
1

Service Placement and Request Scheduling for
Data-intensive Applications in Edge Clouds

Vajiheh Farhadi, Fidan Mehmeti, Ting He, Senior Member, IEEE, Tom La Porta, Fellow, IEEE, Hana
Khamfroush, Shiqiang Wang, Kevin S Chan, Senior Member, IEEE, and Konstantinos Poularakis

Abstract—Mobile edge computing provides the opportunity for
wireless users to exploit the power of cloud computing without a
large communication delay. To serve data-intensive applications
(e.g., video analytics, machine learning tasks) from the edge, we
need, in addition to computation resources, storage resources
for storing server code and data as well as network bandwidth
for receiving user-provided data. Moreover, due to time-varying
demands, the code and data placement needs to be adjusted over
time, which raises concerns of system stability and operation
cost. In this paper, we address these issues by proposing a
two-time-scale framework that jointly optimizes service (code
and data) placement and request scheduling, while considering
storage, communication, computation, and budget constraints.
First, by analyzing the hardness of various cases, we completely
characterize the complexity of our problem. Next, we develop a
polynomial-time service placement algorithm by formulating our
problem as a set function optimization, which attains a constant-
factor approximation under certain conditions. Furthermore,
we develop a polynomial-time request scheduling algorithm
by computing the maximum flow in a carefully constructed
auxiliary graph, which satisfies hard resource constraints and
is provably optimal in the special case where requests have
homogeneous resource demands. Extensive synthetic and trace-
driven simulations show that the proposed algorithms achieve
90% of the optimal performance.

Index Terms—Mobile edge computing, service placement,
workload scheduling, complexity analysis, algorithm design.

I. INTRODUCTION

The emerging technology of mobile edge computing [3]
enables wireless users to run resource-intensive and delay-
sensitive applications from the edge of mobile networks, at
small server clusters referred to as edge clouds [4], cloudlets
[5], fog [6], follow me cloud [7], or micro clouds [8]. Mo-
bile applications are increasingly resource-demanding as they
address use cases based on big data and machine learning
problems. As users access these resource-hungry applications
via bandwidth-limited wireless links, how to optimally allocate
the limited resources at edge clouds to competing demands

V. Farhadi, F. Mehmeti, T. He, and T. La Porta are with Pennsylvania State University,
University Park, PA 16802 USA (email: {vuf8, fzm82, tzh58, tlp}@cse.psu.edu).
H. Khamfroush is with University of Kentucky, Lexington, KY 40506 USA (email:
khamfroush@cs.uky.edu).
S. Wang is with IBM T. J. Watson Center, Yorktown Heights, NY 10598 USA (email:
wangshiq@us.ibm.com).
K. Chan is with Army Research Laboratory, Adelphi, MD 20783 USA (email:
kevin.s.chan.civ@mail.mil).
K. Poularakis is with Yale University, New Haven, CT 06520 USA (email:
kpoularakis@gmail.com).

This research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

Aspects of this work have been published at IEEE INFOCOM’19 [1] and IEEE
ICDCS’18 [2].

poses a difficult but intriguing research question, which has
attracted tremendous interest in the research community.

Intuitively, one should strive to serve every user request
from the nearest edge cloud. While this intuition has been
supported by empirical studies [9], maintaining service locality
for mobile users poses a significant challenge, including how
to migrate services [10] and when/where to migrate services
[11], [12], [4], [13], in order to attain a desirable tradeoff
between the quality of service and the migration cost. When
some of the edge clouds are heavily loaded, it has been shown
that users can benefit from getting served by non-nearest edge
clouds in the same metropolitan area network [14], [15], [16].
Meanwhile, there have been standardization initiatives [17],
[18], [19] to create an open edge computing environment, such
that edge clouds within the same geographical region form a
shared resource pool, which can then be distributed among
contending user requests. The existence of a shared resource
pool creates the need for request scheduling, i.e., on which
edge server, if any, to schedule each user request such that a
given objective can be optimized [20], [21]. Existing works
typically assume that serving each request needs a dedicated
share of resources including CPU cycles, memory space, and
network bandwidth, and that the total resource consumption at
a server is the summation of resource demands scheduled to it.

While the above assumption holds for applications that do
not need notable amounts of data on the server, it fails to
capture the requirements of data-intensive applications. In
such applications (e.g., video analytics, distributed machine
learning), serving a request needs both a dedicated amount
of resources and a significant amount of data at the server
(e.g., object database, trained machine learning models). The
storage resource for storing such data fundamentally differs
from the other types of resources in that it is amortized over
all requests against the same copy of data. Note that many
data-intensive applications also require a nontrivial amount
of user-provided data (e.g., images captured by the user),
although the resources for collecting/storing such data are
typically dedicated to each request. Hence, in addition to the
conventional resources of CPU cycles and memory, resource
allocation algorithms for data-intensive applications should
also consider the storage resources for storing server data and
the network bandwidth for receiving user-provided data.

Jointly allocating dedicated and amortized resources induces
a decomposition of the resource allocation problem into two
subproblems [2]: (i) service placement, which decides how
to replicate and place each service (including server code and
data) within the storage capacity of each edge cloud, and (ii)
request scheduling, which decides whether/where to schedule
each request within the communication and the computation
capacities of edge clouds, as well as other constraints (e.g.,

2

maximum delay). The two subproblems are coupled by the
fact that the edge cloud scheduled to process a request must
have a replica of the requested service. The existing solution
[2] makes both decisions at the same time, and thus may adjust
service placement as frequently as the scheduling of requests,
risking a high operation cost and even system instability.

In this work, we jointly consider service placement and
request scheduling for data-intensive applications. In contrast
to [2], we separate the time scales of the two decisions: to pre-
vent system instability, service placement happens at a larger
scale (frames); to limit scheduling delay, request scheduling
happens at a smaller scale (slots). Frame length is tuned
based on dynamics of user mobility and user request patterns,
while slot length is tuned based on the desired scheduling
delay and expected execution time of jobs. Furthermore, to
control the operation cost due to service replication/migration,
we impose a budget constraint for service placement. For
the request scheduling subproblem, we separately consider a
version with soft constraints where the resource capacities
are only enforced on the average, and a version with hard
constraints where the resource capacities are strictly enforced.

A. Related Work
While early works on mobile edge computing assumed that

every user can only access its closest edge server, studies
in [14], [15], [16] have shown that users can benefit from
accessing services on edge servers that are multiple hops away.
Allowing the use of non-local edge servers created the problem
of edge workload scheduling, which has attracted significant
attention in recent years. Existing works have used various
objectives (e.g., minimizing the cost [20] or the makespan
[21]), workload models (e.g., fluid model [20], tasks [21],
multi-component applications [22]), and edge cloud architec-
tures (e.g., flat versus hierarchical [23]). These works typically
assume that each workload requires its own resource for execu-
tion, i.e., the resources are dedicated. Here “dedicated” means
that each unit of resource can only be used by one workload,
e.g., two workloads can share a processor but each CPU cycle
is only used by one workload. While this assumption usually
holds for computation and communication resources (assum-
ing unicast), it can be too restrictive for storage resources.
Note that although [21] allows each service replica to serve
multiple jobs, it does not optimize the service placement.

Meanwhile, works on content placement in cache networks
have considered storage resources that can be shared among
requests for the same content. Various solutions have been
developed to place contents under cache capacity constraints
based on predicted content popularities [24], [25] or request
history [26]. Variations of the problem have been studied, e.g.,
a cache can serve requests from other caches [27], or the
content placement and the routing of requests can be jointly
optimized [28]. However, the content placement problem only
considers the storage resource (i.e., cache space), while the
other types of resources (e.g., CPU, bandwidth) are ignored.
Note that although [26] was motivated by “hosting services”,
the problem was actually about caching. In the spirit of content
placement, [29] studied the placement of service replicas to
minimize the latency. However, request scheduling was not
considered in this work.

Only a few works have considered multiple types of re-
sources (e.g., storage, computation, communication). In [30],

[31], mixed integer linear programs (MILPs) were formulated
for placing content or service functions, and activating storage,
computation, and communication resources in a distributed
cloud network. However, no formal complexity analysis or
algorithm with performance guarantees was provided. In [32],
a dynamic service placement and workload scheduling frame-
work was proposed to jointly allocate storage and computation
resources, but it assumes that requests can be queued indef-
initely and does not consider bandwidth constraints. In [33],
an algorithm with performance guarantee was developed for
placing virtual network functions (VNFs) in distributed cloud
networks and routing service flows among the placed VNFs
under chaining constraints. However, each unit of resource
(CPU, memory, bandwidth) is dedicated to a flow (i.e., not
amortized), and there is no storage capacity constraint on the
VNF placement. In [34], an optimal algorithm was developed
for joint resource placement and assignment in distributed
networks, where a “resource” means a service, and a “type
of resources” means a type of services. The solution actually
assumed that each placed service can only serve one request
(i.e., dedicated). In [35], the authors consider the problem of
resource provisioning and replica placement in cloud CDNs,
where the objective is to minimize the cost, whereas our
objective is to maximize the expected number of served
requests per time slot. Furthermore, all the requests in [35] are
of equal size and equal computation requirement, as opposed
to our setup where these parameters can be different for
different requests.

The work closest to ours is [36], which considered joint
service placement and request routing in multi-cell edge cloud
systems. However, it assumed that all the resources consumed
by a request (bandwidth, computation, storage) are associated
with a single edge cloud, as opposed to our setup where
the bandwidth consumption is with the edge cloud directly
covering the user, and the other resources are with the (pos-
sibly different) edge cloud selected to process the request. As
explained in Section III, this leads to critical differences in the
complexity of the underlying optimization problem.

B. Summary of Contributions

The main contributions of this paper are as follows:
1) We propose a two-time-scale framework for joint service

placement and request scheduling, and formulate the under-
lying optimization as a mixed integer linear program (MILP)
that jointly considers dedicated and amortized resources.

2) By examining the complexity of our problem in carefully
selected special cases, we not only prove that both the service
placement subproblem and the request scheduling subproblem
(under hard constraints) are generally NP-hard, but also
determine all the cases that are polynomial-time solvable and
identify the root cause of the hardness.

3) By reformulating the service placement subproblem as
a set function optimization, we develop a greedy service
placement algorithm based on shadow request scheduling
computed by a linear program (LP). By proving that our
objective function is monotone sub-modular under certain
conditions and our constraints form a p-independence system,
we derive a constant-factor approximation guarantee for the
proposed algorithm.

3

Edge
clouds

n1 n2 n3

l1
l2

l3

All
services

Internet

Remote
 cloud

Backhaul network

n4

Service
requests

Replicas

Figure 1. System model.

4) We show that in the special case where all the requests
demand the same amount of communication/computation re-
sources, the request scheduling subproblem under hard con-
straints can be converted to a maximum flow problem in
a carefully constructed auxiliary graph, based on which we
develop a polynomial-time algorithm that is provably optimal.

5) We show that both our formulation and our service
placement algorithm can be extended to exploit request
prediction over multiple frames.

6) We perform extensive performance evaluations via syn-
thetic and trace-driven simulations. The evaluations show that:
(i) the key performance differentiator is the service placement
algorithm (i.e., a simplistic algorithm suffices for request
scheduling), (ii) the proposed service placement algorithm
consistently outperforms benchmarks and achieves over 90%
of the optimal performance, even when the approximation
guarantee does not hold, and (iii) the performance can be
notably improved by jointly planning service placements for
multiple frames, while most of the improvement is already
achieved by considering two frames at a time.

Roadmap. Section II formulates our problem within a
single frame, for which Section III analyzes the complexity,
and Section IV presents our algorithms and their performance
analysis. Section V extends our solution to multiple
frames. Section VI evaluates the proposed solution against
benchmarks. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

A. System Model
As illustrated in Fig. 1, we consider a wireless edge network

consisting of a set N of edge clouds, each accessible via a
wireless access point or base station covering a specified area.
We assume that all the edge clouds are connected by back-
haul links that can be used for inter-cloud communications.
There is a set L of services, of which a subset can be hosted
by each edge cloud at a given point in time, subject to storage
capacity constraints.

Services may be migrated/replicated between edge clouds,
and/or from a remote cloud to an edge cloud. To access
a certain service, a user will first send a request for this
service to its local edge cloud, which may then route the
request to another edge cloud for processing. Serving a request
for service l submitted to edge cloud n at edge cloud m
(possibly m 6= n) consumes communication resources for
transferring input/output between the user and edge cloud n,
and computation resources at edge cloud m. Additionally,

.

Sl
o

t
1

Sl
o

t
2

Sl
o

t
T 1

Sl
o

t
1

Sl
o

t
2

Sl
o

t
1

Sl
o

t
2

Frame 1 Frame 2 Frame 3

Per-slot request
scheduling

Per-frame service
placement

Sl
o

t
T 2

Sl
o

t
T 3

. . .

Figure 2. Time scales of service placement and request scheduling.

edge cloud m must have a replica of service l. If m 6= n,
communication resources are also consumed for transferring
input/output between edge cloud n and edge cloud m, but
as back-haul links usually have much higher bandwidth than
access links, we will focus on the communication resources
consumed at the access link in edge cloud n.

To ensure system stability while providing timely services,
we adopt a two-time-scale framework as illustrated in Fig. 2,
where service placement is performed once per frame at the
beginning of the frame, and request scheduling is performed
once per slot at the beginning of the slot. We discuss how
to tune the values of frame and slot length in Section VI.
Furthermore, we impose a budget B to control the cost of mi-
grating/replicating services in each frame. We refer to a request
for service l that is submitted to edge cloud n as a “type-(l, n)”
request. The average rate of type-(l, n) requests in frame f
is denoted by λfln (unit: requests/slot), which is assumed to
be predictable based on the request history [37], [38], [39].
The actual number of type-(l, n) requests in slot t is denoted
by λtln, which is only known at the beginning of slot1 t. We
evaluate the impact of predicting the request rate in Section VI.

Each edge cloud has limited communication, computation,
and storage capacities. The capacities of different edge clouds
may be different. Likewise the size of each service replica
and the communication/computation resources required by
each request may be different. There may be other constraints
(e.g., latency, security) on whether a given edge cloud m is
permitted to serve type-(l, n) requests, and we model that
by an indicator alnm (‘0’: not permitted; ‘1’: permitted). The
main notations used in this paper are described in Table I.

In the following subsection, we provide the mathematical
formulation of the optimization problems.

B. Underlying Optimization Problems

We now formulate the optimization problems for service
placement and request scheduling formally. The service place-
ment problem is solved once per frame; once the placement
is set, the request scheduling problem is solved once per slot
within the frame. Variables related to the frame are denoted
with f and those related to a slot are denoted with t.

For the scheduling problem we consider both soft and
hard constraints. For soft constraints we use probabilistic
scheduling knowing that in some cases requests will not be
accommodated within their slot but must be served in a
subsequent slot. For hard constraints we guarantee that all
scheduled requests are served within the next slot.

1This is feasible by considering all the requests received during slot t− 1
as being “submitted” in slot t.

4

Table I
TABLE OF NOTATIONS

Notation meaning
N set of edge clouds

N+ = N ∪ {n0} set of edge clouds plus the remote cloud n0
L set of all possible services
Rn storage capacity of edge cloud n
Wn processing capacity of edge cloud n (per slot)
Kn communication capacity of edge cloud n (per slot)
rl size per replica of service l
κl size of input/output data per request for service l
ωl computation requirement per request for service l

alnm ∈ {0, 1} indicates whether edge cloud m is permitted to
serve type-(l, n) requests

λtln, λ
f
ln actual number of type-(l, n) requests in slot t and

average number of type-(l, n) requests per slot in
frame f

cln′n cost of replicating or migrating service l from
cloud n′ to edge cloud n, where cloud n′ can be
either a remote cloud or an edge cloud

B maximum cost for service placement in one frame
xfln ∈ {0, 1} placement variable for frame f , 1 if service l is

placed on edge cloud n and 0 otherwise
ytlnm, y

f
lnm∈[0, 1] scheduling variable representing the probability

that a type-(l, n) request is scheduled to edge
cloud m in slot t (under soft resource constraints)
or frame f

ztlnm scheduling variable representing the number of
type-(l, n) requests that are scheduled to edge
cloud m in slot t (under hard resource constraints)

1) Service Placement with Shadow Scheduling: To evaluate
the service placement cost, we assume that the services always
exist on the remote cloud n0, i.e., xfln0

≡ 1, and deleting a
service replica from an edge cloud incurs no cost. Furthermore,
we always replicate a service from the nearest location hosting
the service. That is, the cost of placing service l at edge cloud
n in frame f is cfln = minn′∈N+:xf−1

ln′ =1 cln′n, where clnn ≡ 0.
The optimization problem for service placement can be for-

mulated as (1): Objective (1a) maximizes the expected number
of requests served per slot. Constraint (1b) guarantees that
the scheduling variables are valid. Constraint (1c) ensures that
each edge cloud n does not store more than its storage capacity
Rn. Constraint (1d) guarantees that the total communication
demand on an edge cloud n stays within its communication
capacity Kn on the average. Constraint (1e) ensures that the
total computation demand scheduled to an edge cloud m is
within its computation capacity Wm on the average. Constraint
(1f) states that an edge cloud can only serve a request if
it contains the requested service and is a candidate server.
Constraint (1g) ensures that the total service placement cost is
within the budget. Constraint (1h) specifies valid ranges of the
decision variables. In the sequel, and especially in Section III,
we will refer to constraint (1c) as R-constraint, (1d) as K-
constraint, (1e) as W -constraint, and (1g) as B-constraint.

At the beginning of each frame f , we solve (1) with the
predicted request rates2 λln = λfln and the placement costs
cln = cfln for the service placement xfln and the corresponding
request scheduling yflnm. Then only xfln will be used (to place
services). Although the scheduling variable yflnm will not be
used for actual scheduling, it is needed to evaluate the served
request rate (1a) under a given service placement. For this
reason, we refer to yflnm as the shadow scheduling variable.

2Recall that the superscript f indicates parameters/variables corresponding
to frame f , whereas the superscript t parameters corresponding to slot t.

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (1a)

s.t.
∑
m∈N

ylnm ≤ 1, ∀l ∈ L, n ∈ N, (1b)

∑
l∈L

xlmrl ≤ Rm, ∀m ∈ N, (1c)

∑
l∈L

λlnκl
∑
m∈N

ylnm ≤ Kn, ∀n ∈ N, (1d)

∑
l∈L

ωl
∑
n∈N

λlnylnm ≤Wm, ∀m ∈ N, (1e)

ylnm ≤ alnmxlm, ∀l ∈ L, n ∈ N,m ∈ N, (1f)∑
l∈L

∑
n∈N

xlncln ≤ B, (1g)

xln ∈ {0, 1}, ylnm ≥ 0, ∀l ∈ L, n ∈ N,m ∈ N. (1h)

2) Request Scheduling under Soft Resource Constraints:
Depending on whether requests submitted in a slot can be
postponed till a later slot, the optimization problem for request
scheduling differs slightly. If the requests can be postponed,
then the average resource constraints (1d,1e) suffice, as tem-
porary bursts in demands can be absorbed over time. In
this case, at the beginning of each slot t within frame f ,
we solve (1) with the current demands λln = λtln and the
previously determined service placement xlm = xflm for the
scheduling variable ytlnm, which is then used to schedule
requests probabilistically in this slot.

3) Request Scheduling under Hard Resource Constraints:
If the requests cannot be postponed, e.g., for services with
hard deadlines, then we must impose hard resource constraints
such that all the requests scheduled to the edge clouds in
slot t can be finished within the same slot (the unscheduled
requests will be routed to the remote cloud for processing).
The corresponding optimization problem can be formulated
as (2) (N: natural numbers):

max
∑
l∈L

∑
n∈N

∑
m∈N

zlnm (2a)

s.t.
∑
m∈N

zlnm ≤ λln, ∀l ∈ L, n ∈ N, (2b)

∑
l∈L

κl
∑
m∈N

zlnm ≤ Kn, ∀n ∈ N, (2c)

∑
l∈L

ωl
∑
n∈N

zlnm ≤Wm, ∀m ∈ N, (2d)

zlnm ≤ alnmxlmλln, ∀l ∈ L, n ∈ N,m ∈ N, (2e)
zlnm ∈ N, ∀l ∈ L, n ∈ N,m ∈ N. (2f)

Optimization (2) is similar to (1) under a fixed feasible
service placement xlm, after replacing λlnylnm by a new
variable zlnm. The only difference is that we now impose
an integer constraint (2f), which means that instead of only
specifying the expected number of type-(l, n) requests to
schedule to edge cloud m (i.e., λlnylnm), we specify the exact
number (i.e., zlnm). At the beginning of each slot t, we solve
(2) with the demand λln = λtln and the service placement
xlm = xflm (f : the current frame) for the scheduling variable
ztlnm, which is used to schedule requests deterministically in
this slot. The deterministic scheduling ensures that instead of
satisfying the communication/computation capacities on the
average as in (1d,1e), we now satisfy them strictly, which
ensures that all the scheduled requests can finish within the
slot. Note also that since we solve optimization problem (2)

5

under a given feasible service placement xl,m, constraints (1c)
and (1g) are lifted as the service placement already satisfies
those two constraints.

Discussion: At each decision epoch of service placement,
we only know the average request rates over the next frame,
and thus cannot impose the hard resource constraints. There-
fore, soft constraints are assumed for the shadow scheduling
problem to evaluate the objective (1a) under a given service
placement.

III. COMPLEXITY ANALYSIS

The service placement problem (1) is a mixed integer linear
program (MILP), and the request scheduling problem is a
linear program (LP) under soft constraints and an integer
linear program (ILP) under hard constraints. While LP can
always be solved in polynomial time [40], MILP and ILP
can both be NP-hard [41]. We thus need to understand the
complexity of our instances of the MILP/ILP problem.

A. Complexity of Service Placement
The service placement problem (1) is related to, but different

from several known problems in the literature, including the
knapsack problem, the data placement problem (DPP) [42],
the generalized assignment problem (GAP) [43], the dis-
tributed caching problem (DCP) [44]. These problems can all
be seen as special cases of the separable assignment problem
(SAP) [44]. SAP considers packing items into bins under
general packing constraints that can model both dedicated
and non-dedicated resources. For example, if items represent
requests and bins represent edge clouds, then SAP can model
service placement where requests for the same service can
share a service replica, while each consuming a dedicated
share of computation resource and bandwidth. However, SAP
requires all the resources consumed for serving a request to
be with a single edge cloud as the packing constraints for
different bins (each representing an edge cloud) are imposed
independently. This requirement is satisfied by [36], but not
our problem.

We analyze the complexity of (1) by considering important
special cases. In this optimization problem, there are four types
of resource constraints: the R-constraint (1c), the K-constraint
(1d), the W -constraint (1e), and the B-constraint (1g).

1) Having B-constraint Only: Consider the special case
where the edge clouds and the services are homogeneous
(although having B-constraint only gives the same formulation
for homogeneous and heterogeneous scenarios), and R, W
and K are large enough that they are unconstrained, i.e.,
R ≥ |L| (i.e., every edge cloud can store all the services),
W ≥

∑
n∈N

∑
l∈L λln and K ≥ maxn∈N

∑
l∈L λln. Then,

the MILP in (1) changes to:
max

∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (3a)

s.t. (1b), (1f), (1g), (3b)
xln ∈ {0, 1}, ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (3c)

Theorem 1. The B-constraint alone makes the problem NP-
hard.

Proof. We prove the NP-hardness of (3) by a reduction from
the 0-1 knapsack problem: given a set of k items, each with
value vi and weight wi (i = 1, ..., k), select a subset S ′ such

that
∑
i∈S′ vi is maximized while

∑
i∈S′ wi ≤ Ω, for a

given size Ω of the knapsack. The problem is well-known to
be NP-hard [45].

Construction: For each item i, construct a service li with
total demands

∑
n∈N λlin = vi and the placement cost clin =

wi,∀n ∈ N . Let B = Ω and almn ≡ 1.
Claim: The optimal service placement of (3) gives the

optimal solution to a knapsack problem.
Proof of the claim: The optimal service placement places

at most one replica among all the edge clouds. Therefore,
the scheduling decision is to simply schedule all the requests
for service li to edge cloud n, if ∃n ∈ N with xlin = 1;
or, not schedule any of these requests if xlin = 0,∀n ∈ N .
Let S ′ be the set of indices of all the placed services under
the optimal solution to (3). Then, the expected number of
served requests equals

∑
i∈S′ vi, and

∑
i∈S′ wi ≤ B = Ω.

Selecting all the items corresponding to the services placed
by the optimal solution of (3) provides the optimal solution to
the knapsack problem.

Remark: Proving NP-hardness for the special case shows
that the problem is NP-hard in the general case as well.

2) Having R-constraint Only: Here we consider the special
case in which the edge clouds and the services are homoge-
neous, and W , K and B are large enough to be unconstrained,
i.e., W ≥

∑
n∈N

∑
l∈L λln, K ≥ maxn∈N

∑
l∈L λln, and

B ≥
∑
l∈L
∑
n∈N cln. In this case, the MILP in (1) becomes:

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (4a)

s.t. (1b), (1f), (3c), (4b)∑
l∈L

xln ≤ R, ∀n ∈ N. (4c)

Theorem 2. The R-constraint alone makes the problem NP-
hard.

Proof. We prove the hardness by showing that the optimiza-
tion (4) can be reduced to the 2-Disjoint Set Cover (2DSC)
problem, which is proved to be NP-complete [46]. Given a
bipartite graph G = (A,B, E), with edges E between two
disjoint vertex sets A and B, 2DSC determines whether there
exist two disjoint sets B1,B2 ⊂ B, such that |B1|+ |B2| = |B|
and A = ∪b∈B1

N (b) = ∪b∈B2
N (b), where N (b) (∀b ∈ B) is

the set of neighbors of node b.
Construction: Denote A by {a1, ..., aI} and B by

{b1, ..., bJ}. WLOG, assume I ≤ J . Construct J edge clouds
N = {n1, ..., nJ}, each with R = 1. Construct two services
L = {l1, l2}, each with a unit of demand in the first I edge
clouds, i.e., λlni

= 1,∀i ∈ {i, ..., I}, l ∈ {l1, l2}. Note that
λlni = 0,∀i > I . For each i ∈ {1, ..., I} and j ∈ {1, ..., J},
we allow edge cloud nj to serve requests of type (l1, ni) and
(l2, ni), if and only if (ai, bj) ∈ E , i.e., alkninj

= 1, k =
{1, 2}, if (ai, bj) ∈ E , otherwise alkninj is zero.

Claim: 2DSC is feasible if and only if the optimal value
of (4) for the above instance is 2I.

Proof of the claim: If 2DSC is feasible, then storing
l1 at edge clouds corresponding to B1 and l2 at the
remaining edge clouds will serve all the requests. If there
is a service placement that serves all the requests, then
B1 = {bi ∈ B : ni stores l1}, and B2 = B\B2 is a feasible
solution to 2DSC.

6

Theorem 1
(NP-hard)

Theorem 2
(NP-hard)

Lemma 1
(solvable)

No R-
constraints

No B-
constraints

all other cases

Figure 3. Complexity of service placement (1).

3) Removing R- and B-constraints:

Lemma 1. Removing R- and B-constraints makes the problem
polynomial-time solvable.

Proof. If Rn (∀n ∈ N) and B are both large enough,
i.e., minn∈N Rn ≥ |L| (every edge cloud can store all
the services) and B ≥

∑
l∈L
∑
n∈N cln, the optimal

solution to xln is trivially xln ≡ 1 (∀l ∈ L and n ∈ N).
Under this service placement, constraints (1c,1g) in (1)
disappear, and constraint (1f) changes to ylnm ≤ alnm
(∀l ∈ L, n ∈ N,m ∈ N). Removing the constraints (1c,1g)
reduces the original problem (1) into a linear program (LP),
which is polynomial-time solvable [40].

4) Summary of All Cases: Together, Theorems 1, 2 and
Lemma 1 cover all the cases. By Theorem 1, the solvable
instances must be cases without the B-constraint. By Theo-
rem 2, the solvable instances must also be cases without the
R-constraint. On the other hand, Lemma 1 shows that all the
cases without either of B- or R-constraint are polynomial-time
solvable. Therefore, the colored region in Fig. 3 captures all
the solvable cases of (1).

B. Complexity of Request Scheduling

Under soft resource constraints, the request scheduling
problem ((1) with given xlm) is an LP and hence polynomial-
time solvable. Under hard resource constraints, however, the
problem has a different complexity, as analyzed below.

1) General Case:

Theorem 3. Under hard resource constraints, the request
scheduling problem (2) is generally NP-hard.

Proof. We reduce the partition problem to our problem (2).
Given a set of positive integers A = {t1, . . . , tm}, the partition
problem is the task of deciding whether A can be partitioned
into two subsets A1 and A2, such that

∑
ti∈A1

ti =
∑
tj∈A2

tj .
This problem is known to be NP-complete.

We construct an equivalent instance of the request schedul-
ing problem as follows. We construct two edge clouds n1
and n2, each having unlimited communication capacity, un-
limited storage capacity, and a computation capacity of W =
1
2

∑
ti∈A ti. For each ti ∈ A, we construct a request for a

service li with computation requirement ωli = ti, submitted
to edge cloud n1. Suppose that each edge cloud hosts all the

homogeneous
requests

heterogeneous
requests

Theorem 4 (solvable)Theorem 3 (NP-hard)

Figure 4. Complexity of request scheduling under hard constraints (2).

services l1, . . . , lm, and is allowed to serve any request. For
this instance, (2) reduces to ([m] , {1, . . . ,m}):

max

m∑
i=1

2∑
j=1

zlin1nj
(5a)

s.t.
2∑
j=1

zlin1nj
≤ 1, ∀i ∈ [m], (5b)

m∑
i=1

tizlin1nj
≤W, ∀j ∈ [2], (5c)

zlin1nj ∈ {0, 1}, ∀i ∈ [m], j ∈ [2]. (5d)

Since W = 1
2

∑
ti∈A ti, if A cannot be partitioned into two

subsets of equal sum, then the sum for one of the subsets must
be greater than W . This implies that we cannot serve every
request while satisfying constraint (5c), and hence the optimal
value of (5a) must be smaller than m. If A can be partitioned
into subsets A1 and A2 of equal sum, then we must have∑
ti∈A1

ti =
∑
ti∈A2

ti = W . Then setting zlin1nj = 1 if and
only if ti ∈ Aj (j = 1, 2) gives a feasible solution to (5) with
an objective value of m. Therefore, the partition problem has
a solution if and only if all the requests can be served in the
above instance of the request scheduling problem.

Remark: The proof of Theorem 3 holds even if we require
the edge clouds to be homogeneous, i.e., Kn ≡ K and Wn ≡
W (∀n ∈ N). Thus, the request scheduling problem under
hard resource constraints is NP-hard as long as the requests
have heterogeneous resource demands.

2) Homogeneous Special Case: But what if the requests
are homogeneous (i.e., κl ≡ κ, ωl ≡ ω)? We show that the
problem is no longer NP-hard in this case.

Theorem 4. In the special case when all the requests
have identical communication and computation demands, the
scheduling problem (2) is polynomial-time solvable.

We prove this theorem by developing a polynomial-time
optimal solution in Section IV-C1.

3) Summary of All Cases: Together, Theorems 3 and 4
characterize the complexity of the request scheduling problem
under hard constraints in all cases, as illustrated in Fig. 4.

IV. ALGORITHMS

We now develop efficient algorithms for the service place-
ment problem and the request scheduling problem separately.

A. Approximation Algorithm for Service Placement
Due to the NP-hardness of finding the optimal service

placement in general (Section III-A), we seek efficient service
placement algorithms with approximation guarantees.

7

1) Conversion to Set Function Optimization: We start by
reformulating our problem as a set function optimization
problem. Let S ⊆ L × N denote the set of selected single-
service placements, where (l, n) ∈ S means to place a replica
of service l at edge cloud n. Let Ω(S) denote the optimal
objective value of (1) for a fixed x given by xln = 1 if
and only if (l, n) ∈ S. This can be calculated by solving the
following (shadow) request scheduling problem, where 1l,m

is the indicator function:

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (6a)

s.t. (1b), (1d), (1e), (6b)
ylnm ≤ alnm1(l,m)∈S , ∀l ∈ L, n ∈ N,m ∈ N, (6c)

ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (6d)

After that, we can rewrite the service placement problem as:

max Ω(S) (7a)

s.t.
∑

l:(l,n)∈S
rl ≤ Rn, ∀n ∈ N, (7b)

∑
(l,n)∈S

cln ≤ B, (7c)

S ⊆ L×N, (7d)

where Sn , L × {n} is the set of all possible single-service
placements at edge cloud n.

First, we prove that, under certain conditions, the objective
function of (7) has a desirable property.

Definition 1 ([47]). A set function f : 2x → R is monotone
increasing if ∀ S1 ⊆ S2 ⊆ x , f(S1) ≤ f(S2). Moreover, the
function f(.) is sub-modular if ∀S1 ⊆ S2 ⊆ x and e ∈ x\S2,
f({e} ∪ S1)− f(S1) ≥ f({e} ∪ S2)− f(S2).

The significance of these properties is that if our objective
function is monotone and sub-modular, then it is known [47]
that the generic greedy algorithm can achieve a guaranteed
approximation to the optimal solution.

Lemma 2. The objective function Ω(S) in (7a) is a monotone
sub-modular function for all feasible S if κl ≡ κ (∀l ∈ L),
and

1) bRnrlc ≤ 1 for all n ∈ N and l ∈ L , or
2) Wm ≥

∑
l∈L ωl

∑
n∈N λln for all m ∈ N .

Proof. It is easy to see that Ω(S) is monotone, as expanding S
will relax the constraint (6c), hence enlarge the solution space
for (6) and increase its optimal objective value.

To show that Ω(S) is sub-modular, we need to show that
for any sets S1, S2 ⊆ L×N and any (l1, n1) ∈ (L×N)\S2,
such that S1 ⊆ S2 and S2∪{(l1, n1)} is feasible, the following
relationship holds

Ω(S1 ∪ {(l1, n1)})− Ω(S1) ≥ Ω(S2 ∪ {(l1, n1)})− Ω(S2). (8)

Suppose that y(0) and y(2) are the optimal scheduling
solutions according to (6) under service placements S1 and
S2, respectively. Moreover, suppose that y(1) and y(3) are
the optimal scheduling solutions under service placements
S1 ∪ {(l1, n1)} and S2 ∪ {(l1, n1)}, respectively, that mini-
mize the request rate scheduled to the replica (l1, n1), i.e.,
minimizing

∑
n∈N λl1nyl1nn1

. We can then decompose the
objective function as:

Ω(S1) =
∑

(l,m)∈S1

∑
n∈N

λlny
(0)
lnm, (9)

Ω(S1 ∪ {(l1, n1)}) =
∑

(l,m)∈S1

∑
n∈N

λlny
(1)
lnm+

∑
n∈N

λl1ny
(1)
l1nn1

, (10)

Ω(S2) =
∑

(l,m)∈S2

∑
n∈N

λlny
(2)
lnm, (11)

Ω(S2 ∪ {(l1, n1)}) =
∑

(l,m)∈S2

∑
n∈N

λlny
(3)
lnm +

∑
n∈N

λl1ny
(3)
l1nn1

. (12)

Due to this decomposition, we have

LHS of (8) =
∑

(l,m)∈S1

∑
n∈N

λln(y
(1)
lnm− y

(0)
lnm) +

∑
n∈N

λl1ny
(1)
l1nn1

, (13)

RHS of (8) =
∑

(l,m)∈S2

∑
n∈N

λln(y
(3)
lnm− y

(2)
lnm) +

∑
n∈N

λl1ny
(3)
l1nn1

. (14)

The first term in (13) is the difference in the request rate served
by replicas in S1 after/before placing the replica (l1, n1).
Under condition (1) or (2) in the lemma, there is no contention
of computation resources between replicas, and hence replicas
in S1 can still process requests scheduled to them under
y(0). Meanwhile, as the communication demands κl are the
same for all types of requests, dropping requests originally
scheduled to S1 to admit requests to be scheduled to (l1, n1)
will not improve the objective value of (6). Thus, the first
term in (13) is zero. Similarly, the first term in (14) is also
zero. The second term in (13,14) is the minimum request rate
served by the replica (l1, n1) under an optimal scheduling, in
the presence of replicas S1 and S2, respectively. Again, as
there is no computation resource contention between replicas,
requests that used to be served by replicas in S1 under
service placement S1 ∪ {(l1, n1)} can still be served there
after adding replicas in S2 \ S1, but these added replicas may
offload some requests that used to be served by the replica
(l1, n1). Therefore,

∑
n∈N λl1ny

(1)
l1nn1

≥
∑
n∈N λl1ny

(3)
l1nn1

.
This proves (8) and hence the sub-modularity of Ω(S).

The constraints of (7) also have a desirable property.

Definition 2 ([48]). Let X be a universe of elements. Consider
a collection I ⊆ 2X of subsets of X . (X, I) is called an
independence system if: (a) ∅ ∈ I, and (b) if Z ∈ I and
Y ⊆ Z, then Y ∈ I as well. The subsets in I are called
independent; for any set S of elements, an inclusion-wise
maximal subset T of S that is in I is called a basis of S.

Definition 3 ([48]). Given an independence system (X, I)
and a subset S ⊆ X , the rank r(S) is defined as the
cardinality of the largest basis of S, and the lower rank ρ(S)
is the cardinality of the smallest basis of S. The independence
system is called a p-independence system (or a p-system) if
maxS⊆X

r(S)
ρ(S) ≤ p.

Lemma 3. The constraints (7b)-(7d) form a p-independence
system for p=

⌈
max cln

mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. By Definition 1, (L × N, I), where I ⊆ 2L×N is a
set of all feasible solutions to (7) is an independent system,
as S = ∅ is a feasible service placement, and the subset of
any feasible service placement remains feasible. Consider any
S ⊆ L×N and any two maximal feasible service placements
S1, S2 ⊆ S1. To add a pair (l, n) ∈ S2\S1 to S1, we need to

8

Algorithm 1: Greedy Service Placement based on Shadow
Scheduling (GSP-SS)

1 Input: Input parameters of (1)
2 Output: Service placement x , (xlm)l∈L,m∈N

1: S ← ∅;
2: while ∃ (l, n) ∈ (L×N) \S such that S ∪ {(l, n)}

satisfies (7b)-(7d) do
3: (l∗, n∗)←

arg max(l,n): S∪{(l,n)} satisfies (7b)-(7d) Ω(S ∪ {(l, n)});
4: S ← S ∪ {(l∗, n∗)};
5: Convert S to its vector representation x;

take out a set S′ of pairs form S1, such that (S1\S′)∪{(l, n)}
remains a feasible service placement. The set S′ contains
at most

⌈
max rl

minl:rl>0 rl

⌉
pairs from {l} × N corresponding to

removing service replicas from edge cloud n to satisfy (7b),
and at most

⌈
max cln

mincln>0 cln

⌉
other pairs that correspond to

removing service replicas with non-zero placement costs to
satisfy (7c). Note that in the worst case all the existing service
replicas under S1 at edge cloud n have zero placement cost,
and hence we need to remove replicas at other edge clouds to
satisfy the budget constraint (7c). Repeating this swap to each
pair in S2\S1 shows that we reduce the number of placed
service replicas by at most p-fold in modifying S1 into S2.
Since the above holds for any S ⊂ L ×N and any maximal
independent subsets of S, the constraints (7b)-(7d) form a p-
independent system.

Combining Lemmas 2 and 3 gives the following result.

Theorem 5. Under the conditions in Lemma 2, greedily
optimizing (7) (Algorithm 1) yields a 1/(1+p)-approximation
for (1), where p=

⌈
max cln

mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. From [47], for maximizing a monotone sub-modular
function subject to a p-system constraint, the greedy algorithm
has an approximation ratio of 1/(1 + p).

2) Algorithm: Algorithm 1 gives the pseudo code for the
greedy algorithm. Note that it differs from the simple greedy
heuristic in that each evaluation of Ω(·) requires solving an
instance of the shadow scheduling problem (6) using LP.

3) Complexity: There are O(|N | × Rmax

rmin
) iterations in

Algorithm 1, where Rmax = maxn∈N Rn and rmin =
minl∈L:rl>0 rl. For each iteration, the algorithm considers
O(|L| × |N |) single service placements, and for each single
service placement, we need to evaluate the objective function
by solving an O(|L| × |N |2)-variable O(|L| × |N |2)-bit input
LP, which takes O(|N |11 × |L|5.5) time [49]. Therefore, the
overall complexity of Algorithm 1 is O(|N |13 × |L|6.5 ×
Rmax

rmin
) = O(|N |13 × |L|6.5). We expect this complexity to

be acceptable in practice, as this algorithm is only run once
per frame, and the frame length will be at the scale of changes
in request rates (usually tens of minutes or longer).

B. Optimal Request Scheduling under Soft Constraints
Given the number of requests of each type observed at the

beginning of a slot and the service placement determined at
the beginning of the current frame, the request scheduling
problem under soft constraints is identical to (6), which can

s

...

...
...

...

d

n1

n|N|

m1

m|N|

u
𝑙1𝑛1

K
𝑛1

W
𝑚1

λ
𝑙1𝑛1

a
𝑙1𝑛1𝑚1

x
𝑙1𝑚1

λ
𝑙1𝑛1

N1 U N2

Figure 5. Auxiliary graph G for request scheduling.

be solved by a generic LP solver in O(|N |11 × |L|5.5) time
(see complexity analysis for Algorithm 1). We then use the
resulting ylnm to perform probabilistic scheduling, where
a type-(l, n) request will be scheduled to each edge cloud
m ∈ N with probability ylnm.

C. Optimal and Heuristic Request Scheduling under Hard
Constraints

1) Optimal Algorithm for Homogeneous Requests: Con-
sider the special case where all the requests have identical
communication and computation demands. Without loss of
generality3, assume κl ≡ 1, ωl ≡ 1, and Kn and Wn are
integers for all n ∈ N . We will show that in this special
case, (2) can be converted to a maximum flow problem in
an auxiliary graph, and is thus polynomial-time solvable by
existing maximum flow algorithms.

Graph construction: Given parameters of (2) (including the
service placement xlm of the current frame), we construct
an auxiliary graph G as in Fig. 5. The nodes in G consist
of a source s, a destination d, a set of nodes U in 1-1
correspondence with the types of requests {(l, n)}l∈L,n∈N ,
and two sets of nodes N1 and N2, each in 1-1 correspondence
with the edge clouds. Node s is connected to each node
n ∈ N1 by a directed link of capacity Kn, and each node
m ∈ N2 is connected to node d by a directed link of capacity
Wm. Moreover, each node n ∈ N1 is connected to each node
uln ∈ U (representing type-(l, n) requests) by a directed link
of capacity λln, and each node uln ∈ U is connected to each
node m ∈ N2 by a directed link of capacity alnmxlmλln.

Conversion to a maximum flow problem: We will show that
for homogeneous requests, the problem of request scheduling
under hard resource constraints is equivalent to a maximum
flow problem in G.

Theorem 6. For homogeneous requests, the optimal value of
(2) equals the maximum flow between s and d in G, and the
optimal solution is to set zlnm to the flow rate on link (uln,m)
under the maximum integral flow from s to d.

Proof. First, an s-to-d flow satisfies the link capacities in G if
and only if the corresponding z = (zlnm)l∈L,n,m∈N satisfies
constraints (2b)–(2e). This is because if the rate on link
(uln,m) represents the number of type-(l, n) requests that are
served by edge cloud m, then by flow conservation, the flow
rate on link (s, n) represents the number of served requests
that are submitted to edge cloud n, the rate on link (n, uln)
represents the number of served requests of type (l, n), and
the rate on link (m, d) represents the total number of requests
served by edge cloud m. Thus, by construction, satisfying

3We redefine Kn as the maximum number of requests that an edge cloud
can communicate with its covered users in a slot (for input/output), and Wn

as the maximum number of requests that an edge cloud can process in a slot.

9

Algorithm 2: Maximum Flow-based Request Scheduling
(MFRS)

input : Input parameters of (2), assuming κl ≡ 1, ωl ≡ 1, and
Kn and Wn are integers (∀n ∈ N)

output: Request scheduling z = (zlnm)l∈L,n,m∈N
1 G ← auxiliary graph as in Fig. 5;
2 compute the maximum integral flow from s to d in G;
3 foreach (l, n,m) ∈ L×N ×N do
4 zlnm ← flow rate on link (uln,m) in G;

the capacities of these links is equivalent to satisfying the
corresponding constraints in (2b)–(2e). If we impose a further
integral flow constraint, i.e., the flow rate on every link must
be an integer, then constraint (2f) is also satisfied. Moreover,
by the Integral Flow Theorem [50], there exists an integral
flow between s and d that achieves the maximum flow rate,
as the link capacities in G are all integers. Thus, the optimal
objective value of (2) equals the maximum integral s-to-d flow,
which in turn equals the maximum s-to-d flow.

Algorithm: By Theorem 6, we develop a scheduling al-
gorithm called Maximum Flow-based Request Scheduling
(MFRS), shown in Algorithm 24. We can leverage existing
maximum flow algorithms to implement line 2. In particular,
the Ford-Fulkerson algorithm [50] has guaranteed termination
and optimality. More importantly, for a graph with integral link
capacities, this algorithm gives an integral solution, i.e., only
sending an integral amount of flow per link. The optimality of
this algorithm is implied by Theorem 6.

Corollary 1. For homogeneous requests, MFRS (Algorithm 2)
maximizes the number of requests served by the edge clouds.

Complexity: It is easy to see that constructing G (line 1)
takes O(|L| · |N |2) time, and converting the maximum
flow solution to a scheduling solution (lines 3–4) also
takes O(|L| · |N |2) time. It is known that for integral
link capacities, the Ford-Fulkerson algorithm has complex-
ity O(|E| · φ), where |E| is the number of links and φ
is the maximum flow. In our case, |E| = O(|L||N |2)
and φ ≤ min(

∑
n∈N Kn,

∑
m∈N Wm,

∑
l∈L
∑
n∈N λln).

Therefore, the overall complexity of Algorithm 2 is
O(|L||N |2 min(

∑
n∈N Kn,

∑
m∈N Wm,

∑
l∈L
∑
n∈N λln)).

Remark: We note that Algorithm 2 extends our previous
algorithm Optimal Request Scheduling in [2], which requires
both the requests and the edge clouds to be homogeneous.

2) Heuristic Algorithm for Heterogeneous Requests: In the
general case where requests for different services can have
different communication/computation demands, we resort to
LP relaxation, i.e., replacing the integer constraint (2f) by
a linear constraint zlnm ≥ 0. The key is how to round the
fractional solution to this LP relaxation to a feasible integral
solution to (2). To this end, we propose LP Relaxation-based
Request Scheduling (LRRS), shown in Algorithm 3. LRRS
sequentially rounds each fractional scheduling variable z′lnm
to the nearest integer while staying within the constraints
of (2). This is achieved by maintaining the residual number
of requests λ̃ln, the residual communication capacity K̃n,
and the residual computation capacity W̃m. For each triple
(l, n,m), min(alnmxlmλ̃ln, b K̃n

κl
c, b W̃m

ωl
c) is the maximum

4Algorithm 2 is mainly of theoretical value, as it shows that the non-trivial
ILP (2) when κl ≡ 1 and ωl ≡ 1 has a polynomial-time optimal solution.

Algorithm 3: LP Relaxation-based Request Scheduling
(LRRS)

input : Input parameters of (2)
output: Request scheduling z = (zlnm)l∈L,n,m∈N

1 z′ ← optimal solution to the LP relaxation of (2);
2 λ̃ln ← λln for all l ∈ L, n ∈ N ;
3 K̃n ← Kn for all n ∈ N ;
4 W̃m ←Wm for all m ∈ N ;
5 foreach (l, n,m) ∈ L×N ×N do
6 zlnm ←

min
(

round(z′lnm), min(alnmxlmλ̃ln, b K̃n
κl
c, b W̃m

ωl
c)
)

;

7 λ̃ln ← λ̃ln − zlnm;
8 K̃n ← K̃n − κl · zlnm;
9 W̃m ← W̃m − ωl · zlnm;

number of type-(l, n) requests that can be scheduled to
edge cloud m without violating any constraint or changing
any existing scheduling decision. Thus, line 6 results in a
best-effort approximation of the optimal fractional solution
while enforcing the hard constraints of (2).

Complexity: Line 1 of Algorithm 3 is the same as re-
quest scheduling under soft constraints, whose complexity is
O(|L|5.5 × |N |11) (see Section IV-B). The rounding takes
O(|L| × |N |2) time, as there are O(|L| × |N |2) iterations and
each iteration (lines 6–9) takes a constant time. Thus, LRRS
has a complexity of O(|L|5.5 × |N |11).

V. EXTENSION TO MULTI-FRAME OPTIMIZATION

So far we have only considered the optimizations within
one frame, with the assumption that the solutions will be
repeatedly applied in each frame. However, for recurrent
workloads, it is possible to predict the request rates for a
larger time window (e.g., 24 hours) that contains multiple
frames, each being a time interval with constant request rates.
In this case, the frame-by-frame optimization framework for
service placement can incur sub-optimality, as it neglects the
correlation across frames, in the sense that the cost of placing
a replica of service l at a given edge cloud depends on where
service l was placed in the previous frame. To capture the
correlation, we need to jointly optimize the service placement
across all the predictable frames.

Let F be the set of frames for which request rate prediction
is available. Our objective is to maximize the expected number
of requests served over all the frames:

max
∑
f∈F

Tf
∑
l∈L

∑
n∈N

λfln

∑
m∈N

yflnm (15a)

s.t.
∑
m∈N

yflnm ≤ 1, ∀l ∈ L, n ∈ N, f ∈ F, (15b)

∑
l∈L

xflmrl ≤ Rm, ∀m ∈ N, f ∈ F, (15c)

∑
l∈L

λflnκl
∑
m∈N

yflnm ≤ Kn, ∀n ∈ N, f ∈ F, (15d)

∑
l∈L

ωl
∑
n∈N

λflny
f
lnm ≤Wm, ∀m ∈ N, f ∈ F, (15e)

yflnm ≤ alnmx
f
lm, ∀l ∈ L, n,m ∈ N, f ∈ F, (15f)∑

l∈L

∑
n∈N

xfln· min
n′∈N+

(cln′nx
f−1
ln′ + cmax(1− xf−1

ln′))

≤ B, ∀f ∈ F, (15g)

xfln∈{0, 1}, y
f
lnm≥0, ∀l ∈ L, n,m ∈ N, f ∈ F. (15h)

10

This formulation is similar to the single-frame formu-
lation (1), but the scope is extended to multiple frames.
The real difference is the non-linear constraint (15g), where
cmax > maxl,n′,n cln′n is a large constant. Essentially,
minn′∈N+

(cln′nx
f−1
ln′ + cmax(1−xf−1ln′)) is the minimum cost

of placing a replica of service l at edge cloud n in frame f ,
which depends on the service placement in frame f − 1.

The multi-frame optimization (15) is a mixed integer
non-linear program (MINP) that is even harder than (1).
Given a service placement (xfln)f∈F,l∈L,n∈N , the remaining
optimization is still an LP in (yflnm)f∈F,l∈L,n,m∈N . Thus,
GSP-SS (Algorithm 1) still applies, where we iteratively
place one replica at a time in a selected frame, subject to
constraints (15c, 15g), to maximize the objective value of the
corresponding LP. We leave detailed analysis to future work.

VI. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed algo-
rithms using both synthetic and trace-driven simulations under
soft and hard constraints. For the synthetic cases we show the
impact of varying constraints and characteristics of service
requests to show that our algorithms are robust. For the trace
cases, we show how frame and slot sizes should be set to
achieve desirable performance.

A. Benchmarks
To assess the performance of the proposed service place-

ment algorithm, we use the following benchmarks:
1) the optimal solution of (1) using an MILP solver (MAT-

LAB intlinprog);
2) LP-relaxation with rounding, which first solves the LP

relaxation of (1), and then rounds the placement vari-
ables to {0, 1}, subject to R- and B-constraints;

3) top-k service placement, which sequentially considers
each edge cloud m ∈ N , computes the total demand for
each service l that can be scheduled to m, defined as
Λlm =

∑
n∈N λlnalnm, and then places services at m

in the descending order of Λlm until reaching Rm or
exhausting the budget.

To assess the performance of the proposed request schedul-
ing algorithm under hard constraints, we use the following
benchmarks:

1) the optimal solution of (2) using an ILP solver (MAT-
LAB intlinprog);

2) greedy request scheduling, which sequentially considers
each triple (l, n,m) ∈ L × N × N and schedules as
many type-(l, n) requests to edge cloud m as possible,
without violating any constraint in (2) or changing any
existing scheduling decision.

We note that no benchmark is needed for request scheduling
under soft constraints, as the problem is an LP and hence
polynomial-time solvable.

B. Results on Service Placement
1) Synthetic simulation: For synthetic simulations, we

show results under two settings.
Setting 1: First, we set |N | = 6 and |L| = 100. We initially

draw the values for Rn, Kn and Wn (∀n ∈ N) uniformly from

the intervals [24, 36], [16, 24] and [32, 48], respectively. We
then set these values differently based on a representative set
of applications. 5 Assuming that the edge clouds are associated
with hexagon cells arranged into two rows, we set the costs
of replicating a service from an edge cloud k hops away or
the remote cloud to 0.2k and 2, respectively, and the budget
B to 0.2 · |N | · |L|. We set alnm such that each request can
only be served by edge clouds within 2 hops of the edge cloud
it is submitted to. The arrival rate of request l is obtained as
λln = λnpln, where λn (total request rate in edge cloud n) is
drawn randomly from the interval [3, 5]. For pln (popularity
of service l in edge cloud n), we draw a random subset of
services Ln, and set pln ∝ i−αl for each l ∈ Ln, where il is
the rank of l in Ln, and α = 0.5 is the skewness parameter
of Zipf’s distribution. We initialize the system by randomly
placing |L|/8 services. For each service l, κl, ωl and rl are
drawn uniformly from [0.5, 1]. All results are averaged over 50
Monte Carlo runs. In the above settings, we set communication
resource to be the most restrictive, followed by storage and
then computation. This is to model the resource demands of
data-intensive applications. Besides the above default settings,
we will also explore the parameter space by varying these
parameters one by one in order to evaluate the impact of each
parameter.

Figs. 6 (a-d) illustrate the effect of increasing various
resource parameters on the percentage of served requests,
including the computation capacity Wn, the service placement
budget B, the storage capacity Rn, and the communication ca-
pacity Kn. As expected, an increase in the resource capacities
leads to a higher percentage of served requests. This trend is
more obvious in Figs. 6 (b-c), as these resources directly affect
the set of feasible service placements. When comparing the
performance of different algorithms under the same resource
capacities, we observe that GSP-SS considerably outperforms
LP-relaxation with rounding and top-k. Furthermore, it is
very close to the optimal solution. We have verified that
GSP-SS achieves over 90% of the optimal performance, i.e.,
the ratio of served requests when using GSP-SS versus the
optimal solution is greater than 0.9 on the average. Similar
observations have been made in the other simulations as well.

We further vary parameters of request generation. Fig. 6 (e)
shows that as we increase the average request rate, the
percentage of served requests decreases notably due to the
contention of resources. Fig. 6 (f) shows that as we increase the
skewness of service popularities (by increasing α), the optimal
solution and GSP-SS remain the same, while the baselines
(LP relaxation with rounding and top-k) improve slightly. This
is because the increased skewness causes the requests to be
more and more concentrated on a few popular services, making
service placement easier.

Finally, we vary the number of edge clouds |N | in Fig. 6 (g).
As expected, the more edge clouds, the more resources,
and hence the performance improves. However, we see from
Figs. 6 (a-d) that similar improvements can be achieved by
increasing the capacities of existing edge clouds or the service
placement budget. This shows the effect of resource pooling.

We note that our simulation setup does not satisfy the
condition in Theorem 5 as the κl’s are different, and thus

5The values of κl and Kn are in KBps, rl and Rn in TB, and ωl as well
as Wn in Mflops/s.

11

the theoretical approximation guarantee does not apply. Nev-
ertheless, we have observed empirically that GSP-SS always
yields near-optimal performance.

Setting 2: Next, we consider scenarios in which the values
of the input parameters are at the same order of magnitude as
those corresponding to specific highly popular data-intensive
services [51], [52], i.e., video analytics and ultra-reliable vir-
tual reality. The storage requirement for the services is chosen
uniformly from the interval [0.5, 1] TB, bandwidth requirement
is uniform in [5, 10] Mbps and computation requirement is
uniform in [50, 100] Mflops/s.

Figs. 7 (a-d) depict the percentage of served request for
different values of communication capacity, arrival rate, stor-
age capacity, and computation capacity. The communication
capacity of the edge clouds is chosen uniformly on [20, 30]
Mbps, computation capacity is uniform on [320, 480] Mflops/s,
whereas storage capacity is chosen uniformly from the range
[24, 36] TB. The capacities of edge clouds are highly het-
erogeneous depending on the cost and the targeted services.
The above parameter setting targets at services requiring large
amounts of server data; later in trace-driven simulation, we
will set the parameters to target at services requiring large
amounts of computation. We see that the trend and the
comparison between different algorithms are qualitatively the
same as in Fig. 6. In particular, the proposed algorithm GSP-
SS performs nearly as well as the optimal and notably better
than the benchmarks of LP-relaxation with rounding and top-k.

2) Trace-driven simulation: We cross-validate our ob-
servations in a more realistic scenario driven by traces.
For the trace-driven simulation, we extract user and edge
cloud locations from real mobility traces and cell tower
locations. We use the taxicab traces from [53], by ex-
tracting the traces of 36 users over a 520-minute period
with location updates every 1 minute. We assign users into
Voronoi cells based on cell tower locations obtained from
http://www.antennasearch.com, from which we se-
lect a subset of 6 cell towers that are at least 9.5 km apart to
represent the locations of edge clouds.

User requests are generated from a wireless trace from [54],
containing transmission timestamps generated by 5 different
applications from 36 wireless devices. We associate each
device with a user in the taxicab trace, and duplicate each
trace 5 times to obtain |L| = 25 services. As each timestamp
in the original trace represents a single packet, we stretch the
time axis by 60 (by treating the time unit as ‘minute’ instead of
‘second’) to simulate the arrival process of service requests.
The obtained request rates range from 288,935 to 650,415,
with a mean of 521,070 (requests/slot).

For each edge cloud, we randomly choose a storage capacity
Rn of 3-6 TB, a communication capacity of 16-48 Mbps (i.e.,
Kn ∈ [0.12, 0.36] GB/slot), and a computation capacity of
50-100 Gflops/s (i.e., Wn ∈ [3, 6] Tflops/slot), unless stated
otherwise.

The other parameters are as before, except that the units
of κl and ωl change to GB/slot and Tflops/slot.

Setting Frame and Slot duration: The frame and slot du-
rations are engineering decisions based on the characteristics
of the system and desired performance. The frame duration
is the time during which a deployment of services on servers
remains constant. The re-deployment of services has a cost
which in our system is constrained by budget B. How often

to move services is driven by how stable the system is in
terms of user mobility and user request characteristics (e.g.,
rate, resource requirements). A system operator will know the
expected dynamics of a system based on trends determined
over time. As trends change, the duration of the frames can
change.

Slot duration is set based on the scheduling delay and job
execution time in a system. In our system, jobs are expected
to complete their processing within one slot. Therefore, slot
duration should be set as small as possible so that jobs can
complete so that scheduling delays are small.

To set the frame duration for the trace evaluation, we plotted
the performance of the system for different frame and slot
durations. Fig. 8 illustrates the effect of varying the frame size.
In this scenario, the slot duration is 1 min. Fig. 8 depicts the
percentage of served requests vs. frame size. As can be seen
from Fig. 8, the performance starts deteriorating considerably
for frames that are longer than 30 slots. Choosing a shorter
frame provides only a slightly higher percentage of served
requests, but increases the cost. Therefore we choose a frame
duration of 30 minutes (slots in this case). ‘Predicted’ values
are the predicted percentage of served requests when solving
(1) at the beginning of each frame. ‘Actual’ values are the
actual percentage of requests served in each slot under soft
constraints, obtained by solving (6) for the requests arrived
in that slot and the service placement of the corresponding
frame.

Next, we look at the impact of the slot duration on the
performance. We consider a frame length of 30 minutes,
with 5 different slot durations: 1, 2, 3, 5 and 10 minutes.
This means that the frames consist of 30, 15, 10, 6 and 3
slots, respectively. The values of K and W are scaled with
the duration of the slot so overall system resources are kept
constant. Fig. 9 illustrates the percentage of served requests
vs. slot duration. As can be seen from Fig. 9, the performance
is almost completely insensitive to the slot duration. Since
we are interested in providing the shortest possible delay, we
choose the slot duration to be 1 minute.

In this set of experiments we use a frame duration of 30
minutes and slot duration of 1 minute as described above.

Results: Fig. 10 shows the performance of each algorithm
over time. ‘Predicted’ and ‘actual’ values have the same
meaning as in Fig. 8. Fig. 10 shows that GSP-SS closely ap-
proximates the optimal not only in the predicted performance
but also in the actual performance, while outperforming the
baselines.

C. Results on Request Scheduling

1) Soft Constraints: Fig. 10 (‘actual’) already shows the
performance achieved by probabilistic scheduling under soft
resource constraints. Since the optimal probabilistic schedule
is not hard to compute (by solving (6)), the focus here is to
understand to what extent this probabilistic schedule adheres
to the resource constraints.6

6It is worth mentioning that the algorithm based on soft constraints is only
designed for delay-tolerant applications, in which case our results show that
it does not cause frequent capacity violations or huge load spikes. In the
case of applications with stringent SLAs, we have proposed a set of different
algorithms based on hard constraints, which guarantee that SLAs will be
satisfied (while making a best effort in serving requests at the edge).

12

E[W
n
] /3 E[W

n
] 3 E[W

n
]

Computation capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(a) varying W

B/3 B 3 B

Budget

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(b) varying B

E[R
n
] /3 E[R

n
] 3 E[R

n
]

Storage capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(c) varying R

E[K
n
] /3 E[K

n
] 3 E[K

n
]

Communication capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(d) varying K

E[
n
] /3 E[

n
] 3 E[

n
]

Total requests rate in edge cloud n

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(e) varying λ

0 0.5 1 1.5

Skewness parameter

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(f) varying α

4 6 9

Number of edge clouds

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(g) varying |N |
Figure 6. Performance evaluation for service placement under the synthetic simulation setup in Section VI-B.

mean(W
n
) /3 mean(W

n
) 3 mean(W

n
)

Computation capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(a) varying W

mean(R
n
) /3 mean(R

n
) 3 mean(R

n
)

Storage capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(b) varying R

mean(K
n
) /3 mean(K

n
) 3 mean(K

n
)

Communication capacity

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s
optimal

GSP-SS

LP relaxation

top-k

(c) varying K

mean(
n
) /3 mean(

n
) 3 mean(

n
)

Total requests rate in edge cloud n

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

 o
f

se
rv

e
d

 r
e

q
u

e
st

s

optimal

GSP-SS

LP relaxation

top-k

(d) varying λ
Figure 7. Performance evaluation for service placement under highly popular data-intensive service input.

10 20 30 40 50 60

 frame duration (min)

90

92

94

96

98

100

P
e

rc
e

n
ta

g
e

 o
f

s
a

ti
s
fi
e

d
 r

e
q

u
e

s
ts

predicted: optimal

 : GSP-SS

actual: optimal

 : GSP-SS

Figure 8. Varying the frame size.

1 2 3 5 10

timeslot duration (min)

92

94

96

98

100

P
e

rc
e

n
ta

g
e

 o
f

s
a

ti
s
fi
e

d
 r

e
q

u
e

s
ts

 f
ra

m
e

 l
e

n
g

th
 =

 3
0

 m
in

s

predicted: optimal

 : GSP-SS

actual: optimal

 : GSP-SS

Figure 9. Varying the slot duration.

50 100 150 200 250 300 350 400 450 500

Time slot no.

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

predicted: optimal

 GSP-SS

 LP relaxation

 top-k

actual: optimal

 GSP-SS

 LP relaxation

 top-k

Figure 10. Performance evaluation in trace-driven simulation under soft
constraints.

Given that probabilistic scheduling only satisfies the K-
constraint (1d) and the W -constraint (1e) on the average,
it is possible that the scheduled requests temporarily exceed
the communication/computation capacity of an edge cloud.
To understand the extent of capacity violations, we evaluate

both the frequency and the severity of capacity violations.
Table II shows the results for each type of resource (com-
putation/communication) at each edge cloud. These results
are obtained under the default parameter setting for synthetic
simulations specified in Section VI-B. As can be seen from
Table II, there are capacity violations in about 5% of the slots,
and in these slots, the amount by which the capacities are
exceeded is about 10%. These are moderate violations, which
justifies the use of probabilistic scheduling and soft resource
constraints for services that are not highly delay-sensitive.

Table II
CAPACITY VIOLATIONS (%)

Edge cloud # 1 2 3 4 5 6
% of time K violated 6.33 4.64 2.85 2.86 4.66 2.28
% of time W violated 1.29 1.65 3.26 4.15 3.59 0.95

Amount K violated 3.05 11.48 2.47 7.68 5.61 7.84
Amount W violated 10.69 0.72 9.61 2.87 0.51 2.90

2) Hard Constraints: Similar to Fig. 6, we use synthetic
simulations to evaluate the impacts of different input parame-
ters for request scheduling under hard resource constraints. All
the results are obtained under the optimal service placement.

The results are shown in Fig. 11, where (a) shows the impact
of increasing the computation capacity (W), (b) shows the im-
pact of increasing the communication capacity (K), (c) shows
the impact of increasing the rate of requests (λ), and (d) shows
the impact of increasing the skewness parameter (α). In every
plot, we compare the proposed LRRS algorithm (Algorithm 3)
with the optimal solution and the greedy solution that are
explained in Section VI-A. Note that MFRS (Algorithm 2)
requires κl = ωl = 1 for all l ∈ L, which is not satisfied
here. While the impacts of these parameters are similar to

13

E[W
n
] /3 E[W

n
] 3 E[W

n
]

Computation capacity

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 o

f
se

rv
e
d

 r
e
q

u
e
st

s

optimal

LRRS

greedy

(a) varying W

E[K
n
] /3 E[K

n
] 3 E[K

n
]

Communication capacity

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 o

f
se

rv
e
d

 r
e
q

u
e
st

s

optimal

LRRS

greedy

(b) varying K

E[
n
] /3 E[

n
] 3 E[

n
]

Total requests rate in edge cloud n

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 o

f
se

rv
e
d

 r
e
q

u
e
st

s

optimal

LRRS

greedy

(c) varying λ

0 0.5 1 1.5

Skewness parameter

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 o

f
se

rv
e
d
 r

e
q
u
e
st

s

optimal

LRRS

greedy

(d) varying α

Figure 11. Performance evaluation for request scheduling under hard constraints.

50 100 150 200 250 300 350 400 450 500

Time slot no.

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 s

at
is

fie
d

re
qu

es
ts

predicted: optimal

 GSP-SS

 LP relaxation

 top-k

actual: optimal

 GSP-SS

 LP relaxation

 top-k

Figure 12. Performance evaluation in trace-driven simulation under hard
constraints (scheduling done by LRRS).

those observed in Fig. 6, these results differ from Fig. 6 in
that there is not much difference between different algorithms.
In particular, the greedy request scheduling already approxi-
mates the optimal request scheduling, and LRRS performs in
between. This observation indicates that the key performance
differentiator is the service placement algorithm, and it suffices
to use a simple algorithm for request scheduling.

We now show results for hard constraints using the same
trace inputs as described above. As in Fig. 10, we show in
Fig. 12 both the ‘predicted’ percentage of served requests,
computed at the beginning of each frame based on the pre-
dicted request rates, and the ‘actual’ percentage of served
requests in each slot. The difference from Fig. 10 is that the
‘actual’ values are computed by LRRS under hard resource
constraints (while the ‘predicted’ values are the same as in
Fig. 10). Comparing Fig. 10 and 12, we see that imposing
hard resource constraints does not significantly reduce the
percentage of served requests, while having the advantage that
every scheduled request is guaranteed to finish within one
slot. This justifies the use of deterministic scheduling and hard
resource constraints for real-time services.

D. Results on Multi-frame Extension

Finally, we evaluate the extended GSP-SS for the multi-
frame optimization (15). Fig. 13 shows the performance based
on request prediction over an |F |-frame sliding window. We
skip the other algorithms in this evaluation, as top-k performs
the same as in Fig. 10, the optimal solution is hard to compute
due to nonlinearity of (15), and LP relaxation does not apply.
As in Fig. 10, ‘predicted’ values are based on the request rates
predicted at the beginning of each window, and ‘actual’ values
are based on the actual request rates in each slot. We see that
prediction over a larger window improves the performance of

GSP-SS in terms of the actual values, and 2-frame prediction
appears to be sufficient.

50 100 150 200 250

Slot no.

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f
sa

tis
fi

ed
 r

eq
ue

st
s

predicted:|F|=1

 |F|=2

 |F|=3

actual:|F|=1

 |F|=2

 |F|=3

Figure 13. Performance of extended GSP-SS for multi-frame optimization in
trace-driven simulation.

Although |F | = 2 suffices in this evaluation, we have
observed that if we increase the resource contention, a larger
prediction window can help. For example, if we double the
request rates, then the predicted (actual) percentage of served
requests will become 73.63% (72.11%) for |F | = 1, 74.37%
(72.90%) for |F | = 2, and 79.11% (78.50%) for |F | = 3.

VII. CONCLUSION

We proposed a two-time-scale solution for joint service
placement and request scheduling in a system of networked
edge clouds under communication, computation, and storage
constraints. We not only proved the NP-hardness of the prob-
lem in the general case, but also characterized its complexity
in all the special cases. By combining the greedy heuristic
with shadow request scheduling, we developed a polynomial-
time service placement algorithm, which was proved to give
a constant approximation ratio under certain conditions. We
further showed that the problem of request scheduling under
hard resource constraints, although NP-hard in general, can be
solved in polynomial time if all the requests demand the same
amounts of communication and computation resources, in
which case we developed a polynomial-time optimal solution
based on the maximum flow algorithm. Extensive simulations
showed that the key performance differentiator is the service
placement algorithm, and the proposed service placement algo-
rithm achieves near-optimal performance. As part of the future
work, we plan to consider reinforcement learning techniques
for request predictions. Also, we are planning to consider a
system that is capable of supporting ultra-high reliability and
low latency (URLL) services.

14

REFERENCES

[1] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM, April 2019.

[2] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in IEEE ICDCS, July 2018.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, March 2017.

[4] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in IFIP Network-
ing, 2015.

[5] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE Pervasive
Computing, vol. 12, no. 4, pp. 40–49, October 2013.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in MCC, 2012.

[7] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
2013.

[8] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Tran. Parallel and Dist. Syst., vol. 28, no. 4, 2017.

[9] K. Ha, Y. Abe, Z. Chen, W. He, B. Amos, P. Pillai, and
M. Satyanarayanan, “Adaptive VM handoff across cloudlets,”
Technical Report CMU-CS-15-113, June 2015. [Online]. Available:
https://www.cs.cmu.edu/ satya/docdir/CMU-CS-15-113.pdf

[10] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
Agile VM handoff for edge computing,” in ACM/IEEE SEC, 2017.

[11] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based
service migration procedure for Follow Me cloud,” in IEEE ICC, 2014.

[12] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in IEEE
MILCOM, October 2014.

[13] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When cloud
services follow mobile users,” IEEE Tran. Cloud Comput., 2018.

[14] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Transactions on Cloud Computing, 2015.

[15] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for
capacitated cloudlet placements,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 10, pp. 2866–2880, Oct 2016.

[16] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design
optimization,” IEEE/ACM Trans. on Netw., vol. 25, no. 3, 2017.

[17] “Open Edge Computing.” [Online]. Available:
http://openedgecomputing.org/

[18] “OpenFog Consortium.” [Online]. Available:
https://www.openfogconsortium.org/

[19] “ETSI ISG on Multi-access Edge Computing (MEC).” [Online].
Available: http://www.etsi.org/technologies-clusters/technologies/multi-
access-edge-computing

[20] L. Wang, L. Jiao, J. Li, and M. Muhlhauser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in IEEE ICDCS,
2017.

[21] H. Tan, Z. Han, X.-Y. Li, and F. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM, May 2017.

[22] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE Access,
vol. 5, pp. 2514–2533, 2017.

[23] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016, April 2016.

[24] G. Dán and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in IEEE INFOCOM, April 2014.

[25] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,
“Hold’em caching: Proactive retention-aware caching with multi-path
routing for wireless edge networks,” in ACM Mobihoc, July 2017.

[26] I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in ACM MobiHoc,
2016.

[27] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in IEEE INFOCOM, April 2010.

[28] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal re-
quest routing and content caching in heterogeneous cache networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, June 2017.

[29] A. Aral and T. Ovatman, “A decentralized replica placement algorithm
for edge computing,” IEEE Transactions on Network and Service
Management, vol. 15, no. 2, pp. 516–529, June 2018.

[30] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The cloud service
distribution problem in distributed cloud networks,” in IEEE ICC, 2015.

[31] J. Llorca, A. M. Tulino, A. Sforza, and C. Sterle, “Optimal content
distribution and multi-resource allocation in software defined virtual
CDNs,” in AIRO ODS, September 2017.

[32] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, October 2015.

[33] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the NFV service distribution problem,” in IEEE
INFOCOM, April 2017.

[34] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assign-
ment in distributed network topologies,” in IEEE INFOCOM, 2013.

[35] A. A. Haghighi, S. S. Heydari, and S. Shahbazpanahi, “Dynamic QoS-
aware resource assignment in cloud-based content-delivery networks,”
IEEE Access, vol. 6, pp. 2298–2309, 2018.

[36] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, April 2019.

[37] Yazhou Hu, Bo Deng, Fuyang Peng, and Dongxia Wang, “Workload
prediction for cloud computing elasticity mechanism,” in Proc. IEEE
International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), 2016.

[38] G. Kecskemeti, Z. Nemeth, A. Kertesz, and R. Ranjan, “Cloud workload
prediction based on workflow execution time discrepancies,” Cluster
Computing, vol. 22, no. 3, 2019.

[39] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Proc.
IEEE Network Operations and Management Symposium, 2012.

[40] D. Bertsimas and J. Tsitsiklis, Introduction to linear optimization.
Athena Scientific, 1997.

[41] M. Conforti, G. Cornuejols, and G. Zambelli, Integer programming.
Springer, 2014.

[42] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, no. 4,
2008.

[43] D. B. Shmoys and Éva Tardos, “An approximation algorithm for the
generalized assignment problem,” Mathematical Programming, vol. 62,
no. 1-3, pp. 461–474, February 1993.

[44] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in ACM-SIAM SODA, January 2006.

[45] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[46] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime
through power aware organization,” Wireless Networks, vol. 11, no. 3,
p. 333–340, 2005.

[47] M. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approximations
for maximizing submodular set functions – II,” Math. Prog. Study, vol. 8,
pp. 73–87, 1978.

[48] A. Gupta, A. Roth, G. Schoenebeck, and K.Talwar, “Constrained non-
monotone submodular maximization: Offline and secretary algorithms,”
Lecture Notes in Computer Science (LNCS), vol. 6484, no. 12, 2010.

[49] G. Strang, “Karmarkar’s algorithm and its place in applied mathematics,”
The Mathematical Intelligencer, 1987.

[50] B. Korte and J. Vygen, “Network flows,” in Combinatorial Optimization.
Berlin, Germany: Springer, 2000, ch. 8, pp. 153–184.

[51] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
2018. [Online]. Available: https://doi.org/10.1109/MNET.2018.1700268

[52] Z. Lu, K. Chan, R. Urgaonkar, and T. L. Porta, “On-demand video
processing in wireless networks,” in Proc. IEEE ICNP, 2016.

[53] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser,
“CRAWDAD dataset epfl/mobility (v. 2009-02-24),” February 2009.
[Online]. Available: http://crawdad.org/epfl/mobility/20090224

[54] A. S. Uluagac, “CRAWDAD dataset gat-
ech/fingerprinting (v.2014-06-09),” Downloaded from
https://crawdad.org/gatech/fingerprinting/20140609/isolatedtestbed,
Jun. 2014, traceset: isolatedtestbed.

