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Abstract—Mobile edge computing allows wireless users to
exploit the power of cloud computing without the large communi-
cation delay. To serve data-intensive applications (e.g., augmented
reality, video analytics) from the edge, we need, in addition to
CPU cycles and memory for computation, storage resource for
storing server data and network bandwidth for receiving user-
provided data. Moreover, the data placement needs to be adapted
over time to serve time-varying demands, while considering
system stability and operation cost. We address this problem by
proposing a two-time-scale framework that jointly optimizes ser-
vice (data & code) placement and request scheduling, under stor-
age, communication, computation, and budget constraints. We
fully characterize the complexity of our problem by analyzing the
hardness of various cases. By casting our problem as a set func-
tion optimization, we develop a polynomial-time algorithm that
achieves a constant-factor approximation under certain condi-
tions. Extensive synthetic and trace-driven simulations show that
the proposed algorithm achieves 90% of the optimal performance.

Index Terms—Mobile edge computing, service placement, re-
source allocation, complexity analysis.

I. INTRODUCTION

The emerging technology of mobile edge computing [1]
enables wireless users to run resource-intensive and delay-
sensitive applications from the edge of mobile networks, at
small server clusters referred to as edge clouds [2], cloudlets
[3], fog [4], follow me cloud [5], or micro clouds [6]. While
the technology is designed to harness the computation power
of cloud computing without the large communication delays in
accessing remote clouds, realizing the full potential of mobile
edge computing requires smart strategies in allocating the
limited edge cloud resources to competing requests, which has
attracted significant research attention in recent years.

Intuitively, one should strive to serve every user from the
nearest edge cloud. While the intuition has been supported by
empirical studies [7], maintaining service locality for mobile
users raises challenges about how to migrate services [8] and
when/where to migrate services [9], [10], [2], [11] to achieve a
desirable tradeoff between service performance and migration
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cost. When some of the edge clouds are heavily loaded, it has
been shown that users can benefit from getting served by non-
nearest edge clouds in the same metropolitan area network
[12], [13], [14]. Meanwhile, there have been standardization
initiatives [15], [16], [17] to create a standardized open edge
computing environment, such that edge clouds within the same
geographical region will form a shared resource pool, which
can then be allocated among competing user requests.

The existence of a shared resource pool opens the door
to request scheduling, i.e., on which edge server, if any, to
schedule each user request such that certain objectives (e.g.,
cost, completion time) can be optimized [18], [19]. Existing
works typically assume that serving each request requires a
dedicated share of resources (e.g., CPU cycles, memory space,
network bandwidth), such that the total resource consumption
at a server is the sum of resource requirements scheduled to it.

While this assumption holds for applications that do not
require significant amounts of data on the server, it fails to
capture the demands of data-intensive applications. In such
applications (e.g., augmented reality, video analytics, dis-
tributed machine learning), serving a request not only requires
a dedicated share of resources, but also requires a nontrivial
amount of data at the server (e.g., object database, trained
machine learning models). The storage resource for storing
such data critically differs from the other types of resources in
that it is amortized over all requests against the same copy of
data. Note that many data-intensive applications also require a
nontrivial amount of user-provided data (e.g., images captured
by the user), although the resources for collecting/storing such
data are typically dedicated to each request.

Thus, in addition to the traditional resources of CPU cycles
and memory, resource allocation algorithms for data-intensive
applications must also consider the storage resources for
storing server data and the network bandwidth for receiving
requests that contain large amounts of user-provided data.

Jointly allocating dedicated resources and amortized
resources induces a decomposition of the problem into two
subproblems [20]: (i) service placement, which decides how
to replicate and place each service (including server code and
data) within the storage capacity of each edge cloud, and (ii)
request scheduling, which decides whether/where to schedule
each request within the communication and the computation
capacities of edge clouds, as well as other constraints (e.g.,



maximum delay). The two subproblems are coupled by the fact
that the edge cloud scheduled to process a request must have a
replica of the requested service. However, the existing solution
[20] makes both decisions at the same time, and thus may
adjust service placement as frequently as scheduling requests,
incurring a high operation cost and even system instability.

In this work, we jointly consider service placement and
request scheduling for data-intensive applications. In contrast
to [20], we separate the time scales of the two decisions:
service placement occurs at a larger scale (frames) to
prevent system instability, and request scheduling occurs
at a smaller scale (slots) to support real-time services. We
also impose a budget constraint to control the operation cost
due to service replication/migration. These changes enable a
controllable tradeoff between the cost of reconfiguration and
the performance of serving requests, while inducing critical
changes in the underlying optimization problem.

A. Related Work

While early works on mobile edge computing assumed that
every user can only access its closest edge server, studies
in [12], [13], [14] have shown that users can benefit from
accessing services on edge servers that are multiple hops away.
Allowing the use of non-local edge servers created the problem
of edge workload scheduling, which has been extensively
studied in recent years. Existing works have used various
objectives (e.g., minimizing the cost [18] or the makespan
[19]), workload models (e.g., fluid model [18], tasks [19],
multi-component applications [21]), and edge cloud architec-
tures (e.g., flat versus hierarchical [22]). These works typically
assume that each workload requires its own resource for
execution, i.e., the resources are dedicated. Here “dedicated”
means that each unit of resource can only be used by one
workload, e.g., two workloads can share a processor but
each CPU cycle is only used by one workload. While this
assumption usually holds for computation and communication
resources (assuming unicasts), it can be too restrictive for
storage resources.

Meanwhile, works on content placement in cache networks
have considered storage resources that can be shared among
requests of the same type. Various solutions have been de-
veloped to place contents under cache capacity constraints
based on predicted content popularities [23], [24] or request
history [25]. Variations of the problem have been studied, e.g.,
a cache can serve requests from other caches [26], or the
content placement and the routing of requests can be jointly
optimized [27]. However, the content placement problem only
considers the storage resource (i.e., cache space), while the
other types of resources (e.g., CPU, bandwidth) are ignored.
Note that although [25] was motivated by “hosting services”,
the problem was actually about caching.

Only a few works have considered multiple types of re-
sources (e.g., storage, computation, communication). In [28],
[29], mixed integer linear programs (MILPs) were formu-
lated for placing contents or service functions, and activat-
ing storage, computation, and communication resources in a

distributed cloud network. However, no formal complexity
analysis or algorithm with performance guarantee was pro-
vided. In [30], a dynamic service placement and workload
scheduling framework was proposed to jointly allocate storage
and computation resources, but there is no hard constraint
on computation resources and no consideration of bandwidth
constraints. In [31], an algorithm with performance guarantee
was developed for placing virtual network functions (VNFs)
in distributed cloud networks and routing service flows among
the placed VNFs under chaining constraints. However, each
unit of resource (CPU, memory, bandwidth) is dedicated to
a flow (i.e., not amortized), and there is no “storage capac-
ity” constraint on the VNF placement. In [32], an optimal
algorithm was developed for joint resource placement and
assignment in distributed networks, where a “resource” means
a service, and a “type of resources” means a type of services.
The solution actually assumed that each placed service can
only serve one request (i.e., dedicated).

The work closest to ours is [20], which considered joint ser-
vice placement and request scheduling under hard constraints
on both dedicated resources (communication, computation)
and amortized resources (storage). However, it assumed full
knowledge of the requests, which means that to apply its
solution in an online setting, one must batch requests and
make placement/scheduling decisions simultaneously. To re-
duce cost and improve stability, we separate the time scales
of service placement and request scheduling, and impose a
budget constraint on the cost of each service placement. These
changes induce critical changes in the underlying optimization
problem, as explained at the end of Section II.

B. Summary of Contributions
Our main contributions are as follows:
1) We propose a two-time-scale framework for joint service

placement and request scheduling, and formulate the under-
lying optimization as a mixed integer linear program (MILP)
that jointly considers dedicated and amortized resources.

2) By analyzing the complexity in carefully selected special
cases, we not only prove that our problem is generally NP-
hard, but also characterize all the cases that are polynomial-
time solvable and identify the root cause of hardness.

3) By reformulating our problem as a set function optimiza-
tion, we develop a greedy service placement algorithm based
on shadow request scheduling computed by a linear program
(LP). By proving that our objective function is monotone sub-
modular under certain conditions and our constraints form a
p-independence system, we derive a constant-factor approxi-
mation guarantee for the proposed algorithm.

4) We show that both our formulation and our algorithm can
be extended to exploit request prediction over multiple frames.

5) We perform extensive performance evaluations via syn-
thetic and trace-driven simulations. The proposed algorithm
consistently outperforms baselines, while achieving over 90%
of the optimal performance in all the evaluated cases, even
when the approximation guarantee does not hold.

Roadmap. Section II formulates our problem for a single
frame, for which Section III analyzes the complexity, and



Section IV presents our algorithm and its performance
analysis. Section V extends our solution to multiple frames.
Section VI evaluates the performance of the proposed solution
against benchmarks, and Section VII concludes the paper.

II. PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider a wireless edge network
consisting of a set N of edge clouds, each accessible via a
wireless access point or base station covering a specified area.
There is a set L of services, of which a subset can be hosted
by each edge cloud at a given point in time. At each time slot
t, requests for service l ∈ L arrive at edge cloud n ∈ N at
a rate of λtln. The average request rate for a frame f of Tf
time slots is denoted by λfln, where Tf is chosen to trade off
system stability and prediction accuracy for λfln.

Services may migrate/replicate between edge clouds, and
from a remote cloud to an edge cloud. Each edge cloud
has limited communication, computation, and storage capac-
ities. Furthermore, we impose a budget B on the cost of
migrating/replicating services between edge clouds or from
the remote cloud to an edge cloud in each frame. We assume
that all the edge clouds are connected by back-haul links that
can be used for inter-cloud communications. Thus, a request
may be served by a non-local edge cloud.

Serving a request for service l submitted to edge cloud n
at edge cloud m (possibly m 6= n) consumes communication
resources for transferring input/output between the user and
edge cloud m, and computation resource at m. Additionally,
edge cloud m must have a replica of service l. As back-haul
links usually have much higher bandwidth than access links,
we only consider the communication resource consumed at
the access link in edge cloud n.

The capacities of different edge clouds may be different.
Likewise the size of each service replica and the communi-
cation/computation resources required by each request may
be different. There may be other constraints (e.g., latency) on
whether a given edge cloud m is permitted to serve requests
of service l submitted to another edge cloud n, denoted by an
indicator alnm (‘0’: not permitted; ‘1’: permitted).
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Figure 1. System model.
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Figure 2. Time scales of service placement and request scheduling.

In order to control the system stability and the costs of plac-
ing replicas, we split the time scales of service placement (per-
formed at the beginning of every frame) from request schedul-
ing (performed per slot). This is illustrated in Fig. 2. Finally,
main notations used in this paper are described in Table I.

Table I
TABLE OF NOTATIONS

Notation meaning
N set of edge clouds

N+ = N ∪ {n0} set of edge clouds plus the remote cloud n0

L set of all possible services
Rn storage capacity of edge cloud n
Wn processing capacity of edge cloud n
Kn communication capacity of edge cloud n
rl size per replica of service l
κl size of input/output data per request of service l
ωl computation requirement per request of service l

alnm ∈ {0, 1} indicates whether edge cloud m is permitted to
serve requests of service l submitted to edge
cloud n

λtln, λ
f
ln average arrival rate of requests of service l

submitted to edge cloud n in time slot t or frame
f (averaged over all the slots in this frame)

cln′n cost of replicating or migrating service l from
cloud n′ to edge cloud n, where cloud n′ can be
either the remote cloud or edge cloud

B the budget for service placement in one frame
xfln ∈ {0, 1} placement variable for frame f , 1 if service l is

placed on edge cloud n and 0 otherwise
ytlnm, y

f
lnm∈[0, 1] scheduling variable representing the probability

that a request of service l submitted to edge
cloud n is scheduled to another edge cloud m in
slot t or frame f

B. Underlying Optimization Problem

Although at different time scales (Fig. 2), service placement
and request scheduling are solving the same optimization
problem with different decision variables as explained below.

We assume that the services always exist on the remote
cloud n0, i.e., xfln0

≡ 1, and deleting a service replica
from an edge cloud incurs no cost. We always replicate a
service from the nearest location hosting the service. That
is, the cost of placing service l at edge cloud n in frame
f is cfln = minn′∈N+,x

f−1

ln′ =1 cln′n, where clnn ≡ 0 (no
replication, no cost).

The underlying optimization problem can be formulated as
(1): Objective (1a) maximizes the expected number of requests
served per slot. Constraint (1b) guarantees that the scheduling
variables are valid probabilities. Constraint (1c) ensures that



each edge cloud n does not store more than its storage capacity
Rn. Constraint (1d) guarantees that each edge cloud n does
not violate its communication capacity Kn within its coverage
area. Constraint (1e) ensures that each edge cloud n is not
scheduled with more requests than its computation capacity
Wn allows. Constraint (1f) states that an edge cloud can only
serve a request if it contains the requested service and is a
candidate server. Constraint (1g) ensures that the total service
placement cost is within the budget. Constraint (1h) specifies
valid ranges of the decision variables.

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (1a)

s.t.
∑
m∈N

ylnm ≤ 1, ∀l ∈ L, n ∈ N, (1b)

∑
l∈L

xlmrl ≤ Rm, ∀m ∈ N, (1c)

∑
l∈L

λlnκl
∑
m∈N

ylnm ≤ Kn, ∀n ∈ N, (1d)

∑
l∈L

ωl

∑
n∈N

λlnylnm ≤Wm, ∀m ∈ N, (1e)

ylnm ≤ alnmxlm, ∀l ∈ L, n ∈ N,m ∈ N, (1f)∑
l∈L

∑
n∈N

xlncln ≤ B, (1g)

xln ∈ {0, 1}, ylnm ≥ 0, ∀l ∈ L, n ∈ N,m ∈ N. (1h)

At the beginning of each frame f , we solve (1) with
the predicted demands λln = λfln and the placement costs
cln = cfln for the service placement xfln and the corresponding
request scheduling yflnm. Then at the beginning of each slot
t, we solve (1) with the current demands λln = λtln and the
previously determined service placement xln = xfln for the
request scheduling ytlnm used in this slot. Note that although
the scheduling variable yflnm computed from the predicted
demands is not used for scheduling, it is needed to evaluate
the objective (1a) under a given service placement. For this
reason, we refer to yflnm as the shadow scheduling variable.

Discussion: While our optimization formulation shares sim-
ilarities with [20], there are several critical changes. First,
while [20] assumes full knowledge of the requests, we only
assume knowledge of the expected request rates. Accordingly,
our objective becomes the expected rate of served requests,
and our scheduling decision becomes probabilistic. Moreover,
while [20] allows the service placement to change completely
every time, we limit it to incremental adjustments by imposing
a budget constraint. Probabilistic scheduling relaxes the integer
constraints on scheduling variables, thus invalidating previous
hardness results. Meanwhile, the added constraint introduces
a potential cause of hardness (verified in Theorem 1).

III. COMPLEXITY ANALYSIS

In the optimization problem (1) there are four types of
resource constraints: the R-constraint (1c), the K-constraint
(1d), the W -constraint (1e), and the B-constraint (1g).

A. Having B-constraint only

Consider the special case where the edge clouds and the
services are homogeneous (although having B-constraint only

gives the same formulation for homogeneous and hetero-
geneous scenarios), and R, W and K are large enough
that they are unconstrained, i.e., R ≥ |L| (i.e., every edge
cloud can store all the services), W ≥

∑
n∈N

∑
l∈L λln and

K ≥ maxn∈N
∑
l∈L λln. Then, the MILP in (1) changes to:

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (2a)

s.t. (1b), (1f), (1g), (2b)
xln ∈ {0, 1}, ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (2c)

Theorem 1. The B-constraint alone makes the problem NP-
hard.

Proof. We prove the NP-hardness of (2) by a reduction from
the 0-1 knapsack problem: given a set of k items, each with
value vi and weight wi (i = 1, ..., k), select a subset S ′ such
that

∑
i∈S′ vi is maximized while

∑
i∈S′ wi ≤ Ω, for a given

size Ω of the knapsack.
Construction: For each item i, construct a service li with

total demands
∑
n∈N λlin = vi and the placement cost clin =

wi,∀n ∈ N . Let B = Ω and almn ≡ 1.
Claim: The optimal service placement of (2) gives the

optimal solution to a knapsack problem.
Proof of the claim: The optimal service placement places

at most one replica among all the edge clouds. Therefore,
the scheduling decision is to simply schedule all the requests
of service li to edge cloud n, if ∃n ∈ N with xlin = 1;
or, not schedule any of these requests if xlin = 0,∀n ∈ N .
Let S ′ be the set of indices of all the placed services under
the optimal solution to (2). Then, the expected number of
served requests equals

∑
i∈S′ vi, and

∑
i∈S′ wi ≤ B = Ω.

Selecting all the items corresponding to the services placed
by the optimal solution of (2) provides the optimal solution to
the knapsack problem.

Remark: Proving NP-hardness for the special case shows
that the problem is NP-hard in the general case as well.

B. Having R-constraint only

Here we consider the special case in which the edge clouds
and the services are homogeneous, and W , K and B are large
enough to be unconstrained, i.e., W ≥

∑
n∈N

∑
l∈L λln,

K ≥ maxn∈N
∑
l∈L λln, and B ≥

∑
l∈L
∑
n∈N cln. In this

case, the MILP in (1) becomes:

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (3a)

s.t. (1b), (1f), (2c), (3b)∑
l∈L

xln ≤ R, ∀n ∈ N. (3c)

Theorem 2. The R-constraint alone makes the problem NP-
hard.

Proof. We prove the hardness by showing that the optimiza-
tion (3) can be reduced to the 2-Disjoint Set Cover (2DSC)
problem, which is proved to be NP-complete [33]. Given a
bipartite graph G = (A,B, E), with edges E between two
disjoint vertex sets A and B, 2DSC determines whether there
exist two disjoint sets B1,B2 ⊂ B, such that |B1|+ |B2| = |B|



and A = ∪b∈B1
N (b) = ∪b∈B2

N (b), where N (b) (∀b ∈ B) is
the set of neighbors of node b.

Construction: Denote A by {a1, ..., aI} and B by
{b1, ..., bJ}. WLOG, assume I ≤ J . Construct J edge clouds
N = {n1, ..., nJ}, each with R = 1. Construct two services
L = {l1, l2}, each with a unit of demand in the first I edge
clouds, i.e., λlni = 1,∀i ∈ {i, ..., I}, l ∈ {l1, l2}. Note that
λlni

= 0,∀i > I . For each i ∈ {1, ..., I} and j ∈ {1, ..., J},
we allow edge cloud nj to serve requests of either service
in edge cloud ni, if and only if (ai, bj) ∈ E , i.e., alkninj =
1, k = {1, 2}, if (ai, bj) ∈ E , otherwise alkninj

is zero.
Claim: 2DSC is feasible if and only if the optimal value

of (3) for the above instance is 2I.
Proof of the claim: If 2DSC is feasible, then storing

l1 at edge clouds corresponding to B1 and l2 at the
remaining edge clouds will serve all the requests. If there
is a service placement that serves all the requests, then
B1 = {bi ∈ B : ni stores l1}, and B2 = B\B2 is a feasible
solution to 2DSC.

C. Removing R- and B-constraints
If Rn (∀n ∈ N ) and B are both large enough, i.e.,

minn∈N Rn ≥ |L| (every edge cloud can store all the services)
and B ≥

∑
l∈L
∑
n∈N cln, the optimal solution to xln is

trivially xln ≡ 1 (∀l ∈ L and n ∈ N). Under this service
placement, constraints (1c,1g) in (1) disappear, and constraint
(1f) changes to ylnm ≤ alnm (∀l ∈ L, n ∈ N,m ∈ N ).

Lemma 1. Removing R- and B-constraints makes the problem
polynomial-time solvable.

Proof. Removing these constraints reduces the original prob-
lem (1) into an LP, which is polynomial-time solvable.

D. Summary of all cases
Together, Theorems 1, 2 and Lemma 1 cover all the cases.

By Theorem 1, the solvable instances must be cases without
the B-constraint. By Theorem 2, the solvable instances must
also be cases without the R-constraint. On the other hand,
Lemma 1 shows that all the cases without either of B- or R-
constraint are polynomial-time solvable. Therefore, the colored
region in Fig. 3 captures all the solvable cases of (1).

IV. ALGORITHMS

We now develop efficient algorithms for the service place-
ment and the request scheduling sub-problems separately.

A. Optimal Algorithm for Request Scheduling
Recall that request scheduling is performed at a smaller

time scale of slots, under the service placement selected at the
beginning of each frame (see Section II). Given the request
rates observed at the beginning of each slot, we can solve
the sub-problem of (1) regarding y, which is an LP (see
(4)), and perform probabilistic scheduling, where a request
for service l submitted to edge cloud n will be scheduled to
edge cloud m for each m ∈ N with probability ylnm. All the
scheduling decisions in a frame are based on the same service
placement, while the decisions in different slots can differ due
to variations in request rates within the frame.

Theorem 1
(NP-hard)

Theorem 2
(NP-hard)

Lemma 1
(solvable)

No R-
constraints

No B-
constraints

all other cases

Figure 3. Complexity of (1) and its cases.

B. Approximation Algorithm for Service Placement

Due to the NP-hardness of finding the optimal service place-
ment, as shown in Section III, we seek efficient sub-optimal
service placement algorithms with approximation guarantees.

We start by reformulating our problem as a set optimization
problem. Let S ⊆ L × N denote the set of selected single-
service placements, where (l, n) ∈ S means to place a replica
of service l at edge cloud n. Let Ω(S) denote the optimal
objective value of (1) for a fixed x given by xln = 1 if
and only if (l, n) ∈ S. This can be calculated by solving the
following (shadow) request scheduling problem, where 1l,m

is the indicator function:

max
∑
l∈L

∑
n∈N

λln
∑
m∈N

ylnm (4a)

s.t. (1b), (1d), (1e), (4b)
ylnm ≤ alnm1(l,m)∈S , ∀l ∈ L, n ∈ N,m ∈ N, (4c)

ylnm ∈ [0, 1], ∀l ∈ L, n ∈ N,m ∈ N. (4d)

After that, we can rewrite the service placement problem as:

max Ω(S) (5a)

s.t.
∑

l:(l,n)∈S
rl ≤ Rn, ∀n ∈ N, (5b)

∑
(l,n)∈S

cln ≤ B, (5c)

S ⊆ L×N, (5d)

where Sn , L × {n} is the set of all possible single-service
placements at edge cloud n.

First, we prove that, under certain conditions, the objective
function of (5) has a desirable property.

Definition 1 ([34]). A set function f : 2x → R is monotone
increasing if ∀ S1 ⊆ S2 ⊆ x , f(S1) ≤ f(S2). Moreover, the
function f(.) is sub-modular if ∀S1 ⊆ S2 ⊆ x and e ∈ x\S2,
f({e} ∪ S1)− f(S1) ≥ f({e} ∪ S2)− f(S2).

Lemma 2. The objective function Ω(S) in (5a) is a monotone
sub-modular function for all feasible S if κl ≡ κ (∀l ∈ L),
and

1) bRn/rlc ≤ 1 for all n ∈ N and l ∈ L , or
2) Wm ≥

∑
l∈L ωl

∑
n∈N λln for all m ∈ N .

Proof. It is easy to see that Ω(S) is monotone, as expanding S
will relax the constraint (4c), hence enlarge the solution space
for (4) and increase its optimal objective value.



To show that Ω(S) is sub-modular, we need to show that
for any sets S1, S2 ⊆ L×N and any (l1, n1) ∈ (L×N)\S2,
such that S1 ⊆ S2 and S2∪{(l1, n1)} is feasible, the following
relationship holds

Ω(S1 ∪ {(l1, n1)})− Ω(S1) ≥ Ω(S2 ∪ {(l1, n1)})− Ω(S2). (6)

Suppose that y(0) and y(2) are the optimal scheduling
solutions according to (4) under service placements S1 and
S2, respectively. Moreover, suppose that y(1) and y(3) are
the optimal scheduling solutions under service placements
S1 ∪ {(l1, n1)} and S2 ∪ {(l1, n1)}, respectively, that mini-
mize the request rate scheduled to the replica (l1, n1), i.e.,
minimizing

∑
n∈N λl1nyl1nn1 . We can then decompose the

objective function as:

Ω(S1) =
∑

(l,m)∈S1

∑
n∈N

λlny
(0)
lnm, (7)

Ω(S1 ∪ {(l1, n1)}) =
∑

(l,m)∈S1

∑
n∈N

λlny
(1)
lnm+

∑
n∈N

λl1ny
(1)
l1nn1

, (8)

Ω(S2) =
∑

(l,m)∈S2

∑
n∈N

λlny
(2)
lnm, (9)

Ω(S2 ∪ {(l1, n1)}) =
∑

(l,m)∈S2

∑
n∈N

λlny
(3)
lnm +

∑
n∈N

λl1ny
(3)
l1nn1

. (10)

Due to this decomposition, we have

LHS of (6) =
∑

(l,m)∈S1

∑
n∈N

λln(y
(1)
lnm− y

(0)
lnm) +

∑
n∈N

λl1ny
(1)
l1nn1

, (11)

RHS of (6) =
∑

(l,m)∈S2

∑
n∈N

λln(y
(3)
lnm− y

(2)
lnm) +

∑
n∈N

λl1ny
(3)
l1nn1

. (12)

The first term in (11) is the difference in the request rate served
by replicas in S1 after/before placing the replica (l1, n1).
Under condition (1) or (2) in the lemma, there is no contention
of computation resources between replicas, and hence replicas
in S1 can still process requests scheduled to them under
y(0). Meanwhile, as the communication demands κl are the
same for all types of requests, dropping requests originally
scheduled to S1 to admit requests to be scheduled to (l1, n1)
will not improve the objective value of (4). Thus, the first
term in (11) is zero. Similarly, the first term in (12) is also
zero. The second term in (11,12) is the minimum request rate
served by the replica (l1, n1) under an optimal scheduling, in
the presence of replicas S1 and S2, respectively. Again, as
there is no computation resource contention between replicas,
requests that used to be served by replicas in S1 under
service placement S1 ∪ {(l1, n1)} can still be served there
after adding replicas in S2 \ S1, but these added replicas may
offload some requests that used to be served by the replica
(l1, n1). Therefore,

∑
n∈N λl1ny

(1)
l1nn1

≥
∑
n∈N λl1ny

(3)
l1nn1

.
This proves (6) and hence the sub-modularity of Ω(S).

The constraints of (5) also have a desirable property.

Definition 2 ([35]). Let X be a universe of elements. Consider
a collection I ⊆ 2X of subsets of X . (X, I) is called an
independence system if: (a) ∅ ∈ I, and (b) if Z ∈ I and
Y ⊆ Z, then Y ∈ I as well. The subsets in I are called
independent; for any set S of elements, an inclusion-wise
maximal subset T of S that is in I is called a basis of S.

Algorithm 1: Greedy Service Placement based on Shadow
Scheduling (GSP-SS)

1 Input: Input parameters of (1)
2 Output: Service placement x and request scheduling

y
1: S ← ∅;
2: ω∗ ← 0;
3: while ∃ (l, n) ∈ (L×N) \S such that S ∪ (l, n)

satisfies (5b)-(5d) do
4: (l∗, n∗)←

arg max(l,n): S∪{(l,n)} satisfies (5b)-(5d) Ω(S ∪ {(l, n)});
5: S ← S ∪ {(l∗, n∗)};
6: Convert S to its vector representation x;
7: Compute y by solving LP for input x;

Definition 3 ([35]). Given an independence system (X, I)
and a subset S ⊆ X , the rank r(S) is defined as the
cardinality of the largest basis of S, and the lower rank ρ(S)
is the cardinality of the smallest basis of S. The independence
system is called a p-independence system (or a p-system) if
maxS⊆X

r(S)
ρ(S) ≤ p.

Lemma 3. The constraints (5b)-(5d) form a p-independence
system for p=

⌈
max cln

mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. By definition 1, (L × N, I), where I ⊆ 2L×N is a
set of all feasible solutions to (5) is an independent system,
as S = ∅ is a feasible service placement, and the subset of
any feasible service placement remains feasible. Consider any
S ⊆ L×N and any two maximal feasible service placements
S1, S2 ⊆ S1. To add a pair (l, n) ∈ S2\S1 to S1, we need to
take out a set S′ of pairs form S1, such that (S1\S′)∪{(l, n)}
remains a feasible service placement. The set S′ contains
at most

⌈
max rl

minl:rl>0 rl

⌉
pairs from {l} × N corresponding to

removing service replicas from edge cloud n to satisfy (5b),
and at most

⌈
max cln

mincln>0 cln

⌉
other pairs that correspond to

removing service replicas with non-zero placement costs to
satisfy (5c). Note that in the worst case all the existing service
replicas under S1 at edge cloud n have zero placement cost,
and hence we need to remove replicas at other edge clouds to
satisfy the budget constraint (5c). Repeating this swap to each
pair in S2\S1 shows that we reduce the number of placed
service replicas by at most p-fold in modifying S1 into S2.
Since the above holds for any S ⊂ L ×N and any maximal
independent subsets of S, the constraints (5b)-(5d) form a p-
independent system.

Combining Lemmas 2 and 3 gives the following result.

Theorem 3. Under the conditions in Lemma 2, Greedy
Service Placement based on Shadow Scheduling (Algo-
rithm 1) yields a 1/(1 + p)-approximation for (1), where p=⌈

max cln
mincln>0 cln

⌉
+
⌈

max rl
minl:rl>0 rl

⌉
.

Proof. From [34], for maximizing a monotone sub-modular
function subject to a p-system constraint, the greedy algorithm
has an approximation ratio of 1/(p+ 1).



C. Complexity
There are O(|N | × Rmax

rmin
) iterations in Algorithm 1, where

Rmax = maxn∈N Rn and rmin = minl∈L:rl>0 rl. For each
iteration, the algorithm considers O(|L| × |N |) single service
placements, and for each single service placement, we need to
evaluate the objective function by solving an O(|N |11×|L|5.5)
complexity request scheduling sub-problem [36]. Therefore,
the overall complexity of Algorithm 1 is O(|N |13 × |L|6.5 ×
Rmax

rmin
) = O(|N |13 × |L|6.5).

V. EXTENSION TO MULTI-FRAME OPTIMIZATION

So far we have considered only one frame, with the as-
sumption that our solution will be applied on a frame-by-
frame basis. However, for recurrent workloads, it is possible
to predict the request rates for a larger time window (e.g.,
24 hours) that contains multiple frames, each being a time
interval with constant request rates. In this case, the frame-
by-frame optimization framework can incur sub-optimality, as
it neglects the correlation across frames, in the sense that the
cost of placing a replica of service l at a given edge cloud
depends on where service l was placed in the previous frame.
To capture the correlation, we need to jointly optimize the
service placement across all the predictable frames.

Let F be the set of frames for which request prediction is
available. Our objective is to maximize the expected number
of requests served over all the frames:

max
∑
f∈F

Tf
∑
l∈L

∑
n∈N

λfln

∑
m∈N

yflnm (13a)

s.t.
∑
m∈N

yflnm ≤ 1, ∀l ∈ L, n ∈ N, f ∈ F, (13b)

∑
l∈L

xflmrl ≤ Rm, ∀m ∈ N, f ∈ F, (13c)

∑
l∈L

λflnκl
∑
m∈N

yflnm ≤ Kn, ∀n ∈ N, f ∈ F, (13d)

∑
l∈L

ωl

∑
n∈N

λflny
f
lnm ≤Wm, ∀m ∈ N, f ∈ F, (13e)

yflnm ≤ alnmx
f
lm, ∀l ∈ L, n,m ∈ N, f ∈ F, (13f)∑

l∈L

∑
n∈N

xfln· min
n′∈N+

(cln′nx
f−1
ln′ + cmax(1− xf−1

ln′ ))

≤ B, ∀f ∈ F, (13g)

xfln∈{0, 1}, y
f
lnm≥0, ∀l ∈ L, n,m ∈ N, f ∈ F. (13h)

This formulation is similar to the single-frame formu-
lation (1), but the scope is extended to multiple frames.
The real difference is the non-linear constraint (13g), where
cmax > maxl,n′,n cln′n is a large constant. Essentially,
minn′∈N+

(cln′nx
f−1
ln′ + cmax(1−xf−1ln′ )) is the minimum cost

of placing a replica of service l at edge cloud n in frame f ,
which depends on the service placement in frame f − 1.

The multi-frame optimization (13) is a mixed integer
non-linear program (MINP) that is even harder than (1).
Given a service placement (xfln)f∈F,l∈L,n∈N , the remaining
optimization is still an LP in (yflnm)f∈F,l∈L,n,m∈N . Thus,
GSP-SS (Algorithm 1) still applies, where we iteratively
place one replica at a time in a selected frame, subject to
constraints (13c, 13g), to maximize the objective value of the
corresponding LP. We leave detailed analysis to future work.

VI. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed algo-
rithms using both synthetic and trace-driven simulations.

A. Benchmarks

To assess the performance of our algorithm, we use the
following benchmarks:
1) the optimal solution of (1) using an ILP solver;
2) LP-relaxation with rounding, which first solves the LP
relaxation of (1), and then rounds the placement variables to
{0, 1}, subject to R- and B-constraints;
3) the top-K solution, which sequentially considers each edge
cloud m ∈ N , computes the total demand for each service l
that can be scheduled to m, defined as Λlm =

∑
n∈N λlnalnm,

and then places services at m in descending order of Λlm until
reaching Rm or exhausting the budget.
The performance of every solution is evaluated by the optimal
objective value of (4) for the given service placement.

B. Simulation Setup

For synthetic simulations, unless stated otherwise, we set
|N | = 6 and |L| = 100. The values for Rn, Kn and Wn (∀n ∈
N ) are drawn uniformly from the intervals [24, 36], [16, 24]
and [32, 48], respectively.1 Assuming that the edge clouds are
associated with hexagon cells arranged into two rows, we set
the costs of replicating a service from an edge cloud k hops
away or the remote cloud to 0.2k and 2, respectively, and the
budget B to 0.2 · |N | · |L|. We set alnm such that each request
can only be served by edge clouds within 2 hops of the edge
cloud it is submitted to. The arrival rate of request l is obtained
as λln = λnpln, where λn (total request rate in edge cloud n)
is drawn randomly from the interval [3, 5]. For pln (popularity
of service l in edge cloud n), we draw a random subset of
services Ln, and set pln ∝ i−αl for each l ∈ Ln, where il is
the rank of l in Ln, and α = 0.5 is the skewness parameter
of Zipf’s distribution. We initialize the system by randomly
placing |L|/8 services. For each service l, κl, ωl and rl are
drawn uniformly from [0.5, 1]. All results are averaged over
50 Monte Carlo runs.

For the trace-driven simulation, we extract user and edge
cloud locations from real mobility traces and cell tower
locations. We use the taxicab traces from [37], by extracting
the traces of 36 users over a 520-minute period with location
updates every 10 minutes. Every frame consists of 4 time
slots, with each slot lasting for 10 minutes. We assign users
into Voronoi cells based on cell tower locations obtained
from http://www.antennasearch.com, from which
we select a subset of 6 cell towers that are at least 9.5 km
apart to represent the locations of edge clouds. User requests
are generated from a wireless trace from [38], containing
transmission timestamps generated by 5 different applications
from 36 wireless devices. We associate each device with a user
in the taxicab trace, and duplicate each trace 5 times to obtain

1The values of κl and Kn are in KBps, rl and Rn in TB, and ωl as well
as Wn in Mflops/s.



|L| = 25 services. As each timestamp in the original trace rep-
resents a single packet, we stretch the time axis by 60 (by treat-
ing the time unit as ‘minute’ instead of ‘second’) to simulate
the arrival process of service requests. The obtained request
rates range from 4,330 to 486,841, with a mean of 45,254
(requests/slot). For each edge cloud, we randomly choose a
storage capacity Rn of 3-6 TB, a communication capacity of
16-48 Mbps (i.e., Kn ∈ [1.2, 3.6] GB/slot), and a computation
capacity of 50-100 Gflops/sec (i.e., Wn ∈ [30, 60] Tflops/slot),
where a slot = 10 min. The other parameters are as before.

C. Results
Synthetic simulation: We compare the performance of dif-

ferent algorithms when varying different input parameters, one
at a time, via synthetic simulations.

Fig. 4 illustrates the effect of increasing the computation
capacity on the percentage of served requests. As expected, an
increase in the computation capacity W leads to a higher per-
centage of served requests. When comparing the performance
of different algorithms for the same computation capacity, we
can observe from Fig. 4 that GSP-SS considerably outperforms
LP-relaxation with rounding and top-K. Furthermore, it is very
close to the optimal solution. We have verified that GSP-SS
achieves over 90% of the optimal performance, i.e., the ratio of
served requests when using GSP-SS over the optimal solution
is greater than 0.9 on the average. Similar observations have
been made in the other simulations as well.

We note that our simulation setup does not satisfy the
condition in Theorem 3, e.g., κl’s are different, and thus the
theoretical approximation guarantee does not apply. Neverthe-
less, we have observed empirically that GSP-SS always yields
near-optimal performance.

In Figs. 5-7, we vary the other resource parameters, in-
cluding the budget, the storage capacity, and the communica-
tion capacity. Conclusions similar to Fig. 4 follow. Namely,
increasing these parameters improves the performance. This
trend is more obvious in Fig. 5 and Fig. 6, as these resources
directly affect the set of feasible service placements.

We further vary parameters of request generation. Fig. 8
shows that as we increase the average request rate, the percent-
age of served requests decreases notably due to the contention
of resources. Fig. 9 shows that as we increase the skewness of
service popularities by increasing α, the optimal solution and
GSP-SS remain the same, while the baselines (LP relaxation
with rounding and top-K) improve slightly.

Trace-driven simulation: We cross-validate our observations
in a more realistic scenario driven by real traces, as described
in Section VI-B. Fig. 10 shows the performance of each
algorithm over time. ‘Predicted’ values are the predicted per-
centage of served requests when solving (1) at the beginning
of each frame. ‘Actual’ values are the expected percentage
of requests served in each slot, computed by (4) for the
requests arrived in that slot and the service placement of
the corresponding frame. As observed from Fig. 10, GSP-SS
closely approximates the optimal not only in the predicted
performance but also in the actual performance, while always
outperforming the baselines.

Finally, we evaluate the extended GSS-SS for multi-frame
optimization (13). Fig. 11 shows the performance based on
request prediction over an |F |-frame sliding window. We skip
the other algorithms, as top-K performs the same as in Fig. 10,
the optimal solution is hard to compute due to nonlinearity
of (13), and LP relaxation does not apply. As in Fig. 10,
‘predicted’ values are based on the request rates predicted at
the beginning of each window, and ‘actual’ values are based
on the actual request rates in each slot. We see that prediction
over a larger window improves the performance of GSS-SS
(in terms of actual values), and 2-frame prediction suffices.

VII. CONCLUSION

We proposed a two-time-scale solution for joint service
placement and request scheduling in edge clouds under com-
munication, computation, and storage constraints. We not only
proved the NP-hardness of the problem in the general case, but
also characterized its complexity in all special cases. By com-
bining the greedy heuristic with shadow request scheduling,
we developed a polynomial-time service placement algorithm,
which was proved to give a constant approximation ratio
under certain conditions. Extensive simulations showed that
the proposed algorithm achieves near-optimal performance.
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