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Abstract—Seamless computing and data access is enabled
by the emerging technology of mobile micro-clouds (MMCs).
Different from traditional centralized clouds, an MMC is typi-
cally connected directly to a wireless base-station and provides
services to a small group of users, which allows users to have
instantaneous access to cloud services. Due to the limited coverage
area of base-stations and the dynamic nature of mobile users,
network background traffic, etc., the question of where to place
the services to cope with these dynamics arises. In this paper,
we focus on dynamic service placement for MMCs. We consider
the case where there is an underlying mechanism to predict the
future costs of service hosting and migration, and the prediction
error is assumed to be bounded. Our goal is to find the optimal
service placement sequence which minimizes the average cost
over a given time. To solve this problem, we first propose a
method which solves for the optimal placement sequence for a
specific look-ahead time-window, based on the predicted costs in
this time-window. We show that this problem is equivalent to a
shortest-path problem and propose an algorithm with polynomial
time-complexity to find its solution. Then, we propose a method
to find the optimal look-ahead window size, which minimizes
an upper bound of the average cost. Finally, we evaluate the
effectiveness of the proposed approach by simulations with real-
world user-mobility traces.

Index Terms—Cloud computing, cost prediction, dynamic
scheduling, mobile micro-cloud (MMC), mobility, wireless net-
works

I. INTRODUCTION

Many emerging applications, such as video streaming, real-

time face/object recognition, etc., require high data processing

capability. However, portable devices (e.g. smartphones) are

generally limited by their size and battery life, which makes

them incapable to perform complicated computational tasks.

A remedy for this is to utilize cloud computing techniques,

where the cloud performs the computation for its users.

In the traditional setting, cloud services are provided by

centralized data-centers that may locate far away from end-

users, which can be inefficient because the user may suffer

from long latency and poor connectivity due to long-distance

communication [1]. The idea of mobile micro-clouds (MMCs)

is to place the cloud closer to end-users, so that users can

have fast and reliable access to the service. In an MMC,
¶ Contributions of the author to this work are not related to his current

employment at Nyansa Inc.
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Figure 1. Application scenario with mobile micro-clouds (MMCs).

a server or a small data-center is directly connected to the
wireless base-station, providing cloud services to users that are

either connected to the base-station or are within a reasonable

distance from it. Fig. 1 shows an application scenario where

MMCs coexist with the centralized cloud. MMCs can be used

for many applications that require high reliability or high

data processing capability [1]–[3]. This concept has also been

termed as Cloudlet [1], Follow Me Cloud [4], edge computing

[5], small cell cloud [6], etc. We use the term MMC in this

paper.

One important issue in MMCs is to decide which MMC

should perform the computation for a particular user, with

the presence of user mobility and other dynamic changes in

the network. When a user wants to run a service provided

by the cloud, it can run it either in the centralized cloud or

in one of the MMCs, and the question is how to choose

the optimal location to run the service. Besides, the user

may frequently switch among different base-stations due to

mobility, thus another question is whether we should migrate

the service from one cloud (which can be either an MMC or

the centralized cloud) to another cloud when the user location

or network condition changes.

The abovementioned problems are related to applica-

tion/workload placement problems in cloud environments.

Although existing work has studied such problems under

complicated network topologies [7], [8], they mainly focused

on static network conditions and fixed resource demands. The

presence of dynamically changing resource availability that is

related to user mobility has not been sufficiently considered.

When user mobility exists, it is necessary to consider real-time

service migration. For example, it can be beneficial to migrate
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the service to a location closer to the user. Only a few existing

papers in the literature have studied this problem [9], [10]. The

main approach in [9] and [10] is to formulate the mobility-

driven service migration problem as a Markov decision process

(MDP). Such a formulation is suitable where users follow

a mobility model that can be described by a Markov chain.

However, there are cases where the Markovian assumption is

not valid [11]. Besides, [9] and [10] assume specific structures

of the cost function that are related to the service and user

locations. Such cost structures can inapplicable when the load

on different MMCs are imbalanced or when we consider the

centralized cloud as a service placement option.

In this paper, we consider a more general setting which

allows heterogeneity in cost values, network structure, and

mobility models. We focus on the case where there is an

underlying mechanism to predict the future costs of running

the service in each MMC (or the centralized cloud) as well

as the costs of service migration. The cost may be related to

the service/user location, network condition, and other factors

such as user preference. Specific methods for predicting future

costs are beyond the scope of this paper, but we anticipate

that existing approaches such as [12], [13] and [14] can be

applied. We assume that the prediction mechanism provides

the most likely future cost sequence and an upper bound

on possible deviation of the actual cost from the predicted

cost value. Such an assumption is valid for many prediction

methods that provide guarantees on the prediction accuracy.

Unlike the MDP-based approaches in [9] and [10], we do not

require knowledge on the probability distribution of the costs.

Based on the above model, we formulate a problem with

the goal of finding the optimal service placement sequence

that minimizes the average cost over a given time. We define

a look-ahead window to represent the amount of time that we

look (predict) into the future. We first propose an algorithm to

find the optimal placement sequence for a specific look-ahead

window size. Then, we propose a method to find the optimal

window size, which considers the existence of prediction

errors and minimizes an upper bound of the average cost.

The effectiveness of the proposed approach is evaluated by

simulations with real-world user-mobility traces.

The remainder of this paper is organized as follows. The

problem formulation is described in Section II. Section III

proposes an algorithm to find the optimal service placement

sequence with given look-ahead window size. Section IV

proposes a method to find the optimal look-ahead window

size. Section V discusses the simulation results and Section

VI draws conclusions.

II. PROBLEM FORMULATION

We consider a cloud computing system as shown in Fig. 1,

where the clouds are indexed by m ∈ {1, 2, ...,M}. The

MMCs have indexes m ∈ {1, 2, ...,M−1}, and the centralized

cloud has index m = M . All MMCs together with the central-

ized cloud can host services. A time-slotted system as shown

in Fig. 2 is considered, where the slots t ∈ {1, 2, ..., Tmax} can

be either evenly or unevenly spaced. The choice of the length

Timeslot tT slots

…1 2 3 … …
T slots T slots

T slots

Service
initialization

Possible migration
… … …

T

Service
termination

Find service placement for next T (or T) slots

Figure 2. Timing of the proposed approach.

of each timeslot is related to how fast the costs change and the

complexity of finding the optimal service placement sequence.

The total number of slots Tmax matches with the time duration

that the service runs.

For simplicity, we consider a single user running one non-

decomposable service in our formulation. This can be easily
extended to multiple users running the same service, by

defining the cost to be related to multiple users. The case

with multiple users running independent services can also

be captured by appropriately defining the cost functions to

take into account the load from other users, as we do in

the simulations in Section V. The service is initialized at

the beginning of the first timeslot t = 1, and it can be

migrated from one cloud to another cloud at the beginning

of all subsequent timeslots t ∈ {2, 3, ..., Tmax}.

A. Cost Definition

We consider two types of costs. The local cost u(t,m)
specifies the cost of data transmission and processing in

timeslot t when the service is placed at cloud m. Its value can

depend on many factors, such as the user location, network

condition, and load of the cloud in slot t. The local cost in

slot t = 1 also includes the cost of initial placement. We

then define the migration cost w(t, n,m), which specifies the

cost of service migration from cloud n to cloud m at the
beginning of slot t. We define w(·,m,m) = 0, because there

is no migration cost if we do not migrate. There is also no

migration cost in the first timeslot, thus we have w(1, ·, ·) = 0.

Let vector π denote the sequence of service placements for

all timeslots t ∈ {1, 2, ..., Tmax}, where the tth element of π
(denoted by π(t)) specifies the index of the cloud that the

service is placed on in slot t. The sum of local and migration

costs in slot t when following placement sequence π is

Cπ(t) � u(t, π(t)) + w(t, π(t− 1), π(t)) (1)

Note that Cπ(t) is only dependent on π(t− 1) and π(t), but

we use vector π as subscript for simplicity.

B. Actual and Predicted Costs

To distinguish between the actual and predicted cost values,

we let Aπ(t) denote the Actual value of Cπ(t), and let

Dt0
π (t) denote the preDicted most likely value of Cπ(t),

when prediction is performed at the beginning of slot t0.

For completeness of notations, we define Dt0
π (t) = Aπ(t)

for t < t0, because at the beginning of t0, the costs of all

past timeslots are known. For t ≥ t0, we assume that the

absolute difference between Aπ(t) and Dt0
π (t) is at most



ε(τ) � maxπ,t0 |Aπ(t0 + τ)−Dt0
π (t0 + τ)|, which repre-

sents the maximum error when looking ahead for τ slots,

among all possible placement sequences π and all possible

prediction instances t0. The function ε(τ) is assumed to be

non-decreasing with τ , because we generally cannot have

lower error when we look farther ahead into the future. The

specific value of ε(τ) is provided by the cost prediction

module. We also define a constant δ � maxt,n,m wa(t, n,m)
to represent the maximum value of the actual migration cost

in any slot, where wa(t, n,m) denotes the actual cost of

migrating from n to m at the beginning of slot t. The value

of δ is system-specific and is related to the cost definition.

C. Our Goal

Our ultimate goal is to find the optimal placement sequence

π∗ that minimizes the actual time average cost over the entire

duration that the service runs, i.e.

π∗ = argmin
π

∑Tmax

t=1 Aπ(t)

Tmax

(2)

However, it is impractical to find the optimal solution to

(2), because we cannot precisely predict the future costs.

Therefore, we focus on obtaining an approximate solution to

(2) by utilizing predicted cost values.

D. Approximate Solution from Predicted Costs

In the approximate solution, as shown in Fig. 2, we predict

the costs for the next T timeslots, and we define these T slots

as a look-ahead window. The service placement sequence is

found at the beginning of each look-ahead window, such that

the average predicted cost within the window is minimized.

We denote the placement sequence found from the predicted

costs (for all slots t ∈ {1, 2, ..., Tmax}) by πT . The window

size T is chosen so that the average actual cost when placing

according to πT is closest (in an upper-bound sense) to the

average actual cost when placing according to π∗. Details will

be given in Sections III and IV.

III. SERVICE PLACEMENT BASED ON PREDICTED COSTS

WITH GIVEN LOOK-AHEAD WINDOW SIZE

We start with illustrating the high-level procedure of finding

πT . When the look-ahead window size T is given, the place-

ment sequence πT is found according to the following steps

(see also Fig. 2):

1) Initialize t0 = 1.

2) Let te = min {t0 + T − 1;Tmax}. At the beginning of

slot t0, find

πT (t0, ..., te) = arg min
π(t0,...,te)

te∑
t=t0

Dt0
π(t0,...,te)

(t) (3)

where π(t0, ..., te) denotes the placement sequence for

timeslots t0, ..., te, and Dt0
π (t) can be found from the

cost prediction module.

3) Apply placements πT (t0, ..., te) in timeslots t0, ..., te.

4) If te < Tmax, set t0 = te+1 and go to step 2. Else, stop.

t t t

t t t

t t t

t
Dt t

Dt t

Dt t

Figure 3. Shortest-path formulation with M = 3 and T = 3.

Note that in the above procedure, the vector πT is found in

real-time. We can get the full vector of πT only after (3)

has been solved for timeslots in the last window. Such a

solution is sufficient in practice because we only need to know

the placement in the current timeslot to make the placement

decision. The value of Dt0
π(t0,...,te)

(t) in (3) also depends on

the placement in timeslot t0 − 1, i.e. π(t0 − 1), according to

(1). When t0 = 1, π(t0 − 1) can be regarded as any dummy

variable, because the migration cost w(1, ·, ·) = 0.

The intuitive explanation of (3) is that, at the beginning of

slot t0, it finds the optimal placement sequence that minimizes

the predicted cost over the next slots (including slot t0) up to

te, given the location of the service in the previous slot t0−1.

The remaining part of this section focuses on solving (3), and

we write π(t0, ..., te) as π for short.

A. Equivalence to Shortest-Path Problem

The problem (3) is equivalent to a shortest-path problem

with Dt0
π (t) as weights, as shown in Fig. 3. Each edge

represents one possible combination of service placements

in adjacent timeslots, and the weight on each edge is the

predicted cost for such placement. The placement in timeslot

t0 − 1 is always given, and the number of possible service

locations in subsequent timeslots is equal to M . Node B is a

dummy node to ensure that we find a single shortest path, and

the edges connecting node B have zero weights. It is obvious

that the optimal solution to (3) can be found by taking the

shortest (minimum-weighted) path from node π(t0 − 1) to

node B in Fig. 3, and the nodes that the shortest path traverses

correspond to the optimal solution πT (t0, ..., te) for (3).

B. Algorithm

We can solve the abovementioned shortest-path problem by

means of dynamic programming [15]. The algorithm is shown

in Algorithm 1, where we use up(t,m) and wp(t, n,m) to

respectively denote the predicted local and migration costs,

when the service is placed at cloud m in the current timeslot

and at cloud n in the previous timeslot. In the algorithm, Lines

5–16 iteratively finds the shortest path (minimum objective

function) for each timeslot. In each iteration, the optimal

solution for placing the service on each cloud m is found

by solving the Bellman’s equation of the problem (Line 11).

Then, the final optimal placement is found in Lines 17 and



Algorithm 1 Algorithm for solving (3)

1: Define variables m and n with m,n ∈ {1, 2, ...,M} to

represent cloud indexes respectively in the current and

previous iteration

2: Define vectors πm and ξm for all m ∈ {1, 2, ...,M},

where πm (correspondingly, ξm) records the optimal

service placement sequence given that the placement at the

current (correspondingly, previous) timeslot of iteration is

at m
3: Define variables μm and νm for all m ∈ {1, 2, ...,M} to

record the sum cost values from slot t0 respectively to

the current and previous slot of iteration, given that the

service is placed at m in the current or previous slot

4: Initialize μm ← 0 and πm ← ∅ for all m ∈ {1, 2, ...,M}
5: for t = t0, ..., te do
6: for m = 1, ...,M do
7: νm ← μm

8: ξm ← πm

9: end for
10: for m = 1, ...,M do
11: n∗ ← argminn {νn + up(t,m) + wp(t, n,m)}
12: πm(t0, ..., t− 1) ← ξn∗(t0, ..., t− 1)
13: πm(t) ← m
14: μm ← νn∗ + up(t,m) + wp(t, n

∗,m)
15: end for
16: end for
17: m∗ ← argminm μm

18: πT (t0, ..., te) ← πm∗(t0, ..., te)
19: return πT (t0, ..., te)

18. It is obvious that output of this algorithm satisfies the

Bellman’s principle of optimality, so the result is the shortest

path and hence the optimal solution to (3).

When the vectors πm and ξm are stored in linked-lists,

Algorithm 1 has time-complexity O(M2T ); and when πm

and ξm are stored in arrays, the time-complexity is O((M +
T )MT ). This is because the minimization in Line 11 requires

enumerating through M clouds, and if πm and ξm are stored

in arrays, then Line 12 copies at most T data elements.

IV. OPTIMAL LOOK-AHEAD WINDOW SIZE

In this section, we study how to find the optimal window

size T to look-ahead. We note that T is upper bounded by

the service duration Tmax. When there are no errors in the

cost prediction, setting T = Tmax makes (3) equivalent to (2),

which brings the best long-term performance. However, the

problem becomes more complicated when we consider the

prediction error, because the farther ahead we look into the

future, the more uncertain we are about the costs. When T
is large, the predicted cost value may be far away from the

actual cost, which can cause the solution from the predicted

cost (πT ) deviate significantly from the true optimal solution

π∗. Conversely, when T is small, the solution may not perform

well in the long-term, because the long-term effect of service

placement is not considered. Therefore, we have to find the

optimal value of T which minimizes both the impact of

prediction error and the impact of truncating the look-ahead

time-span.

Recall that in Section II, we defined the maximum differ-

ence between the predicted and actual costs when looking τ
slots ahead as ε(τ), we also defined the maximum migration

cost as δ. Both ε(τ) and δ are regarded as inputs to our

problem. To help with our analysis below, we define the sum-

error starting from slot t0 up to slot t0 + T − 1 as

F (T ) =

t0+T−1∑
t=t0

ε(t− t0) (4)

Because ε(t− t0) ≥ 0 and ε(t− t0) is non-decreasing with t,
it is obvious that F (T +2)−F (T +1) ≥ F (T +1)−F (T ).
Hence, F (T ) is a convex non-decreasing function for T ≥ 0,

where we define F (0) = 0.

A. Upper Bound of Cost Difference

In the following, we focus on the objective function given

in (2), and study how worse the placement sequence πT can

perform, compared with the true optimal sequence π∗.

Proposition 1. For look-ahead window size T , the upper
bound on the cost difference from placement sequences πT

and π∗ is given by∑Tmax
t=1 AπT

(t)

Tmax
−

∑Tmax
t=1 Aπ∗(t)

Tmax
≤ 2F (T ) + δ

T
(5)

Proof. See Appendix.

We define the optimal look-ahead window size as the

solution to the following optimization problem:

min
T

2F (T ) + δ

T
(6)

s.t. 1 ≤ T ≤ Tmax

Considering the original objective in (2), the problem (6)

can be regarded as finding the optimal look-ahead window

size such that an upper bound of the objective function in (2)

is minimized. It is impractical to solve (2) directly because

we cannot precisely predict the future costs. However, as

discussed above, we can approximate (2) by utilizing predicted

costs, and the solution to (6) is the optimal window size to

look-ahead so that (in the worst case) the cost is closest to the

cost from the true optimal placement sequence π∗.

B. Characteristics of the Optimization Problem in (6)

In the following, we study the characteristics of (6). To

help with the analysis, we interchangeably use variable T to

represent either a discrete or a continuous variable. We define

a continuous convex function G(T ), where T is a continuous

variable within the interval of [1, Tmax]. The function G(T ) is

defined in such a way that G(T ) = F (T ) for all the discrete

values T ∈ {1, 2, ..., Tmax}, i.e. G(T ) is a continuous time
extension of F (T ). Such a definition is always possible by

connecting the discrete points in F (T ). We will work with

continuous values of T in some parts of our analysis below,

and will discretize it when appropriate.



We define a function θ(T ) � 2G(T )+δ
T to represent the upper

bound in (5) after replacing F (T ) with G(T ), where T is

regarded as a continuous variable. We take the logarithm of

θ(T ), yielding

ln θ = ln (2G(T ) + δ)− lnT (7)

Taking the derivative of ln θ, we have

d ln θ

dT
=

2dG(T )
dT

2G(T ) + δ
− 1

T
(8)

We set (8) equal to zero, and rearrange the equation, yielding

Φ(T ) � 2T
dG(T )

dT
− 2G(T )− δ = 0 (9)

where we define Φ(T ) to represent the left hand-side of (9).

Proposition 2. Let T0 denote a solution to (9), if the so-
lution exists, then the optimal look-ahead window size T ∗

for problem (6) is either �T0� or 	T0
, where �x� and 	x

respectively denote the floor (rounding down to integer) and
ceiling (rounding up to integer) of x .

Proof. Taking the derivative of Φ(T ), we get

dΦ

dT
= 2T

d2G(T )

dT 2
≥ 0 (10)

where the last inequality is because G(T ) is convex. This

implies that Φ(T ) is non-decreasing with T . Hence, there

is at most one consecutive interval of T (the interval may

only contain one value) such that (9) is satisfied. We denote

this interval by [T−, T+], and a specific solution to (9) is

T0 ∈ [T−, T+].
We note that d ln θ

dT and Φ(T ) have the same sign, because
d ln θ
dT ≶ 0 yields Φ(T ) ≶ 0 and vice versa, which can be

seen from (8) and (9). When T < T−, we have Φ(T ) < 0 and

hence d ln θ
dT < 0; when T > T+, we have Φ(T ) > 0 and hence

d ln θ
dT > 0. This implies that ln θ, thus θ(T ), keeps decreasing

with T until the optimal solution is reached, and afterwards

it keeps increasing with T . It follows that the minimum value

of θ(T ) is attained at T ∈ [T−, T+]. Because T0 ∈ [T−, T+]
and T ∗ is a discrete variable, we complete the proof.

Note that we do not assume the continuity of the derivatives

of G(T ) in the above analysis, which means that
dG(T )
dT may be

non-continuous and
d2G(T )
dT 2 may have +∞ values. However,

these do not affect our analysis above. Also note that we

do not consider the convexity of θ(T ). From the proof of

Proposition 2, we can also conclude the following corollary.

Corollary 1. For window sizes T and T +1, if θ(T ) < θ(T +
1), then the optimal size T ∗ ≤ T ; if θ(T ) > θ(T + 1), then
T ∗ ≥ T + 1; if θ(T ) = θ(T + 1), then T ∗ = T .

C. Finding the Optimal Solution

According to Proposition 2, we can solve (9) to find the

optimal look-ahead window size. When G(T ) (and F (T )) can

be expressed in some specific analytical forms, the solution to

(9) can be found analytically. For example, consider G(T ) =

Algorithm 2 Binary search for finding optimal window size

1: Initialize variables T− ← 1 and T+ ← Tmax

2: repeat
3: T ← �(T− + T+) /2�
4: if θ(T ) < θ(T + 1) then
5: T+ ← T
6: else if θ(T ) > θ(T + 1) then
7: T− ← T + 1
8: else if θ(T ) = θ(T + 1) then
9: return T //Optimum found

10: end if
11: until T− = T+

12: return T−

F (T ) = βTα, where β > 0 and α > 1. In this case, T0 =(
δ

2β(α−1)

) 1
α

, and T ∗ = argminT∈{�T0�,�T0�} θ (T ). One can

also use such specific forms as an upper bound for a general

function.

When G(T ) (and F (T )) have more general forms, we can

perform a search on the optimal window size according to the

properties discussed in Section IV-B. Because we do not know

the convexity of θ(T ) or Φ(T ), standard numerical methods

for solving (6) or (9) may not be efficient. However, from

Corollary 1, we know that the local minimum point of θ(T )
is the global minimum point, so we can develop algorithms

that use this property.

Because the optimal window size T ∗ takes discrete values,

we can perform a discrete search on T ∈ {1, 2, ..., Tmax},

and compare θ(T ) with θ(T + 1) and determine the optimal

solution according to Corollary 1. One possible approach is

to use binary search, as shown in Algorithm 2, which has

time-complexity of O (log Tmax).

V. SIMULATION RESULTS

To evaluate the performance of the proposed approach, we

perform simulations using real-world San Francisco taxi traces

on May 31, 2008, obtained from [16], [17]. We consider

the existence of a cellular system that is deployed in the

area, where a hexagon cellular structure is assumed and the

distance between adjacent base-stations is 1000 m. There are

91 base-stations in total, and each user connects to its closest

base-station for network access. We assume that there exist

a centralized cloud and multiple MMCs, each base-station is

connected to an MMC. The service can be placed on either

one of the MMCs or on the centralized cloud. There are 536
users (taxis) in total and not all the users are active at a given

time. We assume that each active user generates some load

to the network. Among the users, 50 of them require service

from the cloud when they are active. We consider two sets

of simulations where the time-lengths of each timeslot are

respectively set to 60 s and 300 s.

The local cost of running the service at MMC m in timeslot

t is defined as

u(t,m) =
1

1− s(t,m)
smax+1

+ kr1(t,m) (11)



where s(t,m) denotes the number of users that are associated

with the base-station connected to MMC m in slot t, the

constant smax is the maximum number of users at any base-

station in any timeslot, r1(t,m) is the distance (expressed as

the number of hops) between the base-station that the user

is currently connected to and the MMC location running its

service. The first term in (11) captures the load at MMCs.

It can be explained as related to the queuing delay of pro-

cessing/transmission requests according to queuing theory, and

it is a widely used objective (such as in [8]) which pushes

the system towards a load-balanced state. The second term in

(11) captures the cost increase with the user-service distance.

The constant k is a trade-off factor, which equals to 0.2 in

the simulations. Similarly, we define the migration cost from

MMC n to MMC m as

w(t, n,m) =
1

1− s(t,n)+s(t,m)
2(smax+1)

+ kr2(t, n,m) (12)

where r2(t, n,m) is the distance between MMCs n and m.

The local and migration costs of running the service at the

centralized cloud or migrating to/from the centralized cloud

are set as a constant 2. When the user is inactive, its cost is

zero.

We use the error upper bound in the form of F (T ) = βTα,

with α = 1.1 and the value of β varies in the simulations. The

prediction error for each user in each timeslot is generated

randomly, while ensuring that the upper bound is satisfied.

The actual costs at different time of the day is shown in

Fig. 4, where we set β = 0.2. The costs are averaged over

the 50 users which potentially require cloud services, and the

fluctuation is because of different number of users that are

active during the day (thus different network load). We can

see that the result from the proposed approach (E) performs

close to the true optimal result (D), where the optimal result

is obtained by assuming that all the future costs are precisely

known. The proposed method also outperforms alternative

placement methods including never migrating the service (A),

always following the user when the user hands-over to a

different base-station (B), and always placing the service on

the centralized cloud (C). We can also see that the costs from

the always-migrate mechanism is closer to the optimum in

Fig. 4(a), compared to Fig. 4(b). This is because the above

cost definition does not consider the timeslot length1, and the

percentage of timeslots that the user hands-over to a different

base-station is smaller when the timeslot length is small.

To further investigate the impact of prediction errors and

look-ahead window size, we consider the cost when using

different window sizes and β values, as shown in Fig. 5,

where we run the simulation with 8 different random seeds

and plot the average value. It can be seen that the optimal

window size (T ∗) found from the proposed method is close

to the window size that brings the lowest cost, which implies

that the proposed method is reasonably accurate. The slight

1When the cost is averaged out by the timeslot length, then the results for
different timeslot lengths become similar, thus we do not impose averaging
in the cost definition so that we can study more diverse cases.
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Figure 4. Average actual costs at different time of a day with β = 0.2. The
time is shown in 24-hour clock. The timeslot lengths are (a) 60 s, (b) 300 s.
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Figure 5. Average actual costs with different look-ahead window sizes and
β values. The timeslot lengths are (a) 60 s, (b) 300 s.

deviation from the true optimal window size is due to the

randomness of prediction errors, and is also because the value

of T ∗ is found using the upper bounds of prediction errors

and cost difference, as discussed in Section IV. We can also

see from Fig. 5 that a large prediction error (indicated by a

large β) generally causes large deviation from the true optimal

cost, which is intuitive. An exception is when T is very small

(T = 1 or 2). We think that this is because we do not consider

the long-term effect with small T , and some random prediction

errors may trigger it actually operate closer to the optimum.

VI. CONCLUSIONS

In this paper, we have studied the dynamic service place-

ment problem for MMCs. Noting that the actual future costs

cannot be obtained precisely, we have proposed a method

that utilizes predicted future costs with a known upper bound

on the prediction error to make placement decisions that

are close to the true optimum. The method includes finding

the optimal window size to look ahead as well as finding

the optimal placement within each look-ahead window. The

service duration Tmax in this paper can also be regarded as

the maximum size of the look-ahead window, which may

be set smaller than the actual service duration in practice,

especially for services that run for a very long time. If the

service duration is unknown in practice, Tmax can also be set

as the anticipated service duration, which can be derived from

historical data of service usage. As mentioned in Section II,

although the problem formulation focuses on a single user,



it can be extended to multi-user scenarios (such as in the

simulations in Section V). We also envision that the approach

proposed in this paper can be applied to a broader range of

problems that share similarities with the service placement

problem.

APPENDIX

Proof of Proposition 1: We note that there are
⌊
Tmax

T

⌋
full

look-ahead windows of size T within timeslots from 1 to Tmax

(see Fig. 2), where �x� denotes the integral part of x. In the

last window, there are Tmax − T · ⌊Tmax

T

⌋
slots. We have

F

(
Tmax − T ·

⌊
Tmax

T

⌋)
≤ Tmax − T · ⌊Tmax

T

⌋
T

F (T ) (13)

because F (T ) is convex non-decreasing and F (0) = 0.

For the true optimal placement sequence π∗, according

to the definitions of ε(τ) and F (T ), the difference in the

predicted and actual sum-costs satisfies

Tmax∑
t=1

Dπ∗(t)−
Tmax∑
t=1

Aπ∗(t)

≤
⌊
Tmax

T

⌋
F (T ) + F

(
Tmax − T ·

⌊
Tmax

T

⌋)

≤ Tmax

T
F (T ) (14)

where the last inequality follows from (13). Similarly, for the

placement sequence πT obtained from predicted costs, we

have
Tmax∑
t=1

AπT
(t)−

Tmax∑
t=1

DπT
(t) ≤ Tmax

T
F (T ) (15)

In the following, we establish the relationship between π∗

and πT . Assume that, in (3), we neglect the migration cost

at the beginning of each look-ahead window, i.e. we consider

each window independently and there is no migration cost in

the first timeslot of each window, then we have

Tmax∑
t=1

DπT
(t) ≤

Tmax∑
t=1

Dπ∗(t)

This holds because there is no connection between different

windows, thus the optimal sequences (considering predicted

costs) obtained from (3) constitute the optimal sequence for all

timeslots [1, Tmax]. Now we relax the assumption and consider

the existence of migration cost in the first slot of each window.

Note that we cannot have more than
⌊
Tmax

T

⌋
+ 1 windows and

the first timeslot t = 1 does not have migration cost. Thus,

Tmax∑
t=1

DπT
(t) ≤

Tmax∑
t=1

Dπ∗(t) +
Tmax

T
δ (16)

The bound holds because no matter where the service is placed

in slot t0 − 1, the migration cost in slot t0 cannot exceed δ.

By summing up (14) and (16), we get

Tmax∑
t=1

DπT
(t)−

Tmax∑
t=1

Aπ∗(t) ≤ Tmax

T
(F (T ) + δ) (17)

Summing up (15) with (17) and dividing both sides by Tmax

yields Proposition 1.
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