full-sized, dense-form LeNet-300-100 model on Raspberry Pi
version 3 (with 1 GB RAM, 32 GB SD card), the system dies
during the first mini-batch due to resource exhaustion, while
the models in sparse form can be trained. Thus, our approach
of using sparse models enables model training on low-power
edge devices, which is otherwise impossible on Raspberry Pi
3 in this experiment due to the device’s resource limitation.

B. Training Cost Reduction

In the following, we study PruneFL’s cost reduction in terms
of both time and FLOPs for training.

Comparing conventional FL and PruneFL. Fig. 4 shows
the test accuracy vs. time results on both the prototype and
simulated systems, for Conv-2 on FEMNIST. The time for
initial pruning of PruneFL is included in this figure, which
is negligible (it takes less than 500 seconds) compared to
the further pruning stage. We see that PruneFL outperforms
conventional FL by a significant margin. Since the prototype
and simulation results match closely, we present the simula-
tion results in subsequent experiments due to their excessive
training time on the prototype system.

Training time reduction. In Fig. 5, we compare the test
accuracy vs. time results for all datasets, models, and base-
lines. Clearly, PruneFL demonstrates a consistent advantage
on training speed over baselines. Moreover, PruneFL always
converges to similar accuracy achieved by conventional FL
(see Appendix D3). Other methods may have suboptimal
performance, e.g., SNIP does not converge to conventional
FL’s accuracy with CIFAR-10. We also observe that some
approaches such as online learning and SynFlow in Fig. 5(b)
always stay at the random guess accuracy. The reason could
be that such approaches are unstable and can get stuck in local
optimal points at the beginning of training.

TABLE III
TIME AND ACCUMULATED FLOPS PER CLIENT TO REACH TARGET

ACCURACY (FEMNIST).

Approach
Time (FLOPs) to reach

70% accuracy
Time (FLOPs) to reach

80% accuracy

Conventional FL 17,929 s (3.5 TFLOPs) 52,153 s (10.5 TFLOPs)
PruneFL (ours) 3,187 s (1.6 TFLOPs) 15,009 s (6.8 TFLOPs)

SNIP 6,801 s (3.3 TFLOPs) 22,467 s (11.7 TFLOPs)
SynFlow 7,132 s (3.6 TFLOPs) 22,327 s (12.3 TFLOPs)
Online 18,042 s (3.5 TFLOPs) 54,593 s (10.7 TFLOPs)

Iterative 17,495 s (3.5 TFLOPs) 46,521 s (10.1 TFLOPs)

Training FLOPs reduction. Although we observe that the
training time on Raspberry Pis is relatively consistent across
different models and tasks, there are still factors that can affect
the training time (e.g., environment temperature). To further
validate our approach’s advantage on accelerating training, we
present the results on test accuracy vs. accumulated FLOPs per
client for FEMNIST in Fig. 6. We find that this result shares
the same characteristics with Fig. 5(a) in terms of acceleration
(we present only one set of results here due to the similarity).

Time and FLOPs to reach target accuracy. Table III lists
the time and accumulated FLOPs per client that an algorithm
first reaches a certain accuracy with FEMNIST. PruneFL takes
less than 1/3 of time compared to conventional FL to reach
80% accuracy, and it also saves more than 33% of time (more
than 2 hours) compared to SNIP and SynFlow. The savings of
FLOPs are similar.

Comparing with additional baselines. To avoid bottle-
necks, our algorithm and implementation ensures that all
components in PruneFL, including communication, compu-
tation, and reconfiguration, are orchestrated and inexpensive.
For this reason, some approaches in the literature that are
not specifically designed for the edge computing environment
with low-power devices may perform poorly if applied to our
system setup, as we illustrate next.

Considering computation time, PruneTrain [21] applies reg-
ularization on every input and output channel in every layer.
When the same regularization is applied to our system, we
find that the computation time (using FEMNIST and Conv-
2) takes 17.65 seconds per round, which is a 57% increase
compared to PruneFL.

Considering communication time, dynamic pruning with
feedback (DPF) [19] maintains a full-sized model, and clients
have to upload full-sized gradients to the server (but only
download a subset of model parameters) in every round.

10

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. 7. Lottery ticket results of four datasets.

Fig. 8. PruneFL with only one pruning stage (FEMNIST).

Thus, assuming unit model size and model density d, the
communication cost per round, including both uploading and
downloading, is 1+d. In comparison, clients in PruneFL only
upload the full-sized model to the server at a reconfiguration
round (every 50 rounds in our experiments), and always
exchange pruned models otherwise. This gives an average cost
of (1+d)+2×49d

50 = 0.02+ 1.96d including both uploading and
downloading. For instance, when the model density is 10%,
DPF incurs 5.1× communication cost compared to PruneFL.
Finally, our reconfiguration algorithm (Algorithm 2) runs in
quasi-linear time, making it possible to be implemented on
edge devices.

C. Finding a Lottery Ticket

Unlike some existing pruning techniques such as SNIP [18],
dynamic pruning [19], and SynFlow [17], PruneFL finds a
lottery ticket (although not necessarily the smallest). In Fig. 7,
FL with the reinitialized pruned model obtained from PruneFL
learns comparably fast as FL with the original model, in terms
of test accuracy vs. round, confirming that they are lottery
tickets. In Fig. 7(b), the Random Reinit curve stays at the
random guess accuracy. This is not surprising since the lottery
ticket, i.e., the final pruned model found by PruneFL, needs to
be reinitialized to their original values to learn comparably fast
as the full-sized model [11]. When reinitialized with different
values, the training of the “lottery ticket” can be suboptimal.
In this experiment, it is stuck at the beginning of training.

Fig. 8 compares the test accuracy vs. round curves of
PruneFL with alternative methods that either only includes
initial pruning (at a single client) or only includes further
pruning (during FL). It shows that the model obtained from the
initial pruning stage does not converge to the optimal accuracy,
and only performing further pruning without initial pruning
results in a slower learning speed. PruneFL with both stages

avoids drawbacks from methods that includes only one stage.
Furthermore, the model obtained from initial pruning is not a
lottery ticket of the original model, while PruneFL with only
further pruning or both pruning stages find a lottery ticket.

Therefore, one can view PruneFL as a two-stage procedure
to find a lottery ticket of the given model, which is in line with
our claims in Section IV. The ability that we can find lottery
tickets is useful when we need to retrain a pruned model on
slightly different but similar datasets [14].

D. Model Size Adaptation

An illustration of the change in model size is shown in
Fig. 9. The small negative part of the x-axis shows the initial
pruning stage which is unique to PruneFL. Since there is no
notion of “round” in the initial pruning stage, we consider five
local iterations in this stage as one round, which is consistent
with our FL setting. Conventional FL always keeps the full
model size. The model sizes provided by online learning is
unstable. It fluctuates in initial rounds due to its exploration.
SNIP and SynFlow prune the initial model to the target size
in a one-shot manner at the beginning of training. Iterative
pruning gradually reduces the model size until reaching the
target. We notice that PruneFL also discovers the degree
of overparameterization. Empirically, Conv-2, an overparam-
eterized model for FEMNIST, converges to a small density
(13.4%), while ResNet-18, an underparameterized model for
ImageNet-100, converges to a density of around 67.7%.

It is worth mentioning that finding a proper target density for
pruning is non-trivial. Usually, foresight pruning methods such
as [18] and [43] prune the model to the (manually selected)
density before training. Fig. 10 shows two cases where we use
SNIP to prune Conv-2 (with FEMNIST) to 30% and 1%, the
training speed becomes slower, and if the density is too small
(1%), the sparse model cannot converge to the same accuracy
as the original model. In comparison, PruneFL automatically
determines a proper density.

E. Training with Limited/Targeted Model Sizes

There are cases where a hard limit on the maximum model
size or a targeted final model size (or both) is desired. For
example, if some of the client devices have limited memory
or storage so that only a partial model can be loaded, then the
model size must be constrained after initial pruning. Targeted
model size may be needed in the case where the goal of the
FL system is to obtain a model with a certain small size at
the end of training.

11

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. 9. Number of parameters vs. round for four datasets.

Fig. 10. SNIP with different densities (FEMNIST).

Fig. 11. Training with limited and targeted size (FEMNIST).

Next, we present an extended PruneFL with limited and tar-
geted model sizes, and show that with reasonable constraints,
PruneFL still achieves good results. We use a heuristic way
to limit the model size: we stop Algorithm 2 early when
the number of remaining parameters reaches the maximum
allowed size, and we schedule the maximum size of the model
to decrease linearly. Assuming dl is the density limit, dt is
the target model density at the end of the further pruning
stage (dt ≤ dl), and PruneFL is run for rmax rounds after
the initial pruning stage, then the maximum density at round
r is dmax(r) =

(
r · dt + (rmax − r) · dl

)
/rmax. The results of

selecting dl = 10% and dt = 5% for Conv-2 on FEMNIST
are given in Fig. 11. We see that if we do not impose these
model size constraints, PruneFL exceeds the density limits
dl = 10% and dt = 5% defined in this example, and obtains
a model that is much larger than the target density dt = 5%
at the end of training. We see that PruneFL with effective size
limit and target still achieves fast convergence and similar
convergence accuracy, and the model size is always limited
below the threshold dl = 10% and reaches the target density
dt = 5% at the end of training.

TABLE IV
DENSITY OF EACH LAYER AT CONVERGENCE (NO C.S).

Experiment VGG-11 on CIFAR-10

Convolutional 1.0, 0.80, 0.84, 0.84, 0.50, 0.07, 0.01, 0.03

Fully-connected 0.14, 0.15, 0.7

F. Relative Importance Between Layers

Similar to SynFlow [17] and SNIP [18], our algorithm
discovers the relative importance between layers automatically.
Taking CIFAR-10 on VGG-11 as an example, the densities of
convolutional layers and fully-connected layers at convergence
are listed in Table IV in a sequential manner. We observe
that the input and output layers are not pruned to a low
density, indicating that they are relatively important in the
neural network architectures. This also agrees with the pruning
scheme in [11], where the authors empirically set the pruning
rate of the output layer to a small percentage or even to
zero. Some large convolutional layers, such as the last two
convolutional layers in VGG-11, are identified as redundant,
and thus have small densities at convergence.

VII. CONCLUSION

We have proposed PruneFL for FL in edge/mobile com-
puting environments, where the goal is to effectively reduce
the size of neural networks so that resource-limited clients
can train them within a short time. Our PruneFL method
includes initial and further pruning stages, which improves the
performance compared to only having a single stage. PruneFL
also includes a low-complexity adaptive pruning method for
efficient FL, which finds a desired model size that can achieve
a similar prediction accuracy as the original model but with
much less time. Our experiments on Raspberry Pi devices
confirm that we improve the cost-efficiency of FL while
obtaining a lottery ticket. Our method can be applied together
with other compression techniques, such as quantization, to
further reduce the communication overhead.

ACKNOWLEDGMENT

This work was partially supported by the U.S. Office of
Naval Research under Grant N00014-19-1-2566, the U.S.
National Science Foundation AI Institute Athena under Grant
CNS-2112562, and the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001. The views and conclusions contained in

12

this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or
implied, of U.S. Office of Naval Research, the U.S. National
Science Foundation, the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon. V. Valls has
also received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 795244.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learn-
ing: Challenges, methods, and future directions,” arXiv preprint
arXiv:1908.07873, 2019.

[4] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, 2019.

[5] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, p. 12, 2019.

[6] P. Kairouz, H. B. McMahan et al., “Advances and open problems in
federated learning,” arXiv preprint arXiv:1912.04977, 2019.

[7] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[8] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[9] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification
for efficient federated learning: An online learning approach,” in IEEE
ICDCS, 2020.

[10] Z. Xu, Z. Yang, J. Xiong, J. Yang, and X. Chen, “Elfish: Resource-
aware federated learning on heterogeneous edge devices,” arXiv preprint
arXiv:1912.01684, 2019.

[11] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in ICLR, 2019.

[12] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[13] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[14] A. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers,”
in Advances in Neural Information Processing Systems, 2019, pp. 4933–
4943.

[15] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring sparsity
in recurrent neural networks,” in International Conference on Learning
Representations, 2017.

[16] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[17] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[18] N. Lee, T. Ajanthan, and P. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” in International Conference
on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=B1VZqjAcYX

[19] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi,
“Dynamic model pruning with feedback,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=SJem8lSFwB

[20] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, pp. 1–18, 2017.

[21] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez,
“Prunetrain: fast neural network training by dynamic sparse model
reconfiguration,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–13.

[22] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 5693–5700.

[23] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On
the convergence of fedavg on non-iid data,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HJxNAnVtDS

[24] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Local averaging helps: Hi-
erarchical federated learning and convergence analysis,” arXiv preprint
arXiv:2010.12998, 2020.

[25] J. Wang and G. Joshi, “Adaptive communication strategies to achieve the
best error-runtime trade-off in local-update sgd,” in Machine Learning
and Systems (MLSys), 2019.

[26] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, June 2019.

[27] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” arXiv preprint arXiv:1910.06378, 2019.

[28] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes SignSGD and other gradient compression schemes,” in Interna-
tional Conference on Machine Learning, vol. 97, Jun. 2019, pp. 3252–
3261.

[29] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[30] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, 2019, pp. 3411–3417.

[31] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed
deep learning with sparse and quantized communication,” in Advances
in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
2018, pp. 2525–2536.

[32] W. Du, X. Zeng, M. Yan, and M. Zhang, “Efficient federated learning
via variational dropout,” 2018.

[33] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li, “Lotteryfl:
Personalized and communication-efficient federated learning with lottery
ticket hypothesis on non-iid datasets,” arXiv preprint arXiv:2008.03371,
2020.

[34] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737–1746.

[35] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in Proceedings of the British
Machine Vision Conference. BMVA Press, 2014.

[36] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[37] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 2178–2188.

[38] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 2019, pp. 1423–
1431.

[39] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[40] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[41] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation
in federated learning,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=ByexElSYDr

http://www.deeplearningbook.org
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=ByexElSYDr

13

[42] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[43] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” in International Conference on
Learning Representations, 2019.

[44] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” arXiv
preprint arXiv:1611.06440, 2016.

[45] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communi-
cation efficient momentum sgd for distributed non-convex optimization,”
in International Conference on Machine Learning. PMLR, 2019, pp.
7184–7193.

[46] S. Caldas, P. Wu, T. Li, J. Konecný, H. B. McMahan, V. Smith, and
A. Talwalkar, “LEAF: A benchmark for federated settings,” CoRR, vol.
abs/1812.01097, 2018. [Online]. Available: http://arxiv.org/abs/1812.
01097

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[48] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[51] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314–1324.

[52] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[53] R. Tang, A. Adhikari, and J. Lin, “Flops as a direct optimiza-
tion objective for learning sparse neural networks,” arXiv preprint
arXiv:1811.03060, 2018.

http://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1812.01097

14

APPENDIX

A. Extension to Non-linear T (M)

For the case where T (M) is non-linear, but a general monotone and positive set function instead, we can still find a local
optimal solution to (7) using Algorithm A.1. We can see that the complexity of Algorithm A.1 is O(|P|2).

Algorithm A.1: Solving (7), general T (·)
1 A ← ∅;
2 j∗ ← None;
3 repeat
4 if j∗ is not None then
5 A ← A∪ {j∗};

6 j∗ ← argmaxj∈P\A
g2
j

tj(A∪P)
;

7 until g2
j

tj(A∪P)
< Γ

(
A ∪ P

)
;

8 return A ; // final result

Theorem 3. For general T (M), we have Γ
(
A ∪ P

)
≥ Γ

(
A′ ∪ P

)
, where A is given by Algorithm A.1 and A′ = A ∪ {j}

for any j ∈ P \ A.

Theorem 3 shows that for general T (M), adding another component to A cannot improve the solution to (7).
Remark. Theorem 3 gives a weaker result for general T (·) compared to the global optimality result in Theorem 1 for linear

T (·), because when A and A′ differ by more than one element, it is non-straightforward to express the change in cost for
general T (·). Furthermore, there may exist multiple local optimal solutions for general T (·).

B. Proofs

1) Proof of Theorems 1 and 3: Recall that Γ(M) := ∆(M)
T (M) , where ∆(M) and T (M) are both monotone and positive

functions, i.e., for any M⊆M′, we have 0 ≤ ∆(M) ≤ ∆(M′) and 0 ≤ T (M) ≤ T (M′).

Lemma 1. For any M and M′, let δ∆(M,M′) := ∆(M′) − ∆(M) and δT (M,M′) := T (M′) − T (M). We have
Γ(M′) ≤ Γ(M) if and only if δ∆(M,M′) ≤ Γ(M) · δT (M,M′).

Proof.

Γ(M′) :=
∆(M′)

T (M′)
≤ Γ(M)

⇐⇒ ∆(M′) ≤ Γ(M) · T (M′)

⇐⇒ ∆(M) + δ∆(M,M′) ≤ Γ(M) · T (M) + Γ(M) · δT (M,M′) (by definition of δ∆(·, ·) and δT (·, ·))
⇐⇒ ∆(M) + δ∆(M,M′) ≤ ∆(M) + Γ(M) · δT (M,M′) (by definition of Γ(M))
⇐⇒ δ∆(M,M′) ≤ Γ(M) · δT (M,M′) .

We are now ready to prove Theorems 1 and 3.

Proof of Theorem 1. By definition, we have ∆(M) :=
∑

j∈M g2j and T (M) := c+
∑

j∈M tj for any M.
In the following, we let M := A ∪ P and M′ := A′ ∪ P . We have

δ∆(M,M′) = ∆(M′)−∆(M)

=
∑

j∈M′\M

g2j −
∑

j∈M\M′

g2j (B.1)

δT (M,M′) = T (M′)− T (M)

=
∑

j∈M′\M

tj −
∑

j∈M\M′

tj . (B.2)

For A obtained from Algorithm 2, we can easily see that
g2
j

tj
< Γ(M) for any j ∈ M′ \ M and

g2
j′

tj′
≥ Γ(M) for any

j′ ∈M \M′. Hence, ∑
j∈M′\M

g2j < Γ(M) ·
∑

j∈M′\M

tj (B.3)

15

∑
j∈M\M′

g2j ≥ Γ(M) ·
∑

j∈M\M′

tj . (B.4)

Combining with (B.1) and (B.2), we have

δ∆(M,M′) ≤ Γ(M) · δT (M,M′) .

Then, the result follows from Lemma 1.

Proof of Theorem 3. Let M := A ∪ P and M′ := A′ ∪ P in this proof. As A′ := A ∪ {j} for some j /∈ A by definition in
this theorem, we note that δ∆(M,M′) = g2j and δT (M,M′) = tj(M).

For A obtained from Algorithm A.1, it is easy to see that
g2
j

tj(M) < Γ (M) for j /∈ A. Hence, δ∆(M,M′) < Γ (M) ·
δT (M,M′) and the result follows from Lemma 1.

2) Proof of Theorem 2: The analysis of this section is an extension of Theorem 1 in [24] (proof given in Section A.1). Note
that Assumption 1(a)-(e) still hold if we apply the same mask to all gradients or function values in the LHS, since applying
masks is equivalent to replacing a subset of the entries in the parameter with zeros. For the same reason, Assumption 1(f) and
1(g) also hold if the gradients are masked. For convenience, we define three expedient notations in addition to the notations
in Table I for pruned values: g′

n(w) := gn(w)⊙m(k), ∇′Fn(w) := ∇Fn(w)⊙m(k), and ∇′F (w) := ∇F (w)⊙m(k).
We first present a special form of Jensen’s inequality, which has the original form below:

ϕ

(∑
i aixi∑
i ai

)
≤
∑

i aiϕ(xi)∑
i ai

,

where ϕ(·) is a convex function, ai’s are positive weights.

Lemma 2. Assume ϕ(·) is a convex function, pn’s are positive weights that sum to 1, we have∥∥∥∥∥∑
n

pnxn

∥∥∥∥∥
2

≤
∑
n

pn∥xn∥2 .

Proof. ∥∥∥∥∥∑
n

pnxn

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥

∑

n pnxn,1∑
n pnxn,2

...

∥∥∥∥∥∥∥
2

=
∑
i

(∑
n

pnxn,i

)2
≤
∑
i

∑
n

pnx
2
n,i =

∑
n

pn
∑
i

x2
n,i =

∑
n

pn∥xn∥2 ,

where xn,i denotes the i-th component of xn.

The local updating rule is

w′
n(k + 1) = wn(k)⊙m(k)− ηgn

(
wn(k)⊙m(k)

)
⊙m(k)

= w′
n(k)− ηg′

n(w
′
n(k)) ,

Consequently, the updating rule for the averaged parameters is

w(k + 1) =

N∑
n=1

pnw
′
n(k + 1) = w′(k)− η

N∑
n=1

png
′
n(w

′
n(k)) .

Note that w(k), w′(k) are observable only in iterations where the clients send their local parameters to the server for
aggregation (see Algorithm 1), and g′(w′

n(k)) is dependent on m(k). We know that

E [F (w(k + 1))|{wn(k)},m(k)]

= E
[
F
(
w′(k)− η

N∑
n=1

png
′
n(w

′
n(k))

)∣∣∣{wn(k)},m(k)

]
(a)

≤ F (w′(k))− ηE

[〈
∇F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉∣∣∣∣∣{wn(k)},m(k)

]
+

η2β

2
E

∥∥∥∥∥
N∑

n=1

png
′
n(w

′
n(k))

∥∥∥∥∥
2 ∣∣∣∣∣{wn(k)},m(k)

(b)

≤ F (w(k)) + L ∥w(k)−w′(k)∥ − ηE
[〈
∇F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉∣∣∣{wn(k)},m(k)
]

16

+
η2β

2
E

∥∥∥∥∥
N∑

n=1

png
′
n(w

′
n(k))

∥∥∥∥∥
2 ∣∣∣∣∣{wn(k)},m(k)

= F (w(k)) + L ∥w(k)−w′(k)∥ − ηE

[〈
∇′F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉∣∣∣{wn(k)},m(k)
]

+
η2β

2
E

∥∥∥∥∥
N∑

n=1

png
′
n(w

′
n(k))

∥∥∥∥∥
2 ∣∣∣∣∣{wn(k)},m(k)

 (B.5)

where (a) is due to Assumption 1(a) (β-smoothness), (b) is due to Assumption 1(b) (L-Lipschitzness), and (B.5) is because〈
∇F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉
=
〈
∇F (w′(k)),

N∑
n=1

pngn(w
′
n(k))⊙m(k)

〉
=
〈
∇F (w′(k))⊙m(k),

N∑
n=1

pngn(w
′
n(k))⊙m(k)

〉
=
〈
∇′F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉
.

The third term in (B.5) can be rewritten as

− ηE
[〈
∇′F (w′(k)),

N∑
n=1

png
′
n(w

′
n(k))

〉∣∣∣{wn(k)},m(k)
]

(a)
= −η

〈
∇′F (w′(k)),

N∑
n=1

pn∇′Fn(w
′
n(k))

〉
=

η

2

(∥∥∥∥∇′F (w′(k))−
N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥2 − ∥∥∇′F (w′(k))
∥∥2 − ∥∥∥∥ N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥2
)

, (B.6)

where (a) uses Assumption 1(c) (unbiasedness). Our fourth term in (B.5) is bounded by

E

[∥∥∥∥ N∑
n=1

png
′
n(w

′
n(k))

∥∥∥∥2∣∣∣∣{wn(k)},m(k)

]
(a)
= E

[∥∥∥∥ N∑
n=1

pn

(
g′
n(w

′
n(k))−∇′Fn(w

′
n(k))

)∥∥∥∥2∣∣∣∣{wn(k)},m(k)

]
+

(
E
[∥∥∥∥ N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥∣∣∣{wn(k)},m(k)

])2

(b)
= E

[
N∑

n=1

∥∥∥∥pn(g′
n(w

′
n(k))−∇′Fn(w

′
n(k))

)∥∥∥∥2∣∣∣∣{wn(k)},m(k)

]
+

(
E
[∥∥∥∥ N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥∣∣∣{wn(k)},m(k)

])2

(c)

≤
(N∑

n=1

p2n

)
σ2 +

∥∥∥∥∥
N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥∥
2

, (B.7)

where (a) uses the definition of variance, i.e., E[∥x∥2] = E
[
∥x − E[x]∥2

]
+ [E∥x∥]2; (b) uses Assumption 1(g) (client

independence), expands the first term and removes the zero-valued cross-product terms; (c) uses Assumption 1(d) (bounded
variance). Substituting (B.6) and (B.7) into (B.5), (B.5) becomes

E [F (w(k + 1))|{wn(k)},m(k)]

≤ F (w(k)) + L ∥w(k)−w′(k)∥+
η2β

∑N
n=1 p

2
n

2
σ2 − η

2

∥∥∇′F (w′(k))
∥∥2 + η

2

∥∥∥∥∇′F (w′(k))−
N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥2

−
(η
2
− η2β

2

)∥∥∥∥∥
N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥∥
2

. (B.8)

Assuming η ≤ 1
β , we have η

2 −
η2β
2 ≥ 0, and the last term in (B.8) can be removed. Then we have the following:

E [F (w(k + 1))|{wn(k)},m(k)]

17

≤ F (w(k)) + L ∥w(k)−w′(k)∥+
η2β

∑N
n=1 p

2
n

2
σ2 − η

2

∥∥∇′F (w′(k))
∥∥2 + η

2

∥∥∥∥∇′F (w′(k))−
N∑

n=1

pn∇′Fn(w
′
n(k))

∥∥∥∥2
(a)

≤ F (w(k)) + L ∥w(k)−w′(k)∥+
η2β

∑N
n=1 p

2
n

2
σ2 − η

2

∥∥∇′F (w′(k))
∥∥2 + η

2

N∑
n=1

pn

∥∥∥∥∇′Fn(w
′(k))−∇′Fn(w

′
n(k))

∥∥∥∥2
(b)

≤ F (w(k)) + L ∥w(k)−w′(k)∥+
η2β

∑N
n=1 p

2
n

2
σ2 − η

2

∥∥∇′F (w′(k))
∥∥2 + ηβ2

2

N∑
n=1

pn
∥∥w′(k)−w′

n(k)
∥∥2 , (B.9)

where (a) uses Jensen’s inequality, and (b) uses Assumption 1(a) (smoothness). Taking expectation on both sides of (B.9), we
get

E [F (w(k + 1))] ≤ E [F (w(k))] + LE ∥w(k)−w′(k)∥+
η2β

∑N
n=1 p

2
n

2
σ2 − η

2
E
∥∥∇′F (w′(k))

∥∥2
+

ηβ2

2

N∑
n=1

pnE
∥∥w′(k)−w′

n(k)
∥∥2 . (B.10)

Taking average over time on (B.10) and rearranging, we get

1

K

K−1∑
k=0

E
∥∥∇′F (w′(k))

∥∥2
≤ 2

ηK
[F (w(0))− F ∗] +

2L

ηK

K−1∑
k=0

E ∥w(k)−w′(k)∥+ ηβ
(N∑

n=1

p2n

)
σ2 +

β2

K

K−1∑
k=0

N∑
n=1

pnE
∥∥w′(k)−w′

n(k)
∥∥2 . (B.11)

Now we bound the last term of (B.11).

N∑
n=1

pnE
∥∥w′(k)−w′

n(k)
∥∥2

=

N∑
n=1

pnE
∥∥∥∥(w′(k − 1)− η

N∑
i=1

pig
′
i(w

′
i(k − 1))

)
−
(
w′

n(k − 1)− ηg′
n(w

′
n(k − 1))

)∥∥∥∥2
(a)
= η2

N∑
n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
g′
n(w

′
n(τ))−

N∑
i=1

pig
′
i(w

′
i(τ))

)∥∥∥∥∥
2

= η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

((
g′
n(w

′
n(τ))−∇′Fn(w

′
n(τ)) +

N∑
i=1

pi∇′Fi(w
′
i(τ))−

N∑
i=1

pig
′
i(w

′
i(τ))

)

+
(
∇′Fn(w

′
n(τ))−

N∑
i=1

pi∇′Fi(w
′
i(τ))

))∥∥∥∥∥
2

≤ 2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
g′
n(w

′
n(τ))−∇′Fn(w

′
n(τ)) +

N∑
i=1

pi∇′Fi(w
′
i(τ))−

N∑
i=1

pig
′
i(w

′
i(τ))

)∥∥∥∥∥
2

(B.12)

+ 2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
∇′Fn(w

′
n(τ))−

N∑
i=1

pi∇′Fn(w
′
i(τ))

)∥∥∥∥∥
2

, (B.13)

where in (a), we trace back to the nearest iteration where all local parameters are synchronized. For (B.12),

2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
g′
n(w

′
n(τ))−∇′Fn(w

′
n(τ)) +

N∑
i=1

pi∇′Fi(w
′
i(τ))−

N∑
i=1

pig
′
i(w

′
i(τ))

)∥∥∥∥∥
2

(a)
= 2η2

N∑
n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
g′
n(w

′
n(τ))−∇′Fn(w

′
n(τ))

)∥∥∥∥∥
2

− 2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

N∑
i=1

pi

(
g′
i(w

′
i(τ))−∇′Fi(w

′
i(τ))

)∥∥∥∥∥
2

(b)
= 2η2

N∑
n=1

pn

k−1∑
τ=I·⌊k/I⌋

E
∥∥∥g′

n(w
′
n(τ))−∇′Fn(w

′
n(τ))

∥∥∥2 − 2η2
k−1∑

τ=I·⌊k/I⌋

E

∥∥∥∥∥
N∑
i=1

pi

(
g′
i(w

′
i(τ))−∇′Fi(w

′
i(τ))

)∥∥∥∥∥
2

18

(c)
= 2η2

k−1∑
τ=I·⌊k/I⌋

N∑
n=1

pnE
∥∥∥g′

n(w
′
n(τ))−∇′Fn(w

′
n(τ))

∥∥∥2 − 2η2
k−1∑

τ=I·⌊k/I⌋

N∑
n=1

E
∥∥∥∥pn(g′

n(w
′
n(τ))−∇′Fn(w

′
n(τ))

)∥∥∥∥2

≤ 2η2
k−1∑

τ=I·⌊k/I⌋

N∑
n=1

(pn − p2n)E
∥∥∥g′

n(w
′
n(τ))−∇′Fn(w

′
n(τ))

∥∥∥2
≤ 2
(
1−

N∑
n=1

p2n

)
Iη2σ2 , (B.14)

where (a) is due to the definition of variance; (b) is due to Assumption 1(f) (time independence) and
∑

n pn = 1; and (c) is
due to Assumption 1(g) (client independence). For (B.13),

2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

(
∇′Fn(w

′
n(τ))−

N∑
i=1

pi∇′Fi(w
′
i(τ))

)∥∥∥∥∥
2

= 2η2
N∑

n=1

pnE

∥∥∥∥∥
k−1∑

τ=I·⌊k/I⌋

((
∇′Fn(w

′
n(τ))−∇′Fn(w

′(τ))
)
+
(
∇′Fn(w

′(τ))−
N∑
i=1

pi∇′Fi(w
′(τ))

)

+
(N∑

i=1

pi∇′Fi(w
′(τ))−

N∑
i=1

pi∇′Fi(w
′
i(τ))

))∥∥∥∥∥
2

≤ 6η2
N∑

n=1

(
pnE

∥∥∥∥ k−1∑
τ=I·⌊k/I⌋

(
∇′Fn(w

′
n(τ))−∇′Fn(w

′(τ))
)∥∥∥∥2 + pnE

∥∥∥∥ k−1∑
τ=I·⌊k/I⌋

N∑
i=1

pi

(
∇′Fi(w

′(τ))−∇′Fi(w
′
i(τ))

)∥∥∥∥2

+ pnE
∥∥∥∥ k−1∑

τ=I·⌊k/I⌋

(
∇′Fn(w

′(τ))−
N∑
i=1

pi∇′Fi(w
′(τ))

)∥∥∥∥2
)

(a)

≤ 6η2I

k−1∑
τ=I·⌊k/I⌋

N∑
n=1

pn

(
E
∥∥∥∥∇′Fn(w

′
n(τ))−∇′Fn(w

′(τ))

∥∥∥∥2 + E
∥∥∥∥ N∑

i=1

pi

(
∇′Fi(w

′(τ))−∇′Fi(w
′
i(τ))

)∥∥∥∥2
)

+ 6η2IE
[N∑
n=1

pn

k−1∑
τ=I·⌊k/I⌋

∥∥∥∥∇′Fn(w
′(τ))−

N∑
i=1

pi∇′Fi(w
′(τ))

∥∥∥∥2]
(b)

≤ 6η2I

k−1∑
τ=I·⌊k/I⌋

N∑
n=1

pn

(
E
∥∥∥∥∇′Fn(w

′
n(τ))−∇′Fn(w

′(τ))

∥∥∥∥2 + E
∥∥∥∥ N∑

i=1

pi

(
∇′Fi(w

′(τ))−∇′Fi(w
′
i(τ))

)∥∥∥∥2)+ 6I2η2ϵ2

(c)

≤ 12η2I

k−1∑
τ=I·⌊k/I⌋

E
∥∥∥∥∇′Fn(w

′
n(τ))−∇′Fn(w

′(τ))

∥∥∥∥2 + 6I2η2ϵ2

≤ 12Iη2β2
N∑

n=1

k−1∑
τ=I·⌊k/I⌋

E
∥∥∥w′

n(τ)−w′(τ)
∥∥∥2 + 6I2η2ϵ2 , (B.15)

where in (a), we use the fact that, ∀xτ ,∥∥∥∥ k−1∑
τ=I·⌊k/I⌋

xτ

∥∥∥∥2 ≤ ((k − 1)− I · ⌊k/I⌋
)
·

k−1∑
τ=I·⌊k/I⌋

∥xτ∥2 ≤ I ·
k−1∑

τ=I·⌊k/I⌋

∥xτ∥2 .

In (b), we use Assumption 1(e) (bounded divergence), and in (c), we use Jensen’s inequality. Substituting (B.14) and (B.15)
into (B.12) and (B.13), respectively, we get

1

K

K−1∑
k=0

N∑
n=1

pnE
∥∥w′(k)−w′

n(k)
∥∥2

≤ 2
(
1−

N∑
n=1

p2n

)
Iη2σ2 + 6η2I2ϵ2 +

12Iη2β2

K

N∑
n=1

K−1∑
k=0

k−1∑
τ=I·⌊k/I⌋

E
∥∥∥w′

n(τ)−w′(τ)
∥∥∥2

(a)

≤ 2
(
1−

N∑
n=1

p2n

)
η2Iσ2 + 6η2I2ϵ2 +

12Iη2β2

K

N∑
n=1

K−1∑
k=0

min{I·⌈k/I⌉,K−1}∑
τ=I·⌊k/I⌋

E
∥∥∥w′

n(τ)−w′(τ)
∥∥∥2

19

(b)

≤ 2
(
1−

N∑
n=1

p2n

)
η2Iσ2 + 6η2I2ϵ2 +

12I2η2β2

K

K−1∑
k=0

N∑
n=1

E
∥∥∥w′

n(τ)−w′(τ)
∥∥∥2 , (B.16)

where (a) holds because k− 1 ≤ min{I · ⌈k/I⌉,K − 1} is always true, and (b) holds because in the innermost summation in
its last term, we always have

min{I · ⌈k/I⌉,K − 1} − I · ⌊k/I⌋ ≤ I .

Rearranging yields

1

K

K−1∑
k=0

N∑
n=1

pnE
∥∥w′(k)−w′

n(k)
∥∥2 ≤ 2

(
1−

∑N
n=1 p

2
n

)
η2Iσ2 + 6η2I2ϵ2

1− 12I2η2β2
. (B.17)

Applying (B.17) into (B.11)’s last term, (B.11) becomes

1

K

K−1∑
k=0

E
∥∥∇′F (w′(k))

∥∥2 ≤ 2

ηK
[F (w(0))− F ∗] + ηβ

(N∑
n=1

p2n

)
σ2 +

2
(
1−

∑N
n=1 p

2
n

)
Iσ2 + 6I2ϵ2

1− 12I2η2β2
η2β2

+
2L

ηK

K−1∑
k=0

E ∥w(k)−w′(k)∥ . (B.18)

Assume η ≤ 1
2
√
6Iβ

, we have 1− 12η2I2η2β2 ≥ 1
2 , and

1

K

K−1∑
k=0

E
∥∥∇′F (w′(k))

∥∥2 ≤ 2(F0 − F ∗)

ηK
+ αηβσ2 + 4β2

(
(1− α)Iσ2 + 3I2ϵ2

)
η2 +

2L

ηK

K−1∑
k=0

E ∥w(k)−w′(k)∥ , (B.19)

where α :=
∑N

n=1 p
2
n, F0 := F (w(0)), F ∗ := minw F (w). Note that under the assumption that η ≤ 1

2
√
6Iβ

, the previous
assumption that η ≤ 1

β used for (B.8) is automatically satisfied.
Discussion. Consider the situation where all clients have equal weight, i.e. pn = 1

N , ∀n, we have α = 1
N . Letting η =

1√
αK

=
√

N
K , (B.19) becomes

1

K

K−1∑
k=0

E
∥∥∇′F (w′(k))

∥∥2 ≤ 2(F0 − F ∗) + βσ2

√
NK

+
4β2
(
(N − 1)Iσ2 + 3NI2ϵ2

)
K

+
2L√
NK

K−1∑
k=0

E ∥w(k)−w′(k)∥ . (B.20)

For the last term in (B.20), when k is not a reconfiguration iteration, w(k) = w′(k), and when k is a reconfiguration iteration,
the difference between w(k) and w′(k) is the subset of parameters that get pruned from w(k). Assuming the norm of w(k) is
bounded by B, i.e., ∥w(k)∥ ≤ B, ∀k, the initial fraction of non-zero prunable parameters is r0 and this fraction halves every
h iterations (as we do in our experiments, see Table II), then the last term in (B.20) is bounded by

2L√
NK

K−1∑
k=0

E ∥w(k)−w′(k)∥
(a)

≤ 2L√
NK

K−1∑
k=0

B · r0 · 2−k/h ≤ 2LBr0√
NK

∞∑
k=0

2−k/h ≤ 2
1
h+1

2
1
h − 1

· LBr0√
NK

. (B.21)

In (B.21), (a) holds for the following reason: the reconfiguration on the parameter vector w(k) includes both adding back
parameters and removing parameters, resulting in a new parameter vector w′(k). However, parameters that are added back
in w′(k) in reconfigurations are assigned zero values2, which are equal to their corresponding values in w(k). Thus, the
difference between w(k) and w′(k) is the part that is removed from w(k), whose maximum fraction is bounded by r0 ·2−k/h.
In consequence, ∥w(k)−w′(k)∥ is bounded by B · r0 · 2−k/h. Plugging (B.21) into (B.20), we get

1

K

K−1∑
k=0

E
∥∥∇′F (w′(k))

∥∥2 ≤ (2(F0 − F ∗) + βσ2 +
2

1
h+1

2
1
h − 1

LBr0

)
1√
NK

+
4β2
(
(N − 1)Iσ2 + 3NI2ϵ2

)
K

= O
(

1√
NK

)
+O

(
1

K

)
. (B.22)

Thus, when the additional assumptions (i) K ≥ 24NI2β2, (ii) η =
√

N
K , (iii) pn = 1

N , ∀n, (iv) ∥w(k)∥ ≤ B, ∀k, and (v) the
fraction of non-zero prunable parameters decreases exponentially all hold, we have a convergence bound provided in (B.22)
that is dominated by O

(
1√
NK

)
. This means using more clients can accelerate the convergence (by a factor of 1√

N
).

20

TABLE C.1
MODEL ARCHITECTURES.

Architecture Conv-2 VGG-11 ResNet-18 MobileNetV3-Small

Convolutional
32, pool,
64, pool

64, pool,
128, pool,

2× 256, pool,
2× 512, pool,
2× 512, pool

64, pool,
2× [64, 64],

2× [128, 128],
2× [256, 256],
2× [512, 512]

16, 16, 8, 16, 16, 72, 72, 24, 88, 88, 24, 96, 96, 24,
96, 40, 240, 240, 64, 240, 40, 240, 240, 64, 240, 40,
120, 120, 32, 120, 48, 144, 144, 40, 144, 48, 288,
288, 72, 288, 96, 576, 576, 144, 576, 96, 576, 576,

144, 576, 96, 576

Fully-connected
2048, 62

(input: 3136)
512, 512, 10
(input: 512)

avgpool, 100
(input: 512)

avgpool, 1280, dropout (0.2), 2
(input: 960)

Conv/FC/all params 52.1K/6.6M/6.6M 9.2M/530.4K/9.8M 11.2M/102.6K/11.3M 927.0K/592.9K/1.5M

C. PruneFL details

1) Model architecture details: The details of the model architectures are listed in Table C.1.
2) Gradient Computation: The forward pass in neural networks with sparse matrices is straightforward. Taking an FC layer

as an example (convolutional layers are more complex but similar in principle), the input data is multiplied by a sparse weight,
and produces a dense output to be passed to the next layer. Let u ∈ Rnin×nout be its (sparse) weight, x ∈ RN×nin be the (dense)
input and y ∈ RN×nout be the (dense) output, where nin, nout, and N are the number of input neurons, output neurons of the
FC layer, and the mini-batch size for SGD, respectively. Assuming there is no bias, the forward pass is given by y = x ·u . The
backward pass is slightly more complex. By simple calculations, the gradient of u is given by gu = xTgy, and the gradient
of x (when required) is given by gx = gyu

T . Here, gy is the (dense) gradient in backpropagation fed by the next layer.
For the computation of gx, since the weight u is sparse, we can accelerate the computation using our sparse matrix

implementation.
The computation of gu is however different. Note that both x and gy are dense, and thus current implementations (e.g.,

PyTorch) first compute the dense gradient with u’s dense form that has all zero values included, and then select values from
the dense gradient according to u’s sparse pattern. There is currently no better way to accelerate this process as far as we
know. Therefore, this implementation does not improve the backward pass’s speed of weights’ gradient computations. For the
above reason, in our implementation we collect the gradients of zero-valued components of u at the same time with no extra
overhead (although those zero-valued components themselves are not updated). This characteristic is useful in our adaptive
pruning procedure.

3) FLOPs Computation: Following the discussion in Section C2, we now explain the computation of FLOPs in both forward
and backward passes in our models. Using convention in the literature, we consider that one addition and one multiplication
each counts as a FLOP [53]. Taking the same notations and assumptions from Section C2, the FLOPs for the forward pass
is 2Nninnout × d, where d is the density of this FC layer. In the backward pass, the FLOPs for the gradient computation of
weight u is 2Nninnout since the computation does not involve sparse matrices, while for the gradient of input x, the FLOPs is
2Nninnout× d. Therefore, the total FLOPs for the backward pass is 2Nninnout× (1+ d), and the FLOPs for both forward and
backward passes is 2Nninnout × (1 + 2d). FLOPs computation for convolutional layers is similar, so we skip this discussion.

4) Starting Reconfiguration Round: We start the reconfiguration in the initial pruning stage when the training accuracy on
local sample data of the selected client exceeds 1.5 times the random guess accuracy. There are two advantages: (i) if the task
is easy, reconfiguration starts early, which results in early model size decrease that saves training time; and (ii) it also avoids
pruning the model too early when the prediction is still close to random guess, meaning the parameter values are still in the
random initialization stage. In the further pruning stage, reconfiguration happens periodically with a fixed interval.

5) Further Details of Adaptive Pruning: In the following, we provide detailed information for the adaptive pruning procedure
described in Section IV-B. In both reconfiguration and non-reconfiguration rounds, the importance measure is summed locally
after every local update, until the sum is sent to the server in the next reconfiguration round. Note that in non-reconfiguration
rounds, only the remaining model parameters are used in computation and exchanged between server and clients. Since the
parameter set is fixed in non-reconfiguration rounds, only the values of the parameters need to be exchanged between the
server and clients, which incurs no extra communication cost. An illustration of the two types of rounds is shown in Fig. C.1.

6) PyTorch on Raspberry Pi devices: To install PyTorch on Raspberry Pi devices, we follow the instructions described at
https://bit.ly/3e6I7tG, where acceleration packages such as MLKDNN and NNPACK are disabled due to possible compatibility
issues and their lack of support of sparse computation. We compare our implementation with the plain implementation by
PyTorch without accelerations. We expect that similar results can be obtained if acceleration packages could support sparse
computation. This is an active area of research on its own where methods for efficient sparse computation on both CPU and
GPU have been developed in recent years. Integrating such methods into our experiments is left for future work.

2In practice, we use a small perturbation instead of zero values for parameters that are added back, but we use zero values in our analysis for ease of
exposition.

https://bit.ly/3e6I7tG

21

(a) Non-reconfiguration round (b) Reconfiguration round

Fig. C.1. Illustration of adaptive pruning as part of further pruning during FL.

(a) Conv-2’s first fully-connected layer (b) VGG-11’s last convolutional layer

Fig. D.1. Linearity of average computation time vs. number of parameters.

D. Additional Experimental Results

1) Validation of Assumptions: Agreeing with our assumptions and analysis in Sections IV-B and V-B, we observe that the
training time in each layer is generally independent of the other layers. Within each layer, the time is approximately linear
with the number of parameters in the layer with sparse implementation. In Fig. D.1, we fix the parameters in other layers
and increase the number of parameters in Conv-2’s largest (first) FC layer and VGG-11’s largest convolutional layer (last
convolutional layer with 512 channels), respectively, and measure for 50 times. The R2 values of linear regression for Conv-2
and VGG-11 are 0.997 and 0.994, respectively.

2) Client Selection Results for Section VI: We present results under same settings as in Section VI, but with random client
selection. We partition the IID CIFAR-10 and ImageNet-100 datasets uniformly into 100 equal-sized, non-overlapping clients.
FEMNIST and CelebA are intrinsically non-IID datasets. For the FEMNIST dataset, we use its original 193-user partition; and
for the CelebA dataset, since some of its users in the original partition have too few images (e.g. 4 images), we merge the 9343
persons’ images into 934 clients (first 933 clients have 10 persons’ images and the last client has 13 persons’ images). In each
round, we sample 10 clients randomly from the aforementioned partitions when using client selection. Fig. D.2 (corresponding
to Fig. 5) shows the training time reduction; Fig. D.3 (corresponding to Fig. 7) shows the lottery ticket result; and Fig. D.4
(corresponding to Fig. 9) shows the model size adaptation. We observe similar behaviors as with full client participation that
is described in the main paper, thus we omit further discussion in this section.

3) Convergence Accuracy Results for All Experiments: The convergence accuracies with/without client selection are shown
in Table D.1. The results are taken from the test accuracies in the last five evaluations of each simulation. We see that the
convergence accuracy of PruneFL is similar to that of conventional FL. Conventional FL sometimes shows a slight advantage
because all methods run for the same number of rounds, and full-sized models in conventional FL learn faster when the
accuracy is measured in rounds instead of time.

22

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. D.2. Test accuracy vs. time results of four datasets (client selection).

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. D.3. Lottery ticket results of four datasets (client selection).

(a) Conv-2 on FEMNIST (b) VGG-11 on CIFAR-10 (c) ResNet-18 on ImageNet-100 (d) MobileNetV3-Small on CelebA

Fig. D.4. Number of parameters vs. round for four datasets (client selection).

TABLE D.1
AVERAGE OF THE LAST 5 MEASURED ACCURACIES (%). C.S. STANDS FOR CLIENT SELECTION.

FEMNIST CIFAR-10 ImageNet-100 CelebA
No C.S. C.S. No C.S. C.S. No C.S. C.S. No C.S. C.S.

Conventional
FL

85.33± 0.17 84.61± 0.62 86.30± 0.20 86.51± 0.12 76.36± 0.56 76.62± 0.34 91.41± 0.15 91.33± 0.17

PruneFL
(ours)

85.07± 0.31 83.90± 0.48 85.47± 0.19 85.50± 0.18 77.23± 0.25 76.07± 0.31 91.38± 0.14 91.2± 0.17

SNIP 85.16± 0.22 84.05± 0.70 81.16± 0.22 81.44± 0.13 76.89± 0.27 76.76± 0.60 91.48± 0.07 89.69± 0.75

SynFlow 84.77± 0.17 84.19± 0.21 82.41± 0.42 82.36± 0.28 76.66± 0.28 76.60± 0.24 91.24± 0.23 90.23± 0.11

Online
learning

85.31± 0.37 84.30± 0.27 10.00± 0.00 10.00± 0.00 75.32± 0.18 74.97± 0.15 90.39± 0.13 88.61± 0.53

Iterative
pruning

84.87± 0.22 84.08± 0.39 84.45± 0.14 84.64± 0.14 76.18± 0.30 76.96± 0.26 90.14± 0.37 88.65± 0.33

	Introduction
	Related Work
	Preliminaries
	PruneFL
	Two-stage Distributed Pruning
	Adaptive Pruning

	Implementation
	Using Sparse Matrices
	Complexity Analysis
	Implementation Challenges

	Experiments
	Time Measurement
	Training Cost Reduction
	Finding a Lottery Ticket
	Model Size Adaptation
	Training with Limited/Targeted Model Sizes
	Relative Importance Between Layers

	Conclusion
	References
	Appendix
	Extension to Non-linear T(M)
	Proofs
	Proof of Theorems 1 and 3
	Proof of Theorem 2

	PruneFL details
	Model architecture details
	Gradient Computation
	FLOPs Computation
	Starting Reconfiguration Round
	Further Details of Adaptive Pruning
	PyTorch on Raspberry Pi devices

	Additional Experimental Results
	Validation of Assumptions
	Client Selection Results for Section VI
	Convergence Accuracy Results for All Experiments

