
DYNAMIC SERVICE PLACEMENT IN
MOBILE MICRO-CLOUDS

SHIQIANG WANG

A Thesis Submitted in Fulfilment of Requirements for the Degree of

Doctor of Philosophy of Imperial College London and

Diploma of Imperial College

Communications and Signal Processing Group

Department of Electrical and Electronic Engineering

Imperial College London

2015

Copyright Notice

The copyright of this thesis rests with the author and is made available under

a Creative Commons Attribution Non-Commercial No Derivatives licence. Re-

searchers are free to copy, distribute or transmit the thesis on the condition that they

attribute it, that they do not use it for commercial purposes and that they do not alter,

transform or build upon it. For any reuse or redistribution, researchers must make

clear to others the licence terms of this work.

Declaration of Originality

I certify that the intellectual content of this thesis is the product of my own work

and that all the assistance received in preparing this thesis and sources have been

acknowledged.

Shiqiang Wang

Abstract

Cloud computing is an important enabling technique for running complicated appli-

cations on resource-limited handheld devices, personal computers, or small enter-

prise servers, by offloading part of the computation and storage to the cloud. How-

ever, traditional centralized cloud architectures are incapable of coping with many

emerging applications that are delay-sensitive and require large amount of data ex-

change between the front-end and back-end components of the application. To tackle

these issues, the concept of mobile micro-cloud (MMC) has recently emerged. An

MMC is typically connected directly to a network component, such as a wireless

basestation, at the edge of the network and provides services to a small group of

users. In this way, the communication distances between users and the cloud(s) host-

ing their services are reduced, and thus users can have more instantaneous access to

cloud services.

Several new challenges arise in the MMC context, which are mainly caused by

the limited coverage area of basestations and the dynamic nature of mobile users,

network background traffic, etc. Among these challenges, one important problem is

where (on which cloud) to place the services (or, equivalently, to execute the service

applications) to cope with the user demands and network dynamics. We focus on

this problem in this thesis, and consider both the initial placement and subsequent

migration of services, where migration may occur when the user location or network

conditions change.

The problem is investigated from a theoretical angle with practical considera-

tions. We first abstract the service application and the physical cloud system as

graphs, and propose online approximation algorithms for finding the placement of

iv

an incoming stream of application graphs onto the physical graph. Then, we con-

sider the dynamic service migration problem, which we model as a Markov decision

process (MDP). The state space of the MDP is large, making it difficult to solve

in real-time. Therefore, we propose simplified solution approaches as well as ap-

proximation methods to make the problem tractable. Afterwards, we consider more

general non-Markovian scenarios but assume that we can predict the future costs

with a known accuracy. We propose a method of dynamically placing each service

instance upon its arrival and a way of finding the optimal look-ahead window size

for cost prediction. The results are verified using simulations driven by both syn-

thetic and real-world data traces. Finally, a framework for emulating MMCs in a

more practical setting is proposed. In our view, the proposed solutions can enrich

the fundamental understanding of the service placement problem. It can also path the

way for practical deployment of MMCs. Furthermore, various solution approaches

proposed in this thesis can be applicable or generalized for solving a larger set of

problems beyond the context of MMC.

Acknowledgments

Looking back to the years of my Ph.D. study, there are many colleagues and friends

whom I would like to thank. First, I would like to deeply thank my Ph.D. supervisor

Prof. Kin K. Leung, who has been continuously supporting and guiding me through-

out these years. Prof. Leung sets an excellent example as a world-class researcher.

From him, I have learned not only how to do research, but also how to behave in

the scientific community, which I believe will be my standard throughout the rest

of my career. Furthermore, he has provided me with great opportunities of working

with other outstanding researchers in different parts of the world – a very valuable

experience for my professional development.

I sincerely thank my close collaborators, Dr. Rahul Urgaonkar and Dr. Ting He,

at IBM T.J. Watson Research Center in New York, Dr. Murtaza Zafer at Nyansa

Inc. in California, and Dr. Kevin Chan at the U.S. Army Research Laboratory

(ARL) in Maryland. Their superb technical skills and dedication to research greatly

impressed me and helped me carry out the research work in this thesis. I have always

been enjoying the fruitful collaborations with them. I would also like to thank Dr.

Seraphin Calo (IBM) and Dr. Kang-Won Lee (formerly at IBM) who provided me

with precious internship opportunities in the summers of 2013 and 2014. I also

thank many other collaborators on the U.S./U.K. International Technology Alliance

(ITA) Project, including Dr. Theodoros Salonidis (IBM), Dr. Bong-Jun Ko (IBM),

Dr. Raghu Ganti (IBM) and Katy Warr (Roke Manor Research), as well as other

collaborators of mine. Discussions with them have always been enlightening and

bringing new ideas.

With thanks, I would like to acknowledge that my Ph.D. work was funded in

vi

part by the ITA Project and a Scholarship from the Department of Electrical and

Electronic Engineering at Imperial College London.

Sincere thanks to my viva examiners Dr. Moez Draief (Imperial College London)

and Dr. Ananthram Swami (ARL) for their time in attending my viva and providing

insightful feedback.

I finally thank my family and friends, for their endless support and encourage-

ment, which makes me feel happy wherever I am and whatever I encounter.

Shiqiang Wang

Related Publications

The work reported in this thesis has been published/submitted as the following pa-

pers.

1. Application Graph Placement (Chapters 2–3)

(a) S. Wang, M. Zafer, and K. K. Leung, “Online workload placement with

provable performance guarantees in cloud environments,” preprint avail-

able, to be submitted for journal publication.

(b) S. Wang, G.-H. Tu, R. Ganti, T. He, K. K. Leung, H. Tripp, K. Warr, and

M. Zafer, “Mobile micro-cloud: application classification, mapping, and

deployment,” in Proc. of Annual Fall Meeting of ITA 2013, Oct. 2013.

(c) S. Wang, M. Zafer, K. K. Leung, and T. He, “Security-aware application

placement in a mobile micro-cloud,” in Proc. of Annual Fall Meeting of

ITA 2013, Oct. 2013.

2. MDP-Based Approach to Dynamic Service Migration (Chapter 4)

(a) S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,

“Dynamic service migration in mobile edge-clouds based on Markov de-

cision processes,” submitted to IEEE Transactions on Mobile Comput-

ing.

(b) S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,

“Dynamic service migration in mobile edge-clouds,” in Proc. of IFIP

Networking 2015, May 2015.

viii

(c) S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,

“Mobility-induced service migration in mobile micro-clouds,” in Proc.

of IEEE Military Communications Conference (MILCOM) 2014, Oct.

2014.

(d) S. Wang, R. Urgaonkar, M. Zafer, K. Chan, T. He, and K. K. Leung,

“Mobility-driven service migration in mobile micro-clouds,” in Proc. of

Annual Fall Meeting of ITA 2014, Sept. 2014.

3. Dynamic Service Placement with Predicted Future Costs (Chapter 5)

(a) S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,

“Dynamic service placement for mobile micro-clouds with predicted fu-

ture costs,” submitted to IEEE Transactions on Parallel and Distributed

Systems.

(b) S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,

“Dynamic service placement for mobile micro-clouds with predicted fu-

ture costs,” in Proc. of Annual Fall Meeting of the ITA 2015, Sept. 2015.

(c) S. Wang, R. Urgaonkar, K. Chan, T. He, M. Zafer, and K. K. Leung, “Dy-

namic service placement for mobile micro-clouds with predicted future

costs,” in Proc. of IEEE International Conference on Communications

(ICC) 2015, Jun. 2015.

4. Emulation-Based Study (Chapter 6)

(a) S. Wang, K. Chan, R. Urgaonkar, T. He, and K. K. Leung, “Emulation-

based study of dynamic service placement in mobile micro-clouds,” in

Proc. of IEEE Military Communications Conference (MILCOM) 2015,

Oct. 2015.

ix

(b) S. Wang, K. Chan, R. Urgaonkar, T. He, and K. K. Leung, “Emulation-

based study of dynamic service placement in mobile micro-clouds,” in

Proc. of Annual Fall Meeting of the ITA 2015, Sept. 2015.

The following publications were completed as part of my Ph.D. study, but its

contents are not included in this thesis for compactness.

1. Dynamic Service Migration and Workload Scheduling Based on Lyapunov

Optimization

(a) R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,

“Dynamic service migration and workload scheduling in edge-clouds,”

in Proc. of IFIP Performance 2015, Oct. 2015.

(b) R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,

“Dynamic service migration and workload scheduling in micro-clouds,”

in Proc. of Annual Fall Meeting of the ITA 2015, Sept. 2015.

(c) R. Urgaonkar, S. Wang, K. Chan, and K. K. Leung, “Dynamic service

migration and workload scheduling using Lyapunov optimization,” in

Proc. of Annual Fall Meeting of ITA 2014, Sept. 2014.

2. Other Topics Related to Mobile Micro-Clouds

(a) S. Wang, R. Urgaonkar, T. He, K. Chan, and K. K. Leung, “Distributed

workload scheduling with limited control information exchange in mo-

bile micro-clouds,” in Proc. of Annual Fall Meeting of the ITA 2015,

Sept. 2015.

(b) A. Freeman, K. Warr, H. Tripp, S. Wang, K. Leung, “Assessing the appli-

cability of commercial cloud distributed processing techniques to mobile

micro-cloud deployments,” in Proc. of Annual Fall Meeting of ITA 2014,

Sept. 2014.

x

3. Other Topics

(a) S. Wang, L. Le, N. Zahariev, and K. K. Leung, “Centralized rate con-

trol mechanism for cellular-based vehicular networks,” in Proc. of IEEE

Global Communications Conference (GLOBECOM) 2013, Dec. 2013.

Contents

Abstract iii

Acknowledgments v

Related Publications vii

List of Figures xvi

List of Tables xx

List of Algorithms xxi

Abbreviations xxii

Mathematical Notations xxiii

1 Introduction 1

1.1 Overview . 1

1.1.1 Initial Service Placement 4

1.1.2 Real-Time Service Migration 5

1.2 Motivation . 6

1.3 Summary of Contributions . 7

1.4 Organization of the Thesis . 10

2 Background of Dynamic Service Placement 11

2.1 Definitions . 11

2.2 A Mixed-Integer Linear Program (MILP) Approach to Offline Ser-

vice Placement . 14

2.2.1 Additional Definitions . 15

Contents xii

2.2.2 MILP Formulation . 16

2.2.3 Example Mapping Result 18

2.3 Approximation Algorithms . 19

3 Online Placement of Application Graphs 23

3.1 Introduction . 23

3.1.1 Related Work . 24

3.1.2 Our Approach . 25

3.1.3 Motivations and Main Results 26

3.2 Problem Formulation . 30

3.2.1 Definitions . 30

3.2.2 Objective Function . 32

3.3 Basic Assignment Unit: Single Linear Application Graph Placement 33

3.3.1 Problem Formulation . 34

3.3.2 Decomposing the Objective Function 35

3.3.3 Optimal Algorithm . 37

3.3.4 Example . 38

3.3.5 Extensions . 39

3.4 Online Placement Algorithms for Tree Application Graphs 40

3.4.1 Hardness Result . 41

3.4.2 When All Junction Node Placements Are Given 41

3.4.3 When at Least One Junction Node Placement Is Not Given . 49

3.5 Numerical Evaluation . 54

3.6 Discussion . 59

3.7 Summary . 62

4 An MDP-Based Approach to Dynamic Service Migration 64

4.1 Introduction . 64

Contents xiii

4.1.1 Related Work . 65

4.1.2 Main Results . 66

4.2 Problem Formulation . 68

4.2.1 Control Decisions and Costs 69

4.2.2 Performance Objective . 70

4.2.3 Characteristics of Optimal Policy 71

4.2.4 Generic Notations . 72

4.3 Constant Cost Model under 1-D Mobility 72

4.3.1 Definitions . 72

4.3.2 Optimal Threshold Policy 76

4.3.3 Simplifying the Cost Calculation 78

4.3.4 Algorithm for Finding the Optimal Thresholds 79

4.3.5 Simulation Results . 83

4.4 Constant-Plus-Exponential Cost Model under 2-D Mobility 91

4.4.1 Simplifying the Search Space 91

4.4.2 Optimal Policy for Distance-Based MDP 92

4.4.3 Approximate Solution for 2-D Mobility Model 100

4.4.4 Application to Real-World Scenarios 110

4.5 Discussion . 129

4.6 Summary . 131

5 Dynamic Service Placement with Predicted Future Costs 132

5.1 Introduction . 132

5.1.1 Related Work . 133

5.1.2 Main Contributions . 133

5.2 Problem Formulation . 135

5.2.1 Definitions . 136

5.2.2 Actual and Predicted Costs 139

Contents xiv

5.2.3 Our Goal . 141

5.3 Offline Service Placement with Given Look-Ahead Window Size . . 141

5.3.1 Procedure . 142

5.3.2 Equivalence to Shortest-Path Problem 143

5.3.3 Algorithm . 143

5.4 Complexity Reduction and Online Service Placement 144

5.4.1 Procedure . 144

5.4.2 Performance Analysis . 148

5.5 Optimal Look-Ahead Window Size 161

5.5.1 Upper Bound on Cost Difference 163

5.5.2 Characteristics of the Problem in (5.26) 165

5.5.3 Finding the Optimal Solution 167

5.6 Simulation Results . 168

5.6.1 Synthetic Arrivals and Departures 170

5.6.2 Real-World Traces . 171

5.7 Summary . 174

6 Emulation-Based Study 175

6.1 Introduction . 175

6.2 System Architecture . 177

6.2.1 Network Connection and User Mobility 177

6.2.2 Service Model . 178

6.3 Packet Exchange and Placement Control 180

6.3.1 Control Messages . 180

6.3.2 Packet Exchange and Control Procedure 182

6.3.3 Service Placement Decisions 183

6.4 Emulation Scenario and Results 185

6.5 Summary . 191

Contents xv

7 Conclusions and Future Work 192

7.1 Contributions and Conclusions . 192

7.1.1 Application Graph Placement 192

7.1.2 MDP-Based Approach to Dynamic Service Migration . . . 193

7.1.3 Dynamic Service Placement with Predicted Future Costs . . 195

7.1.4 Emulation-Based Study 195

7.2 Future Work . 196

Bibliography 198

A Approximation Ratio for Cycle-free Mapping 206

B Constant-Plus-Exponential Cost Approximation to General Cost Func-

tions 210

C Proofs 214

C.1 Proof of Proposition 3.3 . 214

C.2 Proofs of Proposition 4.1 and Corollary 4.1 217

C.2.1 Proof of Proposition 4.1 217

C.2.2 Proof of Corollary 4.1 . 219

C.3 Proof of Proposition 4.5 . 220

C.4 Proof of Proposition 5.2 . 230

C.5 Proof of Proposition 5.4 . 236

List of Figures

1.1 Application scenario with mobile micro-clouds (MMCs). 2

1.2 Example scenario with face recognition application, where the red

arrows show the data transmission path: (a) user connected to MMC

1, (b) user connected to MMC 2. 3

2.1 The service placement problem. 11

2.2 Domain and conflict constraints: (a) domain constraint – applica-

tion node 1 can only be mapped to physical nodes A, B, and C and

application node 2 can only be mapped to physical nodes D and E;

(b) conflict constraint – application nodes 1 and 3 cannot be mapped

onto the same physical node. 15

2.3 Example of service placement: (a) problem setting, (b) mapping re-

sult. In (a), the numbers besides nodes and edges in the application

graph are resource demands, and the numbers in the physical graph

are capacity values, the underlined numbers correspond to edge val-

ues. In (b), the underlined numbers are the bandwidth consumption

on the corresponding communication links. 19

3.1 Mapping with and without cycles. In this example, the path in the

application graph is between application node 1 and application node 5. 28

3.2 Auxiliary graph and algorithm procedure for the placement of a lin-

ear application graph onto a tree physical graph. 39

List of Figures xvii

3.3 Example of application graph with given placement of junction

nodes. Junction node 2 is placed on physical node B and junction

node 5 is placed on physical node E. The algorithm needs to decide

the placement of the remaining nodes, subject to the cycle-free

constraint. 42

3.4 Example of application graphs with some unplaced junction nodes,

the nodes and edges within each dashed boundary form a general

branch: (a) nodes 2 and 5 are both unplaced, (b) node 2 is placed,

node 5 is unplaced, (c) node 2 is placed, nodes 5 and 6 are unplaced. 50

3.5 Maximum resource utilization when junction node placements are

pre-specified. 57

3.6 Maximum resource utilization when junction node placements are

not pre-specified. 57

3.7 Example where application and physical graphs are not trees: (a)

application graph, (b) physical graph, (c) restricted physical graph

with pre-specified placement of application nodes 1 and 2. 60

4.1 Timing of the proposed service migration mechanism. 69

4.2 MDP model for service migration. The solid lines denote transition

under action a = 0 and the dotted lines denote transition under action

a = 1. When taking action a = 1 from any state, the next state is

e = −1 with probability q, e = 0 with probability 1−p−q, or e = 1

with probability p. 74

4.3 Frequency of different optimal threshold values under γ = 0.9. . . . 84

4.4 Performance under different ξ with γ = 0.5. 86

4.5 Performance under different ξ with γ = 0.9. 87

4.6 Performance under different ξ with γ = 0.99. 88

List of Figures xviii

4.7 An example of distance-based MDP with the distances {d(t)} (be-

fore possible migration) as states. In this example, migration is only

performed at state N , and only the possible action of a(N) = 1

is shown for compactness. The solid lines denote state transitions

without migration. 92

4.8 Example of constant-plus-exponential cost function cd(y). 94

4.9 Example of 2-D offset model on hexagon cells, where N = 3. . . . 100

4.10 Simulation result for 2-D random walk with γ = 0.5. 106

4.11 Simulation result for 2-D random walk with γ = 0.9. 107

4.12 Simulation result for 2-D random walk with γ = 0.99. 108

4.13 Instantaneous average cost per user in each timeslot over a day in

trace-driven simulation, where Rt = Rp = 1.5. An enlarged plot

of the circled area is shown on the top-right of the plot. The arrows

annotated with (A), (B), (C), and (D) point to the average values over

the whole day of the corresponding policy. 127

4.14 Cost reduction (averaged over the entire day) compared to alternative

policies in trace-driven simulation, the error bars denote the standard

deviation (where we regard the instantaneous cost at different time

of the day as samples): (a)–(b) cost reduction vs. different Rp, (c)–

(d) cost reduction vs. different Rt, (e) cost reduction vs. different

number of cells with MMC, (f) cost reduction vs. different capacity

limit of each MMC (expressed as the maximum number of services

allowed per MMC). 128

5.1 Timing of the proposed approach. 136

5.2 Shortest-path formulation with N = 2, M = 2, and T = 3. Instance

i = 1 is running in all slots, instance i = 2 arrives at the beginning

of slot t0 + 1 and is running in slots t0 + 1 and t0 + 2. 143

List of Figures xix

5.3 Illustration of the performance gap for t = 1, T = 1, and N = 1,

where amax denotes the maximum resource consumption of a single

instance. In this example, (5.12) becomes φ ≥ φnum
φdenom

, and (5.13)

becomes ψ ≥ ψnum
ψdenom

. 158

5.4 Results with synthetic traces: (a) objective function value, (b) aver-

age performance ratio. 171

5.5 Results with real-world traces (where the costs are summed over all

clouds, i.e., the A(t) values): (a) Actual costs at different time of a

day, where β = 0.4 for the proposed method E. The arrows point to

the average values over the whole day of the corresponding policy.

(b) Actual costs averaged over the whole day. 173

6.1 System architecture for CORE emulation. 177

6.2 Emulation scenario (source of map: https://maps.google.com/). . . . 186

6.3 Instantaneous round-trip delays of service packets for the first

3, 000 s of emulation with T = 2 s: (a) AM policy, (b) IM policy, (c)

MAH policy. 188

6.4 Moving average results for the first 3, 000 s of emulation with T =

2 s: (a) round-trip delay of service packets, (b) number of migrations. 189

6.5 Overall results: (a) average round-trip delay of service packets (error

bars denote the standard deviation), (b) average number of migra-

tions per second, (c) total number of received service packets. 190

B.1 Examples of approximating a general cost function with exponential

cost function: (a) f(x) = ln(x + 1) + 10, (b) f(x) =
√
x+ 1 + 5,

(c) f(x) = x2. 212

C.1 Illustration of original and modified 2-D MDPs, only some exemplar

states and transition probabilities are shown: (a) original, (b) modified.221

List of Tables

6.1 Emulation setup . 187

List of Algorithms

3.1 Placement of a linear application graph onto a tree physical graph . 38

3.2 Online placement of a service that is either a simple branch or a set

of nodes with given placement . 45

3.3 High-level procedure for multiple arriving tree application graphs . 47

3.4 Tree-to-tree placement when some junction nodes are not placed . . 52

4.1 Modified policy iteration algorithm for finding the optimal thresholds 81

4.2 Modified policy-iteration algorithm based on difference equations . 99

5.1 Procedure for offline service placement 142

5.2 Algorithm for solving (5.3) . 145

5.3 Procedure for online service placement 147

5.4 Binary search for finding optimal window size 168

6.1 Procedure at the core cloud . 182

6.2 Procedure at each MMC . 183

6.3 Procedure at each user . 183

Abbreviations

1-D One-Dimensional

2-D Two-Dimensional

AM Always Migrate

CORE Common Open Research Emulator

EMANE Extendable Mobile Ad-hoc Network Emulator

FLOPs Floating-Point Operations

IM Infrequently Migrate

LP Linear Program

MAH Moving Average + Hysteresis

MDP Markov Decision Process

MILP Mixed-Integer Linear Program

MMC Mobile Micro-Cloud

OPT True Optimal Result

vs. Versus

w.r.t. With respect to

Mathematical Notations

Below are some generic notations used in this thesis, specific notations will be intro-

duced in each chapter.

, Is defined to be equal to

|V| Number of elements in set V

R = (V , E) GraphR with nodes V and edges E

e = (v1, v2) Edge e connects nodes v1 and v2

v → n, e→ l Application node v (or link e) is mapped to phys-
ical node n (or link l)

‖ϕ1 − ϕ2‖ (or |ϕ1 − ϕ2|
for 1-D cases)

Distance between locations ϕ1 and ϕ2

E {·} Expected value

Pij or Pi,j Transition probability from state i to state j

Pr{X} Probability of random event X

a · b Dot-product of vectors a and b

(g)m1m2
(or (g)m1m2m3

) The (m1,m2)th (or (m1,m2,m3)th) element in
vector or matrix g

dun,t
dy

(a) Derivative of un,t(y) w.r.t. y evaluated at y = a

∂wnh,t
∂znh

(a, b, c) Partial derivative of wnh,t(yn, yh, znh) w.r.t. znh
evaluated at yn = a, yh = b, znh = c

(y, z) Vector that concatenates vectors y and z

∇x (or ∇y,z) Gradient w.r.t. each element in vector x (or
(y, z))

CHAPTER 1

Introduction

1.1 Overview

Mobile applications have become increasingly popular over recent years, with exam-

ples including data streaming, real-time video processing, etc. These applications

generally require high data processing capability. However, portable devices (e.g.

smartphones) are limited by their size and battery life, which makes them incapable

of performing complicated computational tasks. A solution to this problem is to

utilize cloud computing techniques [1, 2], where the cloud provides additional data

processing and computational capabilities. Such cloud-based applications usually

consist of a front-end component running on the mobile device and one or multiple

back-end components running on the cloud [3, 4]. This architecture makes it possi-

ble to instantiate complicated applications from handheld devices that have limited

processing power.

Traditionally, cloud services are provided by centralized data-centers that may

be located far away from end-users, which can be inefficient because the user may

suffer from long latency and poor connectivity due to long-distance communication

[5]. The question on how to provide readily accessible cloud services has been an

ongoing challenge, and it has become particularly important in recent years as delay-

sensitive and bandwidth-consuming applications emerge. As a result, the concept

of mobile micro-cloud (MMC) has recently emerged. The core idea of MMC is

to move computation closer to users, where small servers or data-centers that can

1.1. Overview 2

MMC 1 MMC 2 MMC n

Area 1 Area n
…

Area 2

Backhaul network

…

Centralized (core) cloud

…

Figure 1.1: Application scenario with mobile micro-clouds (MMCs).

host cloud applications are distributed across the network and connected directly to

entities (such as cellular basestations) at the network edge [6, 7]. Fig. 1.1 shows

an application scenario where MMCs coexist with the centralized core cloud. The

idea of MMCs is also known as cloudlets [8], edge computing [9], fog computing

[10], small cell cloud [11], follow me cloud [12], etc. We use the term “MMC” in

this thesis. MMCs can be used for many applications that require low latency, high

data processing capability, or high reliability [4, 5, 13, 14, 15]. They are expected

to develop rapidly with the growth of new mobile applications and more advanced

smartphones, and are also more robust than traditional cloud computing systems [8].

One important problem in MMCs is to decide where the computation for each

user should be performed, with the presence of user mobility and other dynamic

changes in the network. When a user requests for a service provided by the cloud, the

service can run either in the centralized cloud or in one of the MMCs. There can also

be multiple servers or datacenters within the centralized cloud or within each MMC.

The question is how to choose the optimal location to run the service. In addition, the

user may move across different geographical areas, thus another question is whether

and where should we migrate (move) the service when the user location or network

condition changes. We refer to the above problems as the dynamic service placement

problem, which is the focus of this thesis.

1.1. Overview 3

Face recognition Database

Centralized (core) cloud

Video
source

Face detection User

Backhaul network

Image processing &
Feature extraction

MMC 1 MMC 2

(a)

Video
source

Face detection User

Backhaul network

Image processing &
Feature extraction

MMC 1 MMC 2

Face recognition Database

Centralized (core) cloud

(b)

Figure 1.2: Example scenario with face recognition application, where the red ar-
rows show the data transmission path: (a) user connected to MMC 1, (b) user con-
nected to MMC 2.

1.1. Overview 4

We illustrate the service placement problem with an example face recognition

application. This application recognizes faces from a real-time video stream cap-

tured by the camera of a hand-held device, as shown in Fig. 1.2. Such applications

typically consist of at least three modules: face detection; image processing and fea-

ture extraction; and face recognition. Although one can further break each module

into smaller building blocks, we consider each module as a whole for simplicity.

The service placement problem aims to find the location to place each module. As

mentioned above, the problem includes two subproblems: initial service placement

and real-time service migration.

1.1.1 Initial Service Placement

The initial service placement refers to the placement of different modules at the

time the service is initialized, i.e., when the face recognition application starts. One

possible result of initial service placement is shown in Fig. 1.2(a).

Here, the face detection module is placed at the user, meaning that this module

runs directly on the user device. The purpose of face detection is to find areas of

an image that contain faces. This task requires relatively low processing capability,

and once finished, the application only needs to send specific parts of the image that

contain faces for next stage processing. Therefore, it can be beneficial to place this

module on the user device, because it saves the necessary communication bandwidth

between user and cloud, and at the same time does not consume much processing

power of the user device.

The image processing and feature extraction stage usually requires more process-

ing than face detection. Hence, it can be placed on the MMC closest to the user, in

order not to overload the user device’s processing resource. After processing at this

stage, only the extracted features need to be sent to the next stage (face recognition,

which is placed on the centralized cloud), thus such a placement reduces the amount

1.1. Overview 5

of data sent through the backhaul network.

The reason for placing the face recognition module on the centralized cloud is

that this module often needs to frequently look up a large database, which contains

features of different people’s faces. It is often impractical to transfer the whole

database to MMCs due to its size. Thus this placement appears to be good from our

reasoning.

Most realistic applications are more complex than our example application here.

Therefore, a conceptual analysis such as the above is not always possible. We need

to develop algorithms for finding optimal placement. Multiple services may also

arrive to the cloud system over time, thus we need to consider such online service

arrivals when developing placement algorithms.

1.1.2 Real-Time Service Migration

After the initial service placement, the mobile user may move to a different location.

One possibility after such a movement is that the user is now associated to a different

MMC, and it has to send data via the backhaul network if the related application

module is still running in the previous MMC, as shown in Fig. 1.2(b). Obviously,

in Fig. 1.2(b), the communication overhead can be reduced if we migrate the image

processing and feature extraction module from MMC 1 to MMC 2. However, as part

of migration, data related to the state of the application module usually needs to be

transmitted from the original MMC 1 to the new MMC 2. Migration decisions need

to be made in a considerate way to achieve a good tradeoff between the migration

cost and benefits after migration. A well-designed algorithm is usually required for

making such decisions.

Except for user mobility, other factors that may trigger migration include change

in resource availability (caused by factors other than user mobility) and mobility of

MMCs (for scenarios where MMCs are installed on moving vehicles, for example).

1.2. Motivation 6

We mainly focus on user mobility as a dominating cause for migration in this thesis,

but our results can be extended to more general cases by incorporating parameters in

the cost functions to reflect resource availability and considering the relative mobility

of users with respect to MMCs.

1.2 Motivation

The previous section has shown the importance of the service placement problem.

This section outlines the main gaps between existing literature and what we would

like to achieve in this thesis. Detailed literature review on specific aspects are in-

cluded in each chapter later on.

Cloud computing is a form of distributed computing, where computation is dis-

tributed across multiple machines and data exchange is necessary over the com-

munication network. Such a distributed system has many benefits. For example, as

mentioned before, resource intensive processing tasks can be offloaded to more pow-

erful computers; processing components that require access to large databases can

be placed close to the database, to reduce the network communication overhead. In

the traditional setting, cloud services are provided by large datacenters, in which the

allocation of jobs to servers (i.e., service placement) and communication within the

datacenter are generally predictable and can usually be scheduled by a centralized

scheduler.

The idea of MMC was introduced only a few years ago, driven by the increasing

popularity and demand of highly reliable and low-latency cloud applications, such as

the face recognition application mentioned in Section 1.1. Compared to traditional

centralized clouds, MMCs have the following features:

1. Computation is distributed across a large geographical area, whereas in the

centralized cloud, computation is usually only distributed within the datacen-

1.3. Summary of Contributions 7

ter.

2. There is a hierarchy from the core centralized cloud down to the MMCs at the

network edge. When we allow multiple layers of MMCs, those MMCs that

are closer to the network edge serve a smaller area.

3. Compared to centralized clouds, MMCs exhibit much more dynamics in re-

source availability, due to user mobility and other uncontrollable factors in the

network and the cloud (see Section 1.1.2).

The above features cause many existing approaches for service placement in cen-

tralized cloud computing [16, 17] inapplicable to MMC, because those approaches

do not consider the presence of dynamically changing resource availability related

to user mobility. This is a fundamental challenge in MMCs. Conversely, the hierar-

chical nature of MMCs can enable more efficient service placement algorithms.

We also note that most existing literatures on MMC focus on system aspects

[4, 5, 8, 9, 10, 12, 13, 14, 15], while only a few consider its theoretical aspects under

simplified settings [11, 18, 19]. The goal of our research is therefore to enrich the

theoretical understanding of MMCs, with focus on the dynamic service placement

problem. Our results include a set of efficient placement algorithms with provable

performance guarantees, which provide insights for practical deployment and are

also directly applicable in practice.

1.3 Summary of Contributions

As illustrated by the example in Section 1.1, the service placement problem contains

two subproblems. One is the initial placement of services, and the other is the real-

time service migration due to dynamic changes. We consider both aspects in this

thesis.

1.3. Summary of Contributions 8

The main contributions of this thesis are summarized as follows:

(a) We first model the resource demand of a service with an application/service

graph and the resource availability of the physical computing system with a

physical graph. The resource demand/availability are annotated on each node

and link of these graphs, and there can be multiple types of computational re-

sources at nodes. The service placement problem is then essentially the problem

of placing the application graph onto the physical graph, where the node and

link assignment1 are jointly considered. With this model, we formulate the of-

fline placement problem for general graphs as a mixed-integer linear program

(MILP) in Section 2.2, with consideration of practical domain and conflict con-

straints related to security and access-control policies.

(b) After proving that the general graph placement problem is NP-hard even in the

offline case, we consider in Section 3.3 the placement of a linear application

graph onto a tree physical graph and propose an algorithm for finding its optimal

solution.

(c) Based on the line-to-tree placement algorithm proposed in (b), in Section 3.4, we

generalize the formulation and propose online approximation algorithms with

poly-log competitive ratio2 for the placement of multiple tree application graphs

that arrive over time.

(d) After the initial service placement in Chapters 2 and 3, service migration may

be needed due to user and network dynamics. Thus, we consider the dynamic

service migration problem under real-time variations in the user location and

1We exchangeably use the terms “placement”, “assignment”, “mapping”, and “configuration” in
this thesis.

2See Section 2.3 for definition of competitive ratio. The term “poly-log” means “polynomial
logarithmic”. For example, if an algorithm’s competitive ratio is log2(N), where N is the problem
size, we can say that the competitive ratio is poly-log in N .

1.3. Summary of Contributions 9

resource availability, where we first model the problem as a Markov decision

process (MDP) in Section 4.2.

(e) We show in Section 4.3 that under one-dimensional (1-D) user mobility and

constant cost values, the optimal policy of the MDP (defined in (d)) is a threshold

policy. An algorithm is proposed to find this optimal threshold policy, which is

more efficient than standard MDP solution approaches.

(f) To incorporate more general cases, we consider two-dimensional (2-D) user mo-

bility with a constant-plus-exponential cost model in Section 4.4. We approxi-

mate the state space of the MDP (defined in (d)) by the distance between the user

and service locations. We show that the resulting MDP is exact for uniform 1-D

random walk user mobility while it provides a close approximation for uniform

2-D random walk mobility with a constant additive error term. A new algo-

rithm and a numerical technique is proposed for computing the optimal policy,

which is significantly faster than traditional approaches. We also discuss how

to apply the proposed algorithm in real-world scenarios where many theoretical

assumptions are relaxed.

(g) For more general cases, the MDP-based approach can be inapplicable. However,

if there is an underlying mechanism to predict the future costs, we can find an

approximately optimal service placement sequence that minimizes the average

cost over time. In Chapter 5, we first propose a method which solves for the op-

timal placement sequence for a specific look-ahead time window, based on the

predicted costs in this time window. We show that when there exist multiple ser-

vices, the problem is NP-hard, and propose an online approximation algorithm

with provable performance guarantee to find the solution. Then, we propose

a method to find the optimal look-ahead window size based on the prediction

error, which minimizes an upper bound of the average cost.

1.4. Organization of the Thesis 10

(h) The above study is theoretical in nature where realistic aspects such as delay

in control message exchange are not considered. To study the performance of

dynamic service placement in a more practical setting, we propose an emulation

framework in Chapter 6, in which physical nodes are encapsulated into virtual

containers that are connected via emulated physical links. A real computer pro-

gram with some basic packet exchange functionalities runs in each node in the

emulation. Emulation results of different service placement policies are shown

and their insights are discussed.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the general problem and re-

lated techniques that are used in this thesis. Chapter 3 presents the optimal algorithm

for line-to-tree placement and online approximation algorithms for the placement of

an incoming stream of tree application graphs. The MDP-based approach for dy-

namic service migration is presented in Chapter 4. Chapter 5 presents algorithms for

dynamic service placement with predicted future costs. An emulation framework

is presented in Chapter 6. Chapter 7 draws conclusions and discusses some future

directions.

CHAPTER 2

Background of Dynamic Service

Placement

2.1 Definitions

We can abstract the service placement problem as a graph (or, as a special case,

node) placement problem, as illustrated in Fig. 2.1. In the following, we introduce

some concepts that will be used in this thesis.

Application/Service Graph: A service or a service instance1 can be abstracted as

a graph (referred to as the application/service graph2) in which the nodes represent

processing/computational modules in the service, and the edges represent commu-

nication demand between the nodes. Each node v ∈ V in the application graph

R = (V , E) is associated with parameters that represent the computational resource

1For simplicity, we exchangeably use the terms “service” and “service instance” in this thesis.
2We exchangeably use the notions application graph and service graph in this thesis.

1

2

3 4

5 6

A

C D

E HF G

CPU, storage, I/O
requirements

Communication
bandwidth
requirement

B

Map

Application graph
Physical graph

(cloud environment)

Current
utilization
and total
amount of
resources

A 1

2

3

4

5
With cycles

A

C

1

2 3
4

5
Cycle-free

Application graph Mapping result

(a) (b) (c)

1

2

3

4

5

B

D

B

C D

Figure 2.1: The service placement problem.

2.1. Definitions 12

(of K different types) demands of node v. Similarly, each edge e ∈ E is associated

with a communication bandwidth demand. The notation e = (v1, v2) denotes that

application edge e connects application nodes v1 and v2. The application graph R

can be either a directed or an undirected graph. If it is a directed graph, the direction

of edges specify the direction of data communication; if it is an undirected graph,

data communication can occur in either direction along application edges.

Physical Graph: The physical computing system can also be abstracted as a graph

(referred to as the physical graph) with nodes denoting network elements such as

data-centers3, servers, routers, etc. and edges denoting communication links be-

tween the nodes. Each node n ∈ N in the physical graph Y = (N ,L) has K

different types of computational resources, and each edge l ∈ L has a communi-

cation capability. For nodes in the physical network that do not have capability of

hosting computational modules (such as routers), we can regard their computational

capacity as zero. We use the notation l = (n1, n2) to denote that physical link l con-

nects physical nodes n1 and n2. Similar to the application graph, the physical graph

can be either directed or undirected, depending on whether the physical links are

bidirectional (i.e., communication in both directions share the same link) or single-

directional (i.e., communication in each direction has a separate link).

Policy: A policy specifies how to place the application graph R onto the physical

graph Y . In a dynamic setting, the policy can also depend on the current state of the

system (defined below), so that a new placement decision can be made based on the

current placement. It can also be dependent on the time of performing the placement.

3A physical node can either represent a data-center (which is a collection of network elements) or
a single network element, depending on the granularity we consider in practical cases.

2.1. Definitions 13

State: The state of the cloud system specifies where each application node and link

is placed, and the current status (including topology, resource demand/availability,

etc.) of the application and physical graphs.

Cost: Each possible way of service placement incurs some costs. Generally, there

are two types of costs. The first type is the cost of running services on the cloud

system when the placement of these services remain unchanged. The second type

is the migration cost, which is incurred when we change the placement of the ser-

vice during its operation. We consider the migration cost because when the service

placement is altered, we may need to restart the service or transfer some state infor-

mation to the new physical machine that runs the service, which incurs some cost.

The explicit cost definition will be discussed in details for each specific problem in

the remainder of this thesis.

Constraints: There can be constraints such as the resource capacity of each phys-

ical node and link, the location that each application node and link can be placed

at, as well as other constraints including those that are related to access or security

restrictions.

Offline and Online Service Placement: Throughout this thesis, we say that a ser-

vice placement is offline when our goal is to place a single or a set of application

graphs “in one shot”. In contrast, an online service placement is the case where

we have an incoming stream of application graphs, which have to be sequentially

placed onto the physical graph as each application graph arrives. There may or may

not exist some application graphs that depart while others are arriving.

A Note on Graphs: For the problems discussed Chapters 4, 5, and 6, the notion

of graphs is not important for explaining the problems. In those chapters, we will

2.2. A Mixed-Integer Linear Program (MILP) Approach to Offline Service
Placement 14

not explicitly use the notion of graphs in the problem formulation, but one can easily

define those problems based on application and physical graphs.

2.2 A Mixed-Integer Linear Program (MILP)

Approach to Offline Service Placement

To provide a basic understanding to service placement, in this section, we illustrate

how an offline service placement problem can be formulated as an MILP, and show

an example of the placement result.

The goal of service placement is to place the service onto the physical cloud.

With the notion of application and physical graphs, the service placement problem

can be seen as a graph mapping problem, which maps each application node to one

physical node and each application link to at least one physical path connecting the

two application nodes.

A feasible mapping is usually subject to several constraints that need to be satis-

fied. For example, the resource capacity at a physical node or link can be finite, and

the sum resource consumption of application nodes/links that the physical node/link

is hosting cannot exceed this limit. In addition, there can be constraints on where the

application nodes can be placed and which set of application nodes cannot be hosted

on the same physical node. We call these two types of constraints respectively as

domain and conflict constraints as illustrated in Fig. 2.2. These constraints can be

related to security policies, database locations, etc.

All the above-mentioned constraints can be expressed as a set of linear con-

straints with some binary variables. As a result, the service placement problem can

be formulated as an MILP, as described next.

2.2. A Mixed-Integer Linear Program (MILP) Approach to Offline Service
Placement 15

1 2 fl1 2 Conflict1 2 Conflict

1 21 21 2

3 43 43 4

(a) (b)(a) (b)() ()

Figure 2.2: Domain and conflict constraints: (a) domain constraint – application
node 1 can only be mapped to physical nodes A, B, and C and application node 2
can only be mapped to physical nodes D and E; (b) conflict constraint – application
nodes 1 and 3 cannot be mapped onto the same physical node.

2.2.1 Additional Definitions

In the following, we summarize several definitions in addition to those introduced in

Section 2.1, which are used in the MILP formulation. We assume that the application

graphR is a directed graph (where the direction of each edge specifies the data flow

direction) and the physical graph Y is an undirected graph. Other cases can also be

formulated using MILP but we omit the discussion here for simplicity.

Each node v ∈ V is associated with demands φv,1, φv,2, ..., φv,K which represent

the computation resource (of K different types) demand of node v. Similarly, each

edge e ∈ E is associated with a communication bandwidth demand ψe. The capacity

of type k resource at node n ∈ N is cn,k, and the communication bandwidth capacity

of edge l ∈ L is cl. For nodes in the physical network that do not have capability of

hosting service modules (such as routers), we can set cn,k = 0 for ∀k = {1, 2, ..., K}.

Let Nm(v) ⊆ N for ∀v ∈ V denote the subset of physical nodes that v can be

mapped to, and N 2
m(v1, v2) ⊆ N ×N for ∀v1, v2 ∈ V denote the subset of physical

node-pairs that the application node-pair (v1, v2) can be mapped to. We also use the

notation v → n to denote that the application node v is mapped to physical node n,

and we use e→ l to denote that the application link e is mapped to physical link l.

2.2. A Mixed-Integer Linear Program (MILP) Approach to Offline Service
Placement 16

Define the normalized demand of type k resource of placing v to n as

dv→n,k =

φv,k
cn,k

, if n ∈ Nm(v)

∞, otherwise
. (2.1)

Define the normalized resource demand of placing e = (v1, v2) to l = (n1, n2) as

be→l =

ψe
cl
, if (n1, n2) ∈ N 2

m(v1, v2)

∞, otherwise
. (2.2)

2.2.2 MILP Formulation

We first define the decision variables in our optimization problem. The flow variables

fe→(n1,n2) for ∀e ∈ E and ∀n1, n2 ∈ N that have a communication link connecting

them denote the amount of data sent from n1 to n2, for the application edge e. The

binary variables xv→n for ∀v ∈ V ,∀n ∈ Nm(v) indicate whether v is mapped to n.

Auxiliary variables yv→n for ∀v ∈ V ,∀n ∈ Nm(v) indicate whether a node that has

a conflict with v is mapped to n, which is used to assist the optimization problem

formulation.

We focus on the case where K = 1 in our formulation in this section, but it can

be easily extended to other values of K.

To jointly consider the load balancing of servers and communication links, as

well as minimizing the total amount of communication bandwidth consumption, we

2.2. A Mixed-Integer Linear Program (MILP) Approach to Offline Service
Placement 17

consider the following objective function:

min

{
max
n∈N

αn

(∑
v∈V

dv→n,1xv→n

)

+ max
l=(n1,n2)∈L

βl

(∑
e∈E

fe→(n1,n2) + fe→(n2,n1)

cl

)

+
∑

l=(n1,n2)∈L

β′l
∑
e∈E

fe→(n1,n2) + fe→(n2,n1)

cl

, (2.3)

where the edge l connects n1 and n2, and αn, βl, and β′l are weighting factors. This

is not the only possible form of objective function. One can define other types of ob-

jective functions and still formulate the problem as an MILP as long as the objective

function is linear in the decision variables.

The objective function (2.3) can be rewritten as a linear objective function, by

adding two additional sets of constraints for the maximum operations, as follows:

min t1 + t2 +
∑

l=(n1,n2)∈L

β′l
∑
e∈E

fe→(n1,n2) + fe→(n2,n1)

cl

s.t. αn
∑
v∈V

dv→n,1xv→n ≤ t1,∀n ∈ N

max
l=(n1,n2)∈L

βl
∑
e∈E

fe→(n1,n2) + fe→(n2,n1)

cl
≤ t2,∀l = (n1, n2) ∈ L

Other constraints. (2.4)

The other constraints are discussed in the following.

The node and edge capacity constraints are:

∑
v∈V

dv→n,1xv→n ≤ 1,∀n ∈ N , (2.5)

∑
e∈E

(
fe→(n1,n2) + fe→(n2,n1)

)
≤ cl, ∀l = (n1, n2) ∈ L, (2.6)

2.2. A Mixed-Integer Linear Program (MILP) Approach to Offline Service
Placement 18

The flow conservation constraint is:

∑
n2:l=(n1,n2)∈L

fe→(n1,n2) −
∑

n2:l=(n1,n2)∈L

fe→(n2,n1)

= clbe→l
(
xv1→n11n1∈Nm(v1) − xv2→n11n1∈Nm(v2)

)
,

∀n1 ∈ N ,∀e ∈ E , (2.7)

where e is the directed application edge from v1 to v2, and the indicator 1 indicates

whether the condition in its subscript is satisfied. Note that these conditions are static

and do not change with the decision variables in the optimization.

The following constraint guarantees that each application node is mapped to ex-

actly one physical node:

∑
n∈Nm(v)

xv→n = 1,∀v ∈ V . (2.8)

The node conflict constraints are:

yv→n ≤
∑

(n,n)/∈N 2
m(v,v1)

xv1→n, ∀v ∈ V ,∀n ∈ N , (2.9)

yv→n ≥
∑

(n,n)/∈N 2
m(v,v1) xv1→n

|V|
,∀v ∈ V ,∀n ∈ N , (2.10)

xv→n + yv→n ≤ 1,∀v ∈ V ,∀n ∈ N . (2.11)

We also require that fe→(n1,n2) ≥ 0, xv→n ∈ {0, 1}, and yv→n ∈ {0, 1}.

2.2.3 Example Mapping Result

Our optimization problem is an MILP, which can be solved with IBM CPLEX [20],

or OPTI Toolbox [21], etc. Fig. 2.3 shows an example scenario and its mapping

result which has been obtained with OPTI Toolbox. In the example, application

2.3. Approximation Algorithms 19

Application PhysicalApplication PhysicalApplication Physical
Agraph: h Agraph: graph: A

1graph: graph: 1
1

1
11

1 2 01 2 0 51 A 2 0.5A0 50 5 0.50.5 0.50.5
2 0 52 B0 5 B0.5

2 B3 11 1 5
B

2 0 52 B3 11 1 5 2 0 52 B31 1.5 2 0.5

0 1 20 5 1 22 0 830.5 1 22 0.83
1 5 11 5 1 C D3

4 5 0 5
1.5

C 1 51 5
1 C D3

4 50 1 0 5 C D 1 51 5 C D
44 50.1 0.5 C D 1.51.5

5 45 4
0 675 0.67

ConflictConflict

() (b)(a) (b)(a) (b)()

Figure 2.3: Example of service placement: (a) problem setting, (b) mapping result.
In (a), the numbers besides nodes and edges in the application graph are resource
demands, and the numbers in the physical graph are capacity values, the underlined
numbers correspond to edge values. In (b), the underlined numbers are the band-
width consumption on the corresponding communication links.

node 1 can only be mapped to physical node A, and application nodes 4 and 5 can

only be mapped to physical nodes C and D but not on the same node. We set αn =

βl = β′l = 1, the demands and capacities are indicated in Fig. 2.3(a) and the mapping

result is shown in Fig. 2.3(b).

2.3 Approximation Algorithms

The MILP formulated in the above section is NP-hard. In fact, the service place-

ment problem is NP-hard even for simple graphs as we will discuss later in Sec-

tion 3.4.1. The term “NP-hard” refers to a particular problem class for which it is

generally believed (although a formal proof is still an open question in algorithms

research) that the simplest algorithms for solving such problems require exponential

time-complexity. If an algorithm has exponential complexity, the complexity of the

algorithm scales badly with the size of problem input. For example, in the service

placement problem, the input size can be reflected by the number of nodes in both

the application and physical graphs. It turns out that for large graphs, an algorithm

2.3. Approximation Algorithms 20

with exponential complexity requires a substantial amount of time to find the optimal

solution, which can easily become unacceptably time consuming. Therefore, a com-

mon practice is to employ heuristic algorithms with polynomial time-complexity to

solve such problems [16, 22]. Such algorithms find suboptimal solutions instead of

optimal solutions.

For most existing heuristic algorithms, the performance is evaluated via simula-

tion or experimental studies under a limited set of application scenarios. A natural

question is: Do such heuristics perform well enough in all the scenarios that possi-

bly occur? Obviously, an empirical study based on simulations or experiments is not

sufficient to answer this question. We need to seek theoretical foundations to justify

the performance of these heuristic algorithms.

One theoretical basis to study the performance of algorithms that approximate the

solution to NP-hard problems is the field of approximation algorithms [23], wherein

the worst-case difference between the solution from the approximation algorithm

and the true optimal result (OPT) is quantified. We define the approximation ratio

of a minimization problem as the maximum (worst-case) ratio (either exact or in an

upper bound sense) of the result provided by the algorithm to OPT.

Consider the service placement problem introduced earlier in this chapter. For

the offline placement problem, we would like to place one or multiple application

graphs at a single time. Suppose that we have defined a proper objective (cost) func-

tion (such as the one in (2.3)) and would like to minimize this cost function. Since

this problem is NP-hard, we may want to find an approximately optimal solution to

it using algorithms with polynomial time-complexity.

Now, assume that we are given a problem input I. This problem input I specifies

the topology of the application and physical graphs and all parameters associated

with them. It also includes any additional input parameters to the problem. Assume

we know that the optimal placement incurs a cost equal to OPTI . If our algorithm

2.3. Approximation Algorithms 21

incurs a cost equal to ALGI , we say that the approximation ratio of this algorithm is

ΓA if

ΓA ≤ max
I

ALGI
OPTI

(2.12)

where the maximization is over all possible problem inputs. We say the approxima-

tion ratio is tight if equality is attained in (2.12).

For the online service placement problem, multiple application graphs arrive over

time, where there may or may not exist application graphs leaving while others are

arriving. Here, instances (i.e., application graphs in our problem) arrive in real-time

and an online algorithm needs to provide a solution at every time when an instance

arrives. The competitive ratio is defined as the maximum (worst-case) ratio (either

exact or in an upper bound sense) of the result from the online algorithm to the offline

OPT, where the offline OPT is the true optimum by assuming that all the instances

are known in advance [24]. We also introduce the notion of an online algorithm

being c-competitive if its competitive ratio is c.

Let us denote the problem input in the online case as I(M), whereM is the num-

ber of application graphs that have arrived to the system, among which some graphs

may have already departed from the system. This input contains M instances (appli-

cation graphs) that arrive one-by-one, and the online algorithm places them onto the

physical graph right after an application graph arrives, without prior knowledge on

future arrivals. We define OPTI(M) as the cost of an optimal offline placement, and

define ALGI(M) as the cost of the placement found by the online algorithm. We say

that the competitive ratio in placing M instances of this algorithm is ΓC if

ΓC ≤ max
I(M)

ALGI(M)

OPTI(M)

(2.13)

where the maximization is over all possible problem inputs that have M instances.

In some cases, the competitive ratio holds for an arbitrary value of M , and we may

2.3. Approximation Algorithms 22

omit the discussion on M in such cases.

The main difference between the competitive and approximation ratios is that

the competitive ratio considers the optimality gap with respect to (w.r.t.) an online

algorithm, whereas the approximation ratio considers the optimality gap w.r.t. an

offline algorithm. The competitive ratio is the same as the approximation ratio if we

solve an offline problem in an online way, e.g., breaking the application graph into

smaller subgraphs, and assuming online arrival of each of these subgraphs.

Besides using the notions of approximation and competitive ratios, the optimal-

ity guarantee can also be quantified in many other ways, such as in the form of an

additive error term that specifies the difference between the optimum and its approx-

imate value. We will be considering different forms of optimality guarantees in this

thesis.

CHAPTER 3

Online Placement of Application

Graphs

3.1 Introduction

Due to the potential hardness of solving the MILP in Section 2.2, we consider ap-

proximation algorithms with polynomial time-complexity and provable performance

guarantees in this chapter. We start with a basic building block that solves for the

placement of a linear application graph. We show that for this case, it is actually

possible to find the optimal placement (under some constraints) and we propose an

algorithm for finding this placement. We then show that for more general cases, for

example when the application graph is a tree, the problem is NP-hard. Afterwards,

we generalize the algorithm for linear graph placement and obtain online approxi-

mation algorithms with poly-log1 competitive ratio for tree application graph place-

ment. In our formulation, similar to Section 2.2, we jointly consider node and link

assignment and incorporate multiple types of computational resources at nodes.

1The term “poly-log” means “polynomial logarithmic”. For example, if an algorithm’s competi-
tive ratio is log2(N), where N is the problem size, we can say that the competitive ratio is poly-log
in N .

3.1. Introduction 24

3.1.1 Related Work

In the literature, there is limited work on approximation algorithms with provable ap-

proximation/competitive ratios for the service placement problem, especially when

it involves both server (node) and network (link) optimization.

In [17], the authors proposed an algorithm for minimizing the sum cost with some

considerations on load balancing, which has an approximate approximation ratio of

O(N), whereN is the number of nodes in the physical graph. The algorithm is based

on linear program (LP) relaxation2, and only allows one node in each application

graph to be placed on a particular physical node; thus, excluding server resource

sharing among different nodes in one application graph. A drawback of this approach

is that the approximation ratio ofO(N) is trivial, in the sense that one would achieve

the same approximation ratio when placing the whole application graph onto a single

physical node instead of spreading it across the whole physical graph.

A theoretical work in [25] proposed an algorithm with NO(D) time-complexity

and an approximation ratio of δ = O(D2 log(ND)) for placing a tree application

graph with D levels of nodes onto a physical graph. It uses LP relaxation and its

goal is to minimize the sum cost. Based on this algorithm, the authors showed an

online algorithm for minimizing the maximum load on each node and link, which is

O(δ log(N))-competitive when the service durations are equal. The LP formulation

in [25] is complex and requires NO(D) variables and constraints. This means when

D is not a constant, the space-complexity (specifying the required memory size of

the algorithm) is exponential in D.

Another related theoretical work which proposed an LP-based method for offline

placement of paths into trees was reported in [26], where the application nodes can

2LP relaxation is a common technique used for approximating MILPs. It first replaces the integer
variable with a continuous variable, so that the resulting problem becomes an LP which can be solved
in polynomial time. Then, a rounding procedure is usually applied to round the values of relaxed
integer variables to integers.

3.1. Introduction 25

only be placed onto the leaves of a tree physical graph, and the goal is to minimize

link congestion. In our problem, the application nodes are distributed across users,

MMCs, and core cloud, thus they should not be only placed at the leaves of a tree so

the problem formulation in [26] is inapplicable to our scenario. Additionally, [26]

only focuses on minimizing link congestion. The load balancing of nodes is not

considered as part of the objective, whereas only the capacity limits of nodes are

considered.

Some other related work focuses on graph partitioning, such as [27] and [28],

where the physical graph is defined as a complete graph with edge costs associ-

ated with the distance or latency between physical servers. Such an abstraction may

combine multiple actual network links into one (abstract) physical edge. Thus, it

can be inappropriate when we would like to consider load balancing across all actual

network links, which is what we consider in this chapter.

One important aspect is that most existing work, including [17, 26, 27], and [28],

do not specifically consider the online operation of the algorithms. Although some

of them implicitly claim that one can apply the algorithm repeatedly for each newly

arriving service/application, the competitive ratio for such application is not clear. To

the best of our knowledge, [25] is the only work that studied the competitive ratio of

the online service placement problem that considers both node and link optimization.

3.1.2 Our Approach

In this chapter, we propose algorithms for solving the online service placement prob-

lem with provable competitive ratios. Different from [25], our approach is not based

on LP relaxation. Instead, our algorithms are built upon a baseline algorithm that

provides an optimal solution to the placement of a linear application graph, i.e., an

application graph that is a line. This is the main novelty in contrast to [25], because

no optimal solution for linear application graph placement was presented in [25].

3.1. Introduction 26

Many applications expected to run in an MMC environment can be abstracted as

hierarchical graphs, and the simplest case of such a hierarchical graph is a line (see

the example in Section 1.1). Therefore, the placement of a linear application graph

is an important problem in the context of MMCs.

Another novelty in our work, compared to [25] and most other approaches based

on LP relaxation, is that our solution approach is decomposable into multiple small

building blocks. This makes it easy to extend our proposed algorithms to a dis-

tributed solution in the future, which would be very beneficial for reducing the

amount of necessary control information exchange among different cloud entities

in a distributed cloud environment containing MMCs. This decomposable feature of

algorithms also makes it easier to use these algorithms as a sub-procedure for solving

a larger problem.

It is also worth noting that the analytical methodology we use in this chapter is

new compared to existing techniques such as LP relaxation, thus we enhance the

set of tools for online optimization. The theoretical analysis in this chapter also

provides insights on the features and difficulty of the problem, which can guide

future practical implementations. In addition, the proposed algorithms themselves

are relatively easy to implement in practice.

3.1.3 Motivations and Main Results

We propose non-LP based approximation algorithms for online service placement

in this chapter, which have both theoretical and practical relevance. The general

problem of service placement is hard to approximate even from a theoretical point

of view [25, 26, 29]. Therefore, similar to related work [17, 25, 26, 27, 28], we make

a few simplifications to make the problem tractable. These simplifications and their

motivations are described as follows.

Throughout this chapter, we focus on application and physical graphs that have

3.1. Introduction 27

tree topologies. This restriction makes the problem mathematically tractable which

allows us to obtain exact and approximation algorithms with provable guarantees.

Thus, from a theoretical perspective, this work attempts to provide rigor to the ser-

vice placement problem in a cloud environment.

In terms of practical applicability, a tree application graph models a wide range

of practical applications that involve a hierarchical set of processes (or virtual ma-

chines). For example, a virtual graph for applications involving streaming, multi-

casting, or data aggregation is typically represented as a hierarchical set of operators

forming a tree topology [30, 31, 32]. Similarly, a web-application topology consist-

ing of a front-end web-server connected to a set of load balancers which are then

connected to databases has a tree topology.

For the physical system, the main motivation for us to consider tree physical

graphs is the hierarchical nature of MMCs, as discussed in Section 1.2. For a general

connected network, a tree physical graph can also be regarded as a subgraph of the

original physical network topology, which would arise from restrictions imposed by

spanning-tree based routing mechanisms [33] etc. Furthermore, different services

could be assigned on different tree subgraphs of the physical network, which makes

this assumption less restrictive.

In the tree application-graph topology, if we consider any path from the root to

a leaf, we only allow those assignments where the application nodes along this path

are assigned in their respective order on a sub-path of the physical topology (mul-

tiple application nodes may still be placed onto one physical node), thus, creating

a “cycle-free” placement. Figure 3.1 illustrates this placement. Let nodes 1 to 5

denote the application nodes along a path in the application-graph topology. The

cycle-free placement of this path onto a sub-path of the physical network ensures the

order is preserved (as shown in Fig. 3.1(b)), whereas the order is not preserved in

Fig. 3.1(c). A cycle-free placement has a clear motivation of avoiding cyclic commu-

3.1. Introduction 28

1

2

3 4

5 6

A

C D

E HF G

CPU, storage, I/O
requirements

Communication
bandwidth
requirement

B

Map

Application graph
Physical graph

(cloud environment)

Current
utilization
and total
amount of
resources

A 1

2

3

4

5
With cycles

A

C

1

2 3
4

5
Cycle-free

Application graph Mapping result

(a) (b) (c)

1

2

3

4

5

B

D

B

C D

Figure 3.1: Mapping with and without cycles. In this example, the path in the appli-
cation graph is between application node 1 and application node 5.

nication among the application nodes. For example, for the placement in Fig. 3.1(c),

application nodes 2 and 4 are placed on physical node B, while application node 3

is placed on physical node C. In this case, the physical link B–C carries the data

demand of application links 2–3 and 3–4 in a circular fashion. Such traffic can be

naturally avoided with a cycle-free mapping (Fig. 3.1(b)), thus relieving conges-

tion on the communication links. As we will see in the simulations in Section 3.5,

the cycle-free constraint still allows the proposed scheme to outperform some other

comparable schemes that allow cycles. Further discussion on the approximation ratio

associated with the cycle-free restriction is given in Appendix A.

In this chapter, for the purpose of describing the algorithms, we classify an ap-

plication node as a junction node in the application graph when it is a root node and

is connected to two or more edges, or when it is not a root node and is connected

to three or more edges (among which one edge connects to its parent node). These

junction nodes can be more significant than other nodes, because they represent data

splitting or joining processes for multiple data streams. In some cases, the junction

nodes may have pre-specified placement, because they serve multiple data streams

that may be associated with different end-users, and individual data streams may

arrive dynamically in an online fashion. Our work first considers cases where the

placements of these junction nodes are pre-specified, and then extends the results to

3.1. Introduction 29

the general case where some junction nodes are not placed beforehand.

For the aforementioned scenarios, we obtain the following main results for the

problem of service placement with the goal of load balancing among the physical

nodes and edges:

1. An optimal offline algorithm for placing a single application graph which is

a linear graph, with O(V 3N2) time-complexity and O(V N(V + N)) space-

complexity, where the application graph has V nodes and the physical graph

has N nodes.

2. An online approximation algorithm for placing single or multiple tree appli-

cation graphs, in which the placements of all junction nodes are pre-specified,

i.e., their placements are given. This algorithm has a time-complexity of

O(V 3N2) and a space-complexity of O(V N(V + N)) for each application

graph placement, and its competitive ratio is O(logN).

3. An online approximation algorithm for placing single or multiple tree appli-

cation graphs, in which the placements of some junction nodes are not pre-

specified. This algorithm has a time-complexity of O(V 3N2+H) and a space-

complexity of O(V N1+H(V +N)) for each application graph placement, and

its competitive ratio is O(log1+H N), where H is the maximum number of

junction nodes without given placement on any single path from the root to a

leaf in the application graph. Note that we always have H ≤ D, where D is

the depth of the tree application graph.

We consider undirected application and physical graphs in this chapter, which

means that data can flow in any direction on an edge, but the proposed algorithms

can be easily extended to some types of directed graphs. For example, when the tree

application graph is directed and the tree physical graph is undirected, we can merge

the two application edges that share the same end nodes in different directions into

3.2. Problem Formulation 30

one edge, and focus on the merged undirected application graph for the purpose of

finding optimal placement. This does not affect the optimality because for any place-

ment of application nodes, there is a unique path connecting two different application

nodes due to the cycle-free constraint and the tree structure of physical graphs. Thus,

application edges in both directions connecting the same pair of application nodes

have to be placed along the same path on the physical graph.

Our work also considers multiple types of resources on each physical node, such

as CPU, storage, and I/O resources. The proposed algorithms can also work with

domain constraints which restrict the set of physical nodes that a particular appli-

cation node can be assigned to. The exact algorithm for single line placement can

also incorporate conflict constraints where some assignments are not allowed for a

pair of adjacent application nodes that are connected by an application edge; such

constraints naturally arise in practice due to security policies as discussed in Section

2.2.

3.2 Problem Formulation

3.2.1 Definitions

We consider the placement of application graphs onto a physical graph, where the

application graphs represent services that may arrive in an online fashion. In this

chapter, we reuse the definitions given in Section 2.1. In addition, we introduce

some additional definitions as follows.

Graphs: Because we consider multiple application graphs in this chapter, we de-

note the tree application graph for the ith service arrival as R(i) = (V(i), E(i)).

Throughout this chapter, we define V = |V|, E = |E|, N = |N |, and L = |L|,

where | · | denotes the number of elements in the corresponding set.

3.2. Problem Formulation 31

Costs: For the ith service, the weighted cost (where the weighting factor can serve

as a normalization to the total resource capacity) for type k ∈ {1, 2, ..., K} resource

of placing v to n is denoted by dv→n,k(i). Similarly, the weighted communication

bandwidth cost of assigning e to l is denoted by be→l(i). This edge cost is also

defined for a dummy link l = (n, n), namely a non-existing link that connects the

same node, to take into account the additional cost when placing two application

nodes on one physical node. It is also worth noting that an application edge may be

placed onto multiple physical links that form a path.

Remark: The cost of placing an application node (or edge) onto different physical

nodes (or edges) can be different. This is partly because different physical nodes and

edges may have different resource capacities, and therefore different weighting fac-

tors for cost computation. It can also be due to the domain and conflict constraints as

mentioned earlier. If some mapping is not allowed, then we can set the correspond-

ing mapping cost to infinity. Hence, our cost definitions allow us to model a wide

range of access-control/security policies.

Mapping: A mapping is specified by π : V → N . Because we consider tree

physical graphs with the cycle-free restriction, there exists only one path between

two nodes in the physical graph, and we use (n1, n2) to denote either the link or path

between nodes n1 and n2. We use the notation l ∈ (n1, n2) to denote that link l

is included in path (n1, n2). The placement of nodes automatically determines the

placement of edges.

In a successive placement of the 1st up to the ith service, each physical node

n ∈ N has an aggregated weighted cost of

pn,k(i) =
i∑

j=1

∑
v:π(v)=n

dv→n,k(j), (3.1)

where the second sum is over all v that are mapped to n. Equation (3.1) gives the

3.2. Problem Formulation 32

total cost of type k resource requested by all application nodes that are placed on

node n, upto the ith service. Similarly, each physical edge l ∈ L has an aggregated

weighted cost of

ql(i) =
i∑

j=1

∑
e=(v1,v2):(π(v1),π(v2))3l

be→l(j), (3.2)

where the second sum is over all application edges e = (v1, v2) for which the path be-

tween the physical nodes π(v1) and π(v2) (which v1 and v2 are respectively mapped

to) includes the link l.

3.2.2 Objective Function

The optimization objective in this chapter is load balancing for which the objective

function is defined as

min
π

max

{
max
k,n

pn,k(M); max
l
ql(M)

}
, (3.3)

where M is the total number of services (application graphs). The function in (3.3)

aims to minimize the maximum weighted cost on each physical node and link, en-

suring that no single element gets overloaded and becomes a point of failure, which

is important especially in the presence of bursty traffic. Such an objective has been

widely used in the literature [34, 35].

While we choose the objective function (3.3) in this chapter, we do realize that

there can be other objectives as well, such as minimizing the total resource consump-

tion. We note that the exact algorithm for the placement of a single linear application

graph can be generalized to a wide class of other objective functions as will be dis-

cussed in Section 3.3.5, but for simplicity, we restrict our attention to the objective

function in (3.3) in the following discussion.

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 33

A Note on Capacity Limit: For simplicity, we do not impose capacity constraints

on physical nodes and links in the optimization problem defined in (3.3), because

even without the capacity constraint, the problem is very hard as we will see later

in this chapter. However, because the resource demand of each application node

and link is specified in every application graph, the total resource consumption at a

particular physical node/link can be calculated by summing up the resource demands

of application nodes/links that are placed on it. Therefore, an algorithm can easily

check within polynomial time whether the current placement violates the capacity

limits. If such a violation occurs, it can simply reject the newly arrived application

graph.

In most practical cases, the costs of node and link placements should be de-

fined as proportional to the resource occupation when performing such placement,

with weights inversely proportional to the capacity of the particular type of resource,

such as the cost definitions in Section 2.2. With such a definition, the objective func-

tion (3.3) essentially tries to place as many application graphs as possible without

increasing the maximum resource occupation (normalized by the resource capac-

ity) among all physical nodes and links. Thus, the placement result should utilize

the available resource reasonably well. A more rigorous analysis on the impact of

capacity limit is left as future work.

3.3 Basic Assignment Unit: Single Linear Application

Graph Placement

We first consider the assignment of a single linear application graph (i.e., the appli-

cation nodes are connected in a line), where the goal is to find the best placement

of application nodes onto a path in the tree physical graph under the cycle-free con-

straint (as shown in Fig. 3.1). The solution to this problem forms the building block

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 34

of other more sophisticated algorithms presented later. As discussed next, we de-

velop an algorithm that can find the optimal solution to this problem. We omit the

service index i in this section because we focus on a single service, i.e. M = 1, here.

3.3.1 Problem Formulation

Without loss of generality, we assume that V and N are indexed sets, and we use

v to exchangeably denote elements and indices of application nodes in V , and use

n to exchangeably denote elements and indices of physical nodes in N . This index

(starting from 1 for the root node) is determined by the topology of the graph. In

particular, it can be determined via a breadth-first or depth-first indexing on the tree

graph (note that linear graphs are a special type of tree graphs). From this it follows

that, if n1 is a parent of n2, then we must have n1 < n2. The same holds for the

application graph with nodes V .

With this setting, the edge cost can be combined together with the cycle-free

constraint into a single definition of pairwise costs. The weighted pairwise cost of

placing v−1 to n1 and v to n2 is denoted by c(v−1,v)→(n1,n2), and it takes the following

values with v ≥ 2:

1. If the path from n1 to n2 traverses some n < n1, in which case the cycle-free

assumption is violated, then c(v−1,v)→(n1,n2) =∞.

2. Otherwise,

c(v−1,v)→(n1,n2) = max
l∈(n1,n2)

b(v−1,v)→l

∣∣∣
(π(v−1),π(v))3l

. (3.4)

The maximum operator in (3.4) follows from the fact that, in the single line place-

ment, at most one application edge can be placed onto a physical link. Also recall

that the edge cost definition incorporates dummy links such as l = (n, n), thus there

always exists l ∈ (n1, n2) even if n1 = n2.

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 35

Then, the optimization problem (3.3) with M = 1 becomes

min
π

max

max
k,n

∑
v:π(v)=n

dv→n,k; max
(v−1,v)∈E

c(v−1,v)→(π(v−1),π(v))

 . (3.5)

The last maximum operator in (3.5) takes the maximum among all application edges

(rather than physical links), because when combined with the maximum in (3.4), it

essentially computes the maximum among all physical links that are used for data

transmission under the mapping π.

3.3.2 Decomposing the Objective Function

In this subsection, we decompose the objective function in (3.5) to obtain an itera-

tive solution. Note that the objective function (3.5) already incorporates all the con-

straints as discussed earlier. Hence, we only need to focus on the objective function

itself.

When only considering a subset of application nodes 1, 2, ..., v1 ≤ V , for a given

mapping π, the value of the objective function for this subset of application nodes is

Jπ(v1) = max

max
k,n

∑
v≤v1:π(v)=n

dv→n,k; max
(v−1,v)∈E,v≤v1

c(v−1,v)→(π(v−1),π(v))

 .

(3.6)

Compared with (3.5), the only difference in (3.6) is that we consider the first v1

application nodes and the mapping π is assumed to be given. The optimal cost for

application nodes 1, 2, ..., v1 ≤ V is then

Jπ∗(v1) = min
π
Jπ(v1), (3.7)

where π∗ denotes the optimal mapping.

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 36

Proposition 3.1. (Decomposition of the Objective Function): Let Jπ∗|π(v1)(v1) de-

note the optimal cost under the condition that π(v1) is given, i.e. Jπ∗|π(v1)(v1) =

minπ(1),...,π(v1−1) Jπ(v1) with given π(v1). When π(v1) = π(v1 − 1) = ... = π(vs) >

π(vs − 1) ≥ π(vs − 2) ≥ ... ≥ π(1), where 1 ≤ vs ≤ v1, which means that vs

is mapped to a different physical node from vs − 1 and nodes vs, ..., v1 are mapped

onto the same physical node3, then we have

Jπ∗|π(v1)(v1)= min
vs=1,...,v1

min
π(vs−1)

max

{
Jπ∗|π(vs−1)(vs − 1);

max
k=1,...,K

∑
v=vs...v1

dv→π(v1),k;

max
(v−1,v)∈E,vs≤v≤v1

c(v−1,v)→(π(v−1),π(v))

}
. (3.8)

The optimal mapping for v1 can be found by

Jπ∗(v1) = min
π(v1)

Jπ∗|π(v1)(v1). (3.9)

Proof. Because π(vs) = π(vs + 1) = ... = π(v1), we have

Jπ(v1) = max

{
Jπ(vs − 1); max

k=1,...,K

∑
v=vs...v1

dv→π(v1),k;

max
(v−1,v)∈E,vs≤v≤v1

c(v−1,v)→(π(v−1),π(v))

}
. (3.10)

The three terms in the maximum operation in (3.10) respectively correspond to: 1)

the cost at physical nodes and edges that the application nodes 1, ..., vs − 1 (and

their connecting edges) are mapped to, 2) the costs at the physical node that vs, ..., v1

are mapped to, and 3) the pairwise costs for connecting vs − 1 and vs as well as

3Note that when vs = 1, then vs−1 does not exist, which means that all nodes 1, ..., v1 are placed
onto the same physical node. For convenience, we define Jπ(0) = 0.

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 37

interconnections4 of nodes in vs, ..., v1. Taking the maximum of these three terms,

we obtain the cost function in (3.6).

In the following, we focus on finding the optimal mapping based on the cost

decomposition in (3.10). We note that the pairwise cost between vs − 1 and vs

depends on the placements of both vs − 1 and vs. Therefore, in order to find the

optimal Jπ(v1) from Jπ(vs−1), we need to find the minimum cost among all possible

placements of vs− 1 and vs, provided that nodes vs, ..., v1 are mapped onto the same

physical node and vs and vs − 1 are mapped onto different physical nodes. For a

given v1, node vs may be any node that satisfies 1 ≤ vs ≤ v1. Therefore, we also

need to search through all possible values of vs. This can then be expressed as the

proposition, where we first find Jπ∗|π(v1)(v1) as an intermediate step.

Equation (3.8) is the Bellman’s equation [36] for problem (3.5). Using dynamic

programming [36], we can solve (3.5) by iteratively solving (3.8). In each itera-

tion, the algorithm computes new costs Jπ∗|π(v1)(v1) for all possible mappings π(v1),

based on the previously computed costs Jπ∗|π(v)(v) where v < v1. For the final ap-

plication node v1 = V , we use (3.9) to compute the final optimal cost Jπ∗(V) and its

corresponding mapping π∗.

3.3.3 Optimal Algorithm

The pseudocode of the exact optimal algorithm is shown in Algorithm 3.1. It com-

putes V · N number of Jπ∗|π(v)=n(v) values, and we take the minimum among no

more than V · N values in (3.8). The terms in (3.8) include the sum or maximum

of no more than V values and the maximum of K values. Because K is a con-

4Note that, although vs, ..., v1 are mapped onto the same physical node, their pairwise costs may
be non-zero if there exists additional cost when placing different application nodes onto the same
physical node. In the extreme case where adjacent application nodes are not allowed to be placed
onto the same physical node (i.e. conflict constraint), their pairwise cost when placing them on the
same physical node becomes infinity.

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 38

Algorithm 3.1 Placement of a linear application graph onto a tree physical graph
1: Given linear application graphR, tree physical graph Y
2: Given V ×N ×K matrix D, its entries represent the weighted type k node cost
dv→n,k

3: Given (V − 1) × N × N matrix C, its entries represent the weighted pairwise
cost c(v−1,v)→(n1,n2)

4: Define V × N matrix J to keep the costs Jπ∗|π(v)=n(v) for each node (v, n) in
the auxiliary graph

5: Define V × N × V matrix Π to keep the mapping corresponding to its cost
Jπ∗|π(v)=n(v) for each node (v, n) in the auxiliary graph

6: for v = 1...V do
7: for n = 1...N do
8: Compute Jπ∗|π(v)=n(v) from (3.8), put the result into J and the correspond-

ing mapping into Π
9: end for

10: end for
11: Compute Jπ∗(V)← minn Jπ∗|π(V)=n(V)
12: return the final mapping result π∗ and final optimal cost Jπ∗(V)

stant in practical systems, we conclude that the time-complexity of this algorithm is

O(V 3N2).

The space-complexity of Algorithm 3.3 is O(V N(V + N)), which is related to

the memory required for storing matrices D, C, J, and Π in the algorithm, where K

is also regarded as a constant here.

Also note that the optimality of the result from Algorithm 3.1 is subject to the

cycle-free constraint, and the sequence of nodes is always preserved in each iteration.

3.3.4 Example

To illustrate the procedure of the algorithm, we construct an auxiliary graph from the

given application and physical graphs, as shown in Fig. 3.2. Each node (v1, n1) in the

auxiliary graph represents a possible placement of a particular application node, and

is associated with the cost value Jπ∗|π(v1)=n1(v1), where v1 is the application node

index and n1 is the physical node index in the auxiliary graph. When computing the

cost at a particular node, e.g. the cost Jπ∗|π(4)=C(4) at node (4,C) in Fig. 3.2, the

3.3. Basic Assignment Unit: Single Linear Application Graph Placement 39

Application graph

Physical graph

1

2

3

4

A

B

C

Map

D

5

1,A

2,A

3,A

4,A

Auxiliary graph

2,B

3,B

4,B

2,C

3,C

4,C

2,D

3,D

4,D

5,A 5,B 5,C 5,D

1,B 1,C 1,D

Application graph Physical graph

A

B

C

Map

F

1

2

3 4

5 6

7 8

D

E

Figure 3.2: Auxiliary graph and algorithm procedure for the placement of a linear
application graph onto a tree physical graph.

algorithm starts from the “earlier” costs Jπ∗|π(vs−1)(vs − 1) where the tuple (vs −

1, π(vs − 1)) is either (1,A), (1,B), (2,A), (2,B), (3,A), or (3,B). From each of these

nodes, the subsequent application nodes (i.e. from vs to node 4) are all mapped onto

physical node C, and we compute the cost for each such “path” with the maximum

operations in (3.8), by assuming the values of vs − 1 and π(vs − 1) are given by its

originating node in the auxiliary graph. For example, one path can be (2,B) – (3,C)

– (4,C) where vs − 1 = 2 and π(vs − 1) = B, another path can be (1,A) – (2,C) –

(3,C) – (4,C) where vs − 1 = 1 and π(vs − 1) = A. Then, the algorithm takes the

minimum of the costs for all paths, which corresponds to the minimum operations

in (3.8) and gives Jπ∗|π(4)=C(4). In the end, the algorithm searches through all the

possible mappings for the final application node (node 5 in Fig. 3.2) and chooses

the mapping that results in the minimum cost, which corresponds to the procedure

in (3.9).

3.3.5 Extensions

The placement algorithm for single linear application graph can also be used when

the objective function (in the form of (3.3) with M = 1) is modified to one of the

3.4. Online Placement Algorithms for Tree Application Graphs 40

following:

min
π

max

max
k,n

fn,k

 ∑
v:π(v)=n

dv→n,k

 ; max
l
gl

 ∑
e=(v1,v2):(π(v1),π(v2))3l

be→l

(3.11)

or

min
π

∑
k,n

fn,k

 ∑
v:π(v)=n

dv→n,k

+
∑
l

gl

 ∑
e=(v1,v2):(π(v1),π(v2))3l

be→l

 , (3.12)

where fn,k(·) and gl(·) are increasing functions with fn,k(0) = 0, gl(0) = 0,

fn,k(∞) = ∞, and gl(∞) = ∞. The algorithm and its derivation follow the same

procedure as discussed above. These alternative objective functions can be useful

for scenarios where the goal of optimization is other than min-max. The objective

function in (3.12) will also be used later for solving the online placement problem.

3.4 Online Placement Algorithms for Tree Applica-

tion Graphs

Using the optimal algorithm for the single linear application graph placement as a

sub-routine, we now present algorithms for the generalized case; namely, placement

of an arriving stream of application graphs with tree topology. We first show that

even the offline placement of a single tree is NP-hard. Then, we propose online

algorithms to approximate the optimal placement with provable competitive ratio,

by first considering the case where junction nodes in the application graph have pre-

specified placements that are given beforehand, and later relax this assumption.

3.4. Online Placement Algorithms for Tree Application Graphs 41

3.4.1 Hardness Result

Proposition 3.2. (NP-hardness) Placement of a tree application graph onto a

tree physical graph for the objective function defined in (3.3), with or without

pre-specified junction node placement, is NP-hard.

Proof. To show that the given problem is NP-hard, we show that the problem can be

reduced from the NP-hard problem of minimum makespan scheduling on unrelated

parallel machines (MMSUPM) [23], which minimizes the maximum load (or job

processing time) on each machine.

Consider a special case in our problem where the application graph has a star

topology with two levels (one root and multiple leaf nodes), and the physical graph

is a line with multiple nodes. Assume that the number of resource types in the

nodes is K = 1, the application edge resource demand is zero, and the application

node resource demand is non-zero. Then, the problem is essentially the MMSUPM

problem. It follows that the MMSUPM problem reduces to our problem. In other

words, if we can solve our problem in polynomial time, then we can also solve

the MMSUPM problem in polynomial time. Because MMSUPM is NP-hard, our

problem is also NP-hard. The above result holds no matter whether the root node

(junction node) of the application graph has pre-specified placement or not.

Note that although the objective functions (3.3) and (2.3) are slightly different,

the above proof essentially shows that the problem in (2.3) is also NP-hard. This

is because when setting application edge resource demands to zero as done in the

proof, the problems (3.3) and (2.3) become the same.

3.4.2 When All Junction Node Placements Are Given

We consider tree application graphs for which the placements of junction nodes are

given, and focus on placing the remaining non-junction nodes which are connected

3.4. Online Placement Algorithms for Tree Application Graphs 42

Application graph

Physical graph

1

2

3

4

A

B

C

Map

D

5

1,A

2,A

3,A

4,A

Auxiliary graph

2,B

3,B

4,B

2,C

3,C

4,C

2,D

3,D

4,D

5,A 5,B 5,C 5,D

1,B 1,C 1,D

Application graph Physical graph

A

B

C

Map

F

1

2

3 4

5 6

7 8

D

E

Figure 3.3: Example of application graph with given placement of junction nodes.
Junction node 2 is placed on physical node B and junction node 5 is placed on phys-
ical node E. The algorithm needs to decide the placement of the remaining nodes,
subject to the cycle-free constraint.

to at most two edges. An example is shown in Fig. 3.3. Given the placed junction

nodes, we name the set of application edges and nodes that form a chain between

the placed nodes (excluding each placed node itself, but including each edge that

is connected to a placed node) as a simple branch, where the notion “simple” is

opposed to the general branch which will be defined in Section 3.4.3. A simple

branch can also be a chain starting from an edge that connects a placed node and

ending at a leaf node, such as the nodes and edges within the dashed boundary in the

application graph in Fig. 3.3. Each node in a simple branch is connected to at most

two edges.

3.4.2.1 Algorithm Design

In the following, we propose an online placement algorithm, where we make use

of some ideas from [37]. Different from [37] which focused on routing and job

scheduling problems, our work considers more general graph mapping.

When a service (represented by a tree application graph) arrives, we split the

whole application graph into simple branches, and regard each simple branch as

an independent application graph. All the nodes with given placement can also be

regarded as an application/service that is placed before placing the individual simple

3.4. Online Placement Algorithms for Tree Application Graphs 43

branches. After placing those nodes, each individual simple branch is placed using

the online algorithm that we describe below. In the remaining of this section, by

service we refer to the service after splitting, i.e. each service either consists of a

simple branch or a set of nodes with given placement.

How to Place Each Simple Branch: While our ultimate goal is to optimize (3.3),

we use an alternative objective function to determine the placement of each newly

arrived service i (after splitting). Such an indirect approach provides performance

guarantee with respect to (3.3) in the long run. We will first introduce the new ob-

jective function and then discuss its relationship with the original objective function

(3.3).

We first define a variable Ĵ as a reference cost. The reference cost may be an esti-

mate of the true optimal cost (defined as in (3.3)) from the optimal offline placement,

and the method to determine this value will be discussed later. Then, for placing the

ith service, we use an objective function which has the same form as (3.12), with

fn,k(·) and gl(·) defined as

fn,k(x) , expα

(
pn,k(i− 1) + x

Ĵ

)
− expα

(
pn,k(i− 1)

Ĵ

)
, (3.13a)

gl(x) , expα

(
pl(i− 1) + x

Ĵ

)
− expα

(
pl(i− 1)

Ĵ

)
, (3.13b)

subject to the cycle-free placement constraint, where we define expα(y) , αy and

α , 1 + 1/γ, in which γ > 1 is a design parameter.

Why We Use an Alternative Objective Function: The objective function (3.12)

with (3.13a) and (3.13b) is the increment of the sum exponential values of the origi-

nal costs, given all the previous placements. With this objective function, the perfor-

mance bound of the algorithm can be shown analytically (see Proposition 3.3 below).

Intuitively, the new objective function (3.12) serves the following purposes:

3.4. Online Placement Algorithms for Tree Application Graphs 44

1. “Guide” the system into a state such that the maximum cost among physical

links and nodes is not too high, thus approximating the original objective func-

tion (3.3). This is because when the existing cost at a physical link or node (for

a particular resource type k) is high, the incremental cost (following (3.12)) of

placing the new service i on this link or node (for the same resource type k)

is also high, due to the fact that expα(y) is convex increasing and the cost

definitions in (3.13a) and (3.13b).

2. While (3.3) only considers the maximum cost, (3.12) is also related to the sum

cost, because we sum up all the exponential cost values at different physical

nodes and links together. This “encourages” a low resource consuming place-

ment of the new service i (which is reflected by low sum cost), thus leaving

more available resources for future services. In contrast, if we use (3.3) di-

rectly for each newly arrived service, the placement may greedily take up too

much resource, so that future services can no longer be placed with a low cost.

In practice, we envision that objective functions with a shape similar to (3.12) can

also serve our purpose.

How to Solve It: Because each service either obeys a pre-specified placement or

consists of a simple branch, we can use Algorithm 3.1 with appropriately modified

cost functions to find the optimal solution to (3.12) with (3.13a) and (3.13b). For

the case of a simple branch having an open edge, such as edge (2, 4) in Fig. 3.3,

we connect an application node that has zero resource demand to extend the simple

branch to a graph, so that Algorithm 3.1 is applicable.

Algorithm 3.2 summarizes the above argument as a formal algorithm for each

service placement, where πi denotes the mapping for the ith service. Define a pa-

rameter, β = logα

(
γ(NK+L)

γ−1

)
, then Algorithm 3.2 performs the placement as long

as the cost on each node and link is not bigger than βĴ , otherwise it returns FAIL.

The significance of the parameter β is in calculating the competitive ratio, i.e. the

3.4. Online Placement Algorithms for Tree Application Graphs 45

Algorithm 3.2 Online placement of a service that is either a simple branch or a set
of nodes with given placement

1: Given the ith service that is either a set of nodes with given placement or a
simple branch

2: Given tree physical graph Y
3: Given pn,k(i− 1), ql(i− 1), and placement costs
4: Given Ĵ and β
5: if service is a set of nodes with given placement then
6: Obtain πi based on given placement
7: else if service is a simple branch then
8: Extend simple branch to linear graph R(i), by connecting zero-resource-

demand application nodes to open edges, and the placements of these zero-
resource-demand application nodes are given

9: Run Algorithm 3.1 with objective function (3.12) with (3.13a) and (3.13b),
forR(i), to obtain πi

10: end if
11: if ∃n, k : pn,k(i − 1) +

∑
v:πi(v)=n dv→n,k(i) > βĴ or ∃l : ql(i − 1) +∑

e=(v1,v2):(πi(v1),πi(v2))3l be→l(i) > βĴ then
12: return FAIL
13: else
14: return πi
15: end if

maximum ratio of the cost resulting from Algorithm 3.2 to the optimal cost from an

equivalent offline placement, as shown in Proposition 3.3.

Why We Need the Reference Cost Ĵ: The reference cost Ĵ is an input parame-

ter of the objective function (3.12) and Algorithm 3.2, which enables us to show a

performance bound for Algorithm 3.2, as shown in Proposition 3.3.

Proposition 3.3. If there exists an offline mapping πo that considers all M appli-

cation graphs and brings cost Jπo , such that Jπo ≤ Ĵ , then Algorithm 3.2 never

fails, i.e., pn,k(M) and ql(M) from Algorithm 3.2 never exceeds βĴ . The cost Jπo is

defined in (3.3).

Proof. See Appendix C.1.

Proposition 3.3 guarantees a bound for the cost resulting from Algorithm 3.2.

We note that the optimal offline mapping πo∗ produces cost Jπo∗ , which is smaller

3.4. Online Placement Algorithms for Tree Application Graphs 46

than or equal to the cost of an arbitrary offline mapping. It follows that for any πo,

we have Jπo∗ ≤ Jπo . This means that if there exists πo such that Jπo ≤ Ĵ , then we

must have Jπo∗ ≤ Ĵ . If we can set Ĵ = Jπo∗ , then from Proposition 3.3 we have

max {maxk,n pn,k(M); maxl ql(M)} ≤ βJπo∗ , which means that the competitive ra-

tio is β.

How to Determine the Reference Cost Ĵ: Because the value of Jπo∗ is unknown,

we cannot always set Ĵ exactly to Jπo∗ . Instead, we need to set Ĵ to an estimated

value that is not too far from Jπo∗ . We achieve this by using the doubling technique,

which is widely used in online approximation algorithms. The idea is to double the

value of Ĵ every time Algorithm 3.2 fails. After each doubling, we ignore all the

previous placements when calculating the objective function (3.12) with (3.13a) and

(3.13b), i.e. we assume that there is no existing service, and we place the subsequent

services (including the one that has failed with previous value of Ĵ) with the new

value of Ĵ . At initialization, the value of Ĵ is set to a reasonably small number Ĵ0.

In Algorithm 3.3, we summarize the high-level procedure that includes the split-

ting of the application graph, the calling of Algorithm 3.2, and the doubling process,

with multiple application graphs that arrive over time.

3.4.2.2 Complexity and Competitive Ratio

In the following, we discuss the complexity and competitive ratio of Algorithm 3.3.

Because the value of Jπo∗ is finite5, the doubling procedure in Algorithm 3.3 only

contains finite steps. The remaining part of the algorithm mainly consists of calling

Algorithm 3.2 which then calls Algorithm 3.1 for each simple branch. Because nodes

5The value of Jπo∗ is finite unless the placement cost specification does not allow any placement
with finite cost. We do not consider this case here because it means that the placement is not realizable
under the said constraints. In practice, the algorithm can simply reject such application graphs when
the mapping cost resulting from Algorithm 3.2 is infinity, regardless of what value of Ĵ has been
chosen.

3.4. Online Placement Algorithms for Tree Application Graphs 47

Algorithm 3.3 High-level procedure for multiple arriving tree application graphs

1: Initialize Ĵ ← Ĵ0

2: Define index i as the service index, which automatically increases by 1 for each
new service (after splitting)

3: Initialize i← 1
4: Initialize i0 ← 1
5: loop
6: if new application graph has arrived then
7: Split the application graph into simple branches and a set of nodes with

given placement, assume that each of them constitute a service
8: for all service i do
9: repeat

10: Call Algorithm 3.2 for service i with
pn,k(i− 1) = max {0, pn,k(i− 1)− pn,k(i0 − 1)} and
ql(i− 1) = max {0, ql(i− 1)− ql(i0 − 1)}

11: if Algorithm 3.2 returns FAIL then
12: Set Ĵ ← 2Ĵ
13: Set i0 ← i
14: end if
15: until Algorithm 3.2 does not return FAIL
16: Map service i according to πi resulting from Algorithm 3.2
17: end for
18: end if
19: end loop

3.4. Online Placement Algorithms for Tree Application Graphs 48

and links in each simple branch together with the set of nodes with given placement

add up to the whole application graph, similar to Algorithm 3.1, the time-complexity

of Algorithm 3.3 is O(V 3N2) for each application graph arrival.

Similarly, when combining the procedures in Algorithms 3.1–3.3, we can see

that the space-complexity of Algorithm 3.3 is O(V N(V + N)) for each application

graph arrival, which is in the same order as Algorithm 3.1.

For the competitive ratio, we have the following result.

Proposition 3.4. (Competitive Ratio): Algorithm 3.3 is 4β = 4 logα

(
γ(NK+L)

γ−1

)
-

competitive.

Proof. If Algorithm 3.2 fails, then we know that Jπo∗ > Ĵ according to Proposition

3.3. Hence, by doubling the value of Ĵ each time Algorithm 3.2 fails, we have

Ĵf < 2Jπo∗ , where Ĵf is the final value of Ĵ after placing allM services. Because we

ignore all previous placements and only consider the services i0, ..., i for a particular

value of Ĵ , it follows that

max

{
max
k,n
{pn,k(i)− pn,k(i0 − 1)};

max
l
{ql(i)− ql(i0 − 1)}

}
≤ βĴ (3.14)

for the particular value of Ĵ .

When we consider all the placements of M services, by summing up (3.14) for

all values of Ĵ , we have

max

{
max
k,n

pn,k(M); max
l
ql(M)

}
≤

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)
βĴf

< 2

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)
βJπo∗

= 4βJπo∗ .

3.4. Online Placement Algorithms for Tree Application Graphs 49

Hence, the proposition follows.

The variables α, γ and K are constants, and L = N − 1 because the physical

graph is a tree. Hence, the competitive ratio of Algorithm 3.3 can also be written as

O(logN).

It is also worth noting that, for each application graph, we may have different

tree physical graphs that are extracted from a general physical graph, and the above

conclusions still hold.

3.4.3 When at Least One Junction Node Placement Is Not Given

In this subsection, we focus on cases where the placements of some or all junction

nodes are not given. For such scenarios, we first extend our concept of branches

to incorporate some unplaced junction nodes. The basic idea is that each general

branch is the largest subset of nodes and edges that are interconnected with each

other not including any of the nodes with pre-specified placement, but (as with our

previous definition of simple branches) the subset includes the edges connected to

placed nodes. A simple branch (see definition in Section 3.4.2) is always a general

branch, but a general branch may or may not be a simple branch. Examples of

general branches are shown in Fig. 3.4.

3.4.3.1 Algorithm Design

The main idea behind the algorithm is to combine Algorithm 3.2 with the enumera-

tion of possible placements of unplaced junction nodes. When there is only a con-

stant number of such nodes on any path from the root to a leaf, the algorithm remains

polynomial in time-complexity while guaranteeing a poly-log competitive ratio.

To illustrate the intuition, consider the example application graph shown in Fig.

3.4(a), where nodes 2 and 5 are both initially unplaced. We follow a hierarchical

3.4. Online Placement Algorithms for Tree Application Graphs 50

1

2

3 4

5 6

7 8

1

2

3 4

5 6

7 8

(a) (b)

1

2

3 4

5 6

7 8

(c)

9 10

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

Figure 3.4: Example of application graphs with some unplaced junction nodes, the
nodes and edges within each dashed boundary form a general branch: (a) nodes 2
and 5 are both unplaced, (b) node 2 is placed, node 5 is unplaced, (c) node 2 is
placed, nodes 5 and 6 are unplaced.

determination of the placement of unplaced nodes starting with the nodes in the

deepest level. For the example in Fig. 3.4(a), we first determine the placement of

node 5, given each possible placement of node 2; and then determine the placement

of node 2. Recall that we use the cost function in (3.12) with (3.13a) and (3.13b)

to determine the placement of each simple branch when all the junction nodes are

placed. We use the same cost function (with slightly modified parameters) for the

placement of nodes 2 and 5. However, when determining the placement of node 5,

we regard the general branch that includes node 5 (which contains nodes 3, 5, 7,

and 8 and the corresponding edges as shown in Fig. 3.4(b)) as one single service,

i.e. the values of pn,k(i − 1) and ql(i − 1) in (3.13a) and (3.13b) correspond to the

resource utilization at nodes and links before placing this whole general branch, and

the service i contains all the nodes and edges in this general branch. Similarly, when

determining the placement of node 2, we consider the whole application graph as a

single service.

It is worth noting that in many cases we may not need to enumerate all the possi-

ble combinations of the placement of unplaced junction nodes. For example, in Fig.

3.4(c), when the placement of node 2 is given, the placement of nodes 5 and 6 does

not impose additional restrictions upon each other (i.e., the placement of node 5 does

3.4. Online Placement Algorithms for Tree Application Graphs 51

not affect where node 6 can be placed, for instance). Hence, the general branches

that respectively include node 5 and node 6 can be placed in a subsequent order using

the online algorithm.

Based on the above examples, we summarize the procedure as Algorithm 3.4,

where we solve the problem recursively and determine the placement of one junction

node that has not been placed before in each instance of the function Unplaced(v, h).

The parameter v is initially set to the top-most unplaced junction node (node 2 in

Fig. 3.4(a)), and h is initially set to H (the maximum number of unplaced junction

nodes on any path from the root to a leaf in the application graph).

Algorithm 3.4 can be embedded into Algorithm 3.3 to handle multiple arriving

application graphs and unknown reference cost Ĵ . The only part that needs to be

modified in Algorithm 3.3 is that it now splits the whole application graph into gen-

eral branches (rather than simple branches without unplaced junction nodes), and it

either calls Algorithm 3.2 or Algorithm 3.4 depending on whether there are unplaced

junction nodes in the corresponding general branch. When there are such nodes, it

calls Unplaced(v, h) with the aforementioned initialization parameters.

3.4.3.2 Complexity and Competitive Ratio

The time-complexity of Algorithm 3.4 together with its high-level procedure that is a

modified version of Algorithm 3.3 isO(V 3N2+H) for each application graph arrival,

as explained below. Note thatH is generally not the total number of unplaced nodes.

Obviously, when H = 0, the time-complexity is the same as the case where all

junction nodes are placed beforehand. When there is only one unplaced junction

node (in which case H = 1), Algorithm 3.4 considers all possible placements for

this vertex, which has at most N choices. Hence, its time-complexity becomes N

times the time-complexity with all placed junction nodes. When there are multiple

unplaced junction nodes, we can see from Algorithm 3.4 that it only increases its re-

3.4. Online Placement Algorithms for Tree Application Graphs 52

Algorithm 3.4 Tree-to-tree placement when some junction nodes are not placed
1: function Unplaced(v, h)
2: Given the ith service that is a general branch, tree physical graph Y , Ĵ , and β
3: Given pn,k(i−1) and ql(i−1) which is the current resource utilization on nodes

and links
4: Define Π to keep the currently obtained mappings, its entry π|π(v)=n0 for all n0

represents the mapping, given that v is mapped to n0

5: Define pn,k(i)|π(v)=n0 and ql(i)|π(v)=n0 for all n0 as the resource utilization after
placing the ith service, given that v is mapped to n0

6: Initialize pn,k(i)|π(v)=n0 ← pn,k(i− 1) and ql(i)|π(v)=n0 ← ql(i− 1) for all n0

7: for all n0 that v can be mapped to do
8: Assume v is placed at n0

9: for all general branch that is connected with v do
10: if the general branch contains unplaced junction nodes then
11: Find the top-most unplaced vertex v′ within this general branch
12: Call Unplaced(v′, h − 1) while assuming v is placed at n0, and with

pn,k(i− 1) = pn,k(i)|π(v)=n0 and ql(i− 1) = ql(i)|π(v)=n0

13: else
14: (in which case the general branch is a simple branch without unplaced

junction nodes)
Run Algorithm 3.2 for this branch

15: end if
16: Put mappings resulting from Unplaced(v′, h − 1) or Algorithm 3.2 into

π|π(v)=n0

17: Update pn,k(i)|π(v)=n0 and ql(i)|π(v)=n0 to incorporate new mappings
18: end for
19: end for
20: Find minn0

∑
k,n

(
expα

(
pn,k(i)|π(v)=n0

βhĴ

)
−expα

(
pn,k(i−1)

βhĴ

))
+∑

l

(
expα

(
ql(i)|π(v)=n0

βhĴ

)
− expα

(
ql(i−1)

βhĴ

))
,

returning the optimal placement of v as n∗0.
21: if h = H and (∃n, k : pn,k(i)|π(v)=n∗0

> β1+H Ĵ or ∃l : ql(i)|π(v)=n∗0
> β1+H Ĵ)

then
22: return FAIL
23: else
24: return π|π(v)=n∗0
25: end if

3.4. Online Placement Algorithms for Tree Application Graphs 53

cursion depth when some lower level unplaced junction nodes exist. In other words,

parallel general branches (such as the two general branches that respectively include

node 5 and node 6 in Fig. 3.4(c)) do not increase the recursion depth, because the

function Unplaced(v, h) for these general branches is called in a sequential order.

Therefore, the time-complexity depends on the maximum recursion depth which is

H; thus, the overall time-complexity is O(V 3N2+H).

The space-complexity of Algorithm 3.4 is O(V N1+H(V +N)) for each applica-

tion graph arrival, because in every recursion, the results for all possible placements

of v are stored, and there are at most N such placements for each junction node.

Regarding the competitive ratio, similar to Proposition 3.3, we can obtain the

following result.

Proposition 3.5. If there exists an offline mapping πo that considers all M applica-

tion graphs and brings cost Jπo , such that Jπo ≤ Ĵ , then Algorithm 3.4 never fails,

i.e., pn,k(M) and ql(M) resulting from Algorithm 3.4 never exceeds β1+H Ĵ .

Proof. When H = 0, the claim is the same as Proposition 3.3.

WhenH = 1, there is at most one unplaced junction node in each general branch.

Because Algorithm 3.4 operates on each general branch, we can regard that we have

only one unplaced junction node when running Algorithm 3.4. In this case, there

is no recursive calling of Unplaced(v, h). Recall that v is the top-most unplaced

junction node. The function Unplaced(v, h) first fixes the placement of this unplaced

junction node v to a particular physical node n0, and finds the placement of the

remaining nodes excluding v. It then finds the placement of v.

From Proposition 3.3, we know that when we fix the placement of v, the cost re-

sulting from the algorithm never exceeds βĴ if there exists a mapping πo|π(v)=n0 (un-

der the constraint that v is placed at n0) that brings cost Jπo|π(v)=n0 with Jπo|π(v)=n0 ≤

Ĵ .

To find the placement of v, Algorithm 3.4 finds the minimum cost placement

3.5. Numerical Evaluation 54

from the set of placements that have been obtained when the placement of v is given.

Reapplying Proposition 3.3 for the placement of v, by substituting Ĵ with βĴ , we

know that the cost from the algorithm never exceeds β2Ĵ , provided that there exists a

mapping, which is within the set of mappings produced by the algorithm with given

v placements6, that has a cost not exceeding βĴ . Such a mapping exists and can

be produced by the algorithm if there exists an offline mapping πo (thus a mapping

πo|π(v)=n0 for a particular placement of v) that brings cost Jπo with Jπo ≤ Ĵ . Hence,

the claim follows for H = 1.

When H > 1, because we decrease the value of h by one every time we recur-

sively call Unplaced(v, h), the same propagation principle of the bound applies as

for the case with H = 1. Hence, the claim follows.

Using the same reasoning as for Proposition 3.4, it follows that

Algorithm 3.4 in combination with the extended version of Algorithm 3.3

is 4β1+H = 4 log1+H
α

(
γ(NK+L)

γ−1

)
-competitive, thus its competitive ratio is

O(log1+H N) .

3.5 Numerical Evaluation

In this section, we evaluate the performance of the proposed algorithm via simu-

lation. For comparison, we consider online algorithms that utilize a mixed-integer

linear program (MILP) solution. Specifically, a MILP optimization is solved for

each new service arrival, and the service is placed according to the solution from the

6Note that, as shown in Line 20 of Algorithm 3.4, to determine the placement of v, we only
take the minimum cost (expressed as the difference of exponential functions) with respect to those
mappings that were obtained with given placement of v. It follows that the minimization is only taken
among a subset of all the possible mappings. This restricts the reference mapping to be within the
set of mappings that the minimization operator operates on. Because, only in this way, the inequality
(C.5) in the proof of Proposition 3.3 can be satisfied. On the contrary, Algorithm 3.2 considers all
possible mappings that a particular simple branch can be mapped to, by calling Algorithm 3.1 as its
subroutine.

3.5. Numerical Evaluation 55

MILP. By service, we refer to non-split services, i.e. whole application graphs, in

this section.

MILPs are generally not solvable in polynomial-time, but we use them for com-

parison to capture the best possible result for a larger class of online algorithms

(including LP-relaxation or other heuristics) that place each service upon its arrival.

Also note that these MILP results do not represent the optimal offline solution, be-

cause an optimal offline solution needs to consider all services at the same time,

whereas the methods that we use for comparison only solve the MILP for each newly

arrived service. Obtaining the optimal offline solution would require excessive com-

putational time, hence we do not consider it here. We use the optimization toolbox

CPLEX [20] to solve the MILPs in the simulation.

Recall that the goal of the proposed algorithm is to minimize the maximum re-

source utilization on nodes and links after hosting a number of services, as given in

(3.3), and the (non-linear) exponential-difference cost function in (3.12) with (3.13a)

and (3.13b) is used to determine the placement of each newly arrived service. In the

methods for comparison, we also consider (3.3) as the “long-term” goal, but we con-

sider two different MILP formulations with different objective functions for placing

each newly arrived service. The first formulation greedily minimizes the maximum

resource utilization for each service placement, with a min-max objective function.

Such a formulation represents a general class of greedy mechanisms. The second

formulation has a min-sum objective function as defined in [17]. The coefficients

in the cost function are inversely proportional to the amount of available resource.

Hence, this method also considers load balancing in its formulation. We do not im-

pose the cycle-free constraint in the MILP formulations. When the placements of

junction nodes are given, the children of this junction node can only be placed onto

the physical node, on which the junction node has been placed, or onto the chil-

dren of this physical node. This is considering that a placed junction node may be

3.5. Numerical Evaluation 56

responsible for nodes in a specific area.

We consider randomly generated tree application and physical graphs7. The

number of application nodes for each service is randomly chosen from the inter-

val [3, 10], and the number of physical nodes ranges from 2 to 50. This setting is

similar to that in related work such as [17]. We use a sequential approach to assign

connections between nodes. Namely, we first label the nodes with indices. Then,

we start from the lowest index, and connect each node m to those nodes that have

indices 1, 2, ...,m − 1. Node m connects to node m − 1 with probability 0.7, and

connects to nodes 1, 2, ...,m− 2 each with probability 0.3/(m− 2). We restrict the

application root node to be placed onto the physical root node, which is due to the

consideration that some portion of processing has to be performed on the core cloud

in an MMC environment. We consider 100 service arrivals and simulate with 100

different random seeds to obtain the overall performance. The placement cost of a

single node or link is uniformly distributed between 0 and a maximum value. For

the root application node, the cost is divided by a factor of 10. We set the design

parameter γ = 2 in the simulation.

Figures 3.5 and 3.6 show the average maximum resource utilization (averaged

over results from different random seeds8), respectively with and without

pre-specified placement of junction nodes. In Figs. 3.5(a) and 3.6(a), the number of

physical nodes is randomly chosen from the interval [2, 50]; and in Figs. 3.5(b) and

3.6(b), the maximum resource demand (per application node/link) is set to 0.015. It

is evident that the proposed method outperforms the methods in comparison. The

7Because the focus of our work is on MMCs, which have not been widely deployed in practice
and thus realistic graphs are not available to us. Therefore, we use randomly generated graphs in our
evaluation.

8We only consider those random seeds which produce a maximum resource utilization that is
smaller than one, because otherwise, the physical network is overloaded after hosting 100 services.
We also observed in the simulations that the number of accepted services is similar when using dif-
ferent methods. The relative degradation in the number of accepted services of the proposed method
compared with other methods never exceeds 2% in the simulations.

3.5. Numerical Evaluation 57

1

2

3 4

5 6

7 8

1

2

3 4

5 6

7 8

(a) (b)

1

2

3 4

5 6

7 8

(c)

9 10

0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

Figure 3.5: Maximum resource utilization when junction node placements are pre-
specified.

1

2

3 4

5 6

7 8

1

2

3 4

5 6

7 8

(a) (b)

1

2

3 4

5 6

7 8

(c)

9 10

0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50
Number of nodes in physical graph

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.005 0.015 0.025

M
ax

im
um

 r
es

ou
rc

e
ut

ili
za

ti
on

Maximum resource demand

Proposed
MILP w. min-max obj.
MILP w. min-sum obj.

Figure 3.6: Maximum resource utilization when junction node placements are not
pre-specified.

3.5. Numerical Evaluation 58

resource utilization tends to converge when the number of physical nodes is large

because of the fixed root placement. As mentioned earlier, the MILP solution is the

best possible solution among a set of existing approaches for online placement,

which use the same objective function for each service as in the corresponding

MILP formulation. Realistic online algorithms in the same set would not perform

better than the MILP result, whereas solving MILP requires non-polynomial time.

The reason why the proposed method outperforms other methods is described

below. We should first note that the uniqueness in the proposed algorithm is that it

uses a non-linear objective function for each service, whereas the MILP methods all

use linear objective functions (otherwise it is not possible to formulate with MILP,

and obtaining exact solutions to non-linear programs with integer variables gener-

ally requires excessive computational time9, thus we do not compare against exact

solutions for the exponential-difference cost). The exponential-difference cost used

in the proposed algorithm is indeed related to both load balancing and reducing sum

resource utilization. It leaves more available resources for services that arrive in

the future, compared to the MILP with min-max objective which greedily optimizes

(3.3) for each new service. The MILP with min-sum objective function does not

strongly enforce load balancing unless operating closely to the resource saturation

point, because of the characteristics of its objective function.

When comparing Fig. 3.5 with Fig. 3.6, we can find that the performance gaps

between the proposed method and other methods are larger when the junction nodes

are not placed beforehand. This is mainly because the judgment of whether Algo-

rithm 3.4 has failed is based on the factor β1+H , and for Algorithm 3.2 it is based on

β. It follows that Algorithm 3.4 is less likely to fail when H > 0. In this case, the

value of Ĵ is generally set to a smaller value by the doubling procedure in Algorithm

9This is by noting that even linear programs with integer variables are generally NP-hard, and the
best known algorithms for solving NP-hard problems have exponential time-complexity. A non-linear
program is usually more difficult to solve than a linear program.

3.6. Discussion 59

3.3. A smaller value of Ĵ also results in a larger change in the exponential-difference

cost when the amount of existing load changes10. This brings a better load balancing

on average (but not for the worst-case, the worst-case result is still bounded by the

bounds derived earlier in this chapter).

3.6 Discussion

Is the Tree Assumption Needed? For ease of presentation and considering the

practical relevance to MMC applications, we have focused on tree-to-tree placements

in this chapter. However, the tree assumption is not absolutely necessary for our

algorithm to be applicable. For example, consider the placement problem shown in

Fig. 3.7, where the application graph consists of two junction nodes (nodes 1 and 2)

and multiple simple branches (respectively including nodes 3, 4, 5, and 6) between

these two junction nodes. Such an application graph is common in applications

where processing can be parallelized at some stage. The physical graph shown in

Fig. 3.7(b) still has a hierarchy, but we now have connections between all pairs of

nodes at two adjacent levels. Obviously, neither the application nor the physical

graph in this problem has a tree structure.

Let us assume that junction node 1 has to be placed at the top level of the phys-

ical graph (containing nodes A, B, C, D, E), junction node 2 has to be placed at the

bottom level of the physical graph (containing nodes K, L, M, N, O), and application

nodes 3, 4, 5, 6 have to be placed at the middle level of the physical graph (containing

nodes F, G, H, I, J). One possible junction node placement under this restriction is

shown in Fig. 3.7(c). With this pre-specified junction node placement, the mapping

of each application node in {3, 4, 5, 6} can be found by the simple branch placement

algorithm (Algorithm 3.3 which embeds Algorithm 3.2) introduced earlier, because

10This is except for the top-level instance of Unplaced(v, h) due to the division by βh in Line 20
of Algorithm 3.4.

3.6. Discussion 60

1

2

3 54 6

K NL M

(a) Application graph (b) Physical graph

O

F IG H J

A DB C E

K ML N

(c) With pre‐specified placement

O

F IG H J

A DB C E
1

2

Figure 3.7: Example where application and physical graphs are not trees: (a) ap-
plication graph, (b) physical graph, (c) restricted physical graph with pre-specified
placement of application nodes 1 and 2.

3.6. Discussion 61

it only needs to map each application node in {3, 4, 5, 6} onto each physical node in

{F, G, H, I, J}, and find the particular assignment that minimizes (3.12) with (3.13a)

and (3.13b). Therefore, in this example, when the junction node placements are pre-

specified, the proposed algorithm can find the placement of other application nodes

with O(V 3N2) time-complexity, which is the complexity of Algorithm 3.3 as dis-

cussed in Section 3.4.2.2. When the junction node placements are not pre-specified,

the proposed algorithm can find the placement of the whole application graph with

O(V 3N4) time-complexity, because here H = 2 (recall that the complexity result

was derived in Section 3.4.3.2).

We envision that this example can be generalized to a class of application and

physical graphs where there exist a limited number of junction nodes (where we can

define an arbitrary node in the application graph as the root node) that are not placed

beforehand. The algorithms proposed in this chapter should still be applicable to

such cases, as long as we can find a limited number of cycle-free paths between

two junction nodes when they are placed on the physical graph. We leave a detailed

discussion to this aspect as future work.

Practical Implications: Beside the proposed algorithms themselves, the results of

this chapter can also provide the following insights that may guide future implemen-

tation:

1. The placement is easier when the junction nodes are placed beforehand. This is

obvious when comparing the time-complexity and competitive ratio for cases

with and without unplaced junction nodes.

2. There is a trade-off between instantaneously satisfying the objective function

and leaving more available resources for future services. Leaving more avail-

able resources may cause the system to operate in a sub-optimal state for the

short-term, but future services may benefit from it. This trade-off can be con-

3.7. Summary 62

trolled by defining an alternative objective function which is different from

(but related to) the overall objective that the system tries to achieve (see Sec-

tion 3.4.2.1).

Comparison with [25]: As mentioned in Section 3.1, [25] is the only work which

we know that has studied the competitive ratio of online service placement consid-

ering both node and link optimization. Our approach has several benefits compared

to [25] as discussed in Section 3.1.2. Beside those benefits, we would like to note

that the proposed algorithm outperforms [25] in time-complexity, space-complexity,

and competitive ratio when the junction node placements are pre-specified (the per-

formance bounds of these two approaches can be found in Sections 3.1.1 and 3.1.3,

respectively). When some junction node placements are not pre-specified, our ap-

proach provides a performance bound comparable to that in [25], where we also note

that H ≤ D. Moreover, [25] does not consider exact optimal solutions for the place-

ment of a single linear application graph, and it also does not have simulations to

show the average performance of the algorithm.

Tightness of Competitive Ratio: By comparing the competitive ratio result of our

approach to that in [25], we see that both approaches provide poly-log competitive

ratios for the general case. It is however unclear whether this is the best performance

bound one can achieve for the service placement problem. This is an interesting but

difficult aspect worth studying in the future.

3.7 Summary

We have focused on the placement of an incoming stream of application graphs onto

a physical graph in this chapter. We started with a basic assignment module for

placing a single application graph that is a line, based on which we developed online

3.7. Summary 63

algorithms for placing tree application graphs. The performance of the proposed

algorithms has been studied both analytically and via simulation.

Until now, we have proposed algorithms for initial service placement as dis-

cussed in Section 1.1.1. The next question we need to address is whether/where to

migrate services in real time when mobile users move after the initial placement.

This is discussed in the next two chapters.

CHAPTER 4

An MDP-Based Approach to

Dynamic Service Migration

4.1 Introduction

We considered the initial placement of an arriving stream of application graphs onto

the physical graph in the previous chapter. Because mobile users may move after

initial placement (as discussed in Section 1.1.2) and such a movement essentially

changes the physical graph topology, the initial placement may no longer be optimal

or near-optimal after such a change. Thus, in this chapter, we consider the case

where the cost of a particular choice of service placement varies over time, and this

cost variation is mainly due to user mobility. In this case, we need to make decisions

related to whether/where we should migrate the service.

As illustrated in the example given in Section 1.1.2, application components run-

ning on MMCs are the most prone to user movements, due to the relatively small

coverage area of network entities (such as basestations) MMCs are directly con-

nected to. Thus, for simplicity, in this and remaining chapters we only consider a

star (two-level tree) application graph with one root node running on an MMC and

one or multiple leaf nodes running on users. When the application graph only has

one leaf node, it corresponds to the case where the service only serves one user.

When it has multiple leaf nodes, the service serves multiple users simultaneously.

We will mainly focus on the first case where each user independently runs its own

4.1. Introduction 65

service instance on an MMC, but several approaches we present can be directly ap-

plied or extended to the second case where multiple users are served by one service

instance. The service placement and migration problem with user dynamics mainly

focuses on where (on which cloud) to place the root application node. We will soon

see that this problem is already very complex even with these simplifications, where

user dynamics is the main cause for complexity.

4.1.1 Related Work

Most existing work on service migration focuses on wide-area migrations in re-

sponse to workload and energy costs that vary slowly [38, 39]. In MMCs, user

mobility is the driving factor of migration, which varies much faster than parameters

in conventional clouds.

The performance of MMCs with the presence of user mobility is studied in [18],

but decisions on whether and where to migrate the service is not considered. A

preliminary work on mobility-driven service migration based on Markov Decision

Processes (MDPs) is given in [19], which mainly considers 1-D mobility patterns

with a specifically defined cost function. Standard solution procedures are used to

solve this MDP, which can be time-consuming especially when the MDP has a large

number of states. Due to real-time dynamics, the cost functions and transition prob-

abilities of the MDP may change rapidly over time, thus it is desirable to solve the

MDP in an effective manner. Furthermore, 2-D mobility has not been considered

in the literature to the best of our knowledge, which is a much more realistic case

compared to 1-D mobility.

We also note that a related area of work, which is relevant to the user mobil-

ity, studies handover policies in the context of cellular networks [40]. However, the

notion of service migration is very different from cellular handover. Handover is

usually decided by signal strengths from different basestations, and a handover must

4.1. Introduction 66

occur if a user’s signal is no longer provided satisfactorily by its original basesta-

tion. In the service migration context, a user may continue receiving service from

an MMC even if it is no longer associated with that basestation, because the user

can communicate with a remote MMC via its currently associated basestation and

the backhaul network. As a result, the service for a particular user can potentially be

placed on any MMC, and the service migration problem has a much larger decision

space than the cellular handover problem.

4.1.2 Main Results

In this chapter, we use the MDP framework to study service migration in MMCs.

We provide novel contributions beyond [19], by considering more efficient solution

methods, general cost models, 2-D user mobility, and application to real-world sce-

narios. The details are described as follows.

1. We formulate the mobility-driven dynamic service placement/migration prob-

lem with general cost models and provide a mathematical framework to design

optimal service migration policies.

2. We consider 1-D user mobility1 with a constant cost model, and propose an

optimal threshold policy to solve for the optimal action of the MDP, which is

more efficient than standard solution techniques. A threshold policy means

that we always migrate the service for a user from one micro-cloud to another

when the user is in states bounded by a particular set of thresholds, and do not

migrate otherwise. We first prove the existence of an optimal threshold policy

and then propose an algorithm with polynomial time-complexity for finding

the optimal thresholds. The analysis with 1-D mobility model can also help

1The 1-D mobility is an important practical scenario often encountered in transportation networks,
such as vehicles moving along a road.

4.1. Introduction 67

us gain new insights into the migration problem, which set the foundation for

more complicated scenarios studied next.

3. We consider 2-D user mobility with a more general cost model, where the

cost can be expressed in a constant-plus-exponential form. For this case, we

propose the following:

(a) We note that the resulting problem becomes difficult to solve due to the

large state space. In order to overcome this challenge, we propose an

approximation of the underlying state space where we define the states

as the distance between the user and the service locations2. This ap-

proximation becomes exact for uniform 1-D mobility. We prove several

structural properties of the distance-based MDP, which includes a closed-

form solution to the discounted sum cost. We leverage these properties

to develop an algorithm for computing the optimal policy, which reduces

the per-iteration complexity from O(N3) (by policy iteration [41, Chap-

ter 6]) to O(N2), where N is the number of states in the distance-based

MDP excluding the state corresponding to zero distance.

(b) We show how to use the distance-based MDP to approximate the solu-

tion for 2-D mobility models, which allows us to efficiently compute a

service migration policy for 2-D mobility. For uniform 2-D mobility,

the approximation error is bounded by a constant. Simulation results

comparing our approximation solution to the optimal solution (where the

optimal solution is obtained from a 2-D MDP) suggest that it performs

very close to optimal, and the proposed approximation approach obtains

the solution significantly faster.

2Throughout this chapter, we mean by user location the location of the basestation that the user is
associated to.

4.2. Problem Formulation 68

(c) We demonstrate how to apply our algorithms in a practical scenario

driven by real mobility traces of taxis in San Francisco which involve

multiple users and services. The practical scenario includes realistic

factors, e.g., not every basestation has an MMC connected to it, and

each MMC can only host a limited number of services. We compare

the proposed policy with several baseline strategies that include

myopic, never-migrate, and always-migrate policies. It is shown that

the proposed approach offers significant gains over these baseline

approaches.

4.2 Problem Formulation

Consider a mobile user that accesses a cloud-based service hosted on the MMCs.

The set of possible user locations is given by Q, where Q is assumed to be finite

(but arbitrarily large). We consider a time-slotted model where the user’s location

remains fixed for the duration of one slot and changes from one slot to the next

according to a Markovian mobility model. The time-slotted model can be regarded

as a sampled version of a continuous-time model, and the sampling can be performed

either at equal intervals over time or occur right after a cellular handover instance. In

addition, we assume that each location ϕ ∈ Q is associated with an MMC that can

host the service for the user. The locations in Q are represented as 2-D vectors and

there exists a distance metric ‖ϕ1 − ϕ2‖ that can be used to calculate the distance

between locations ϕ1 and ϕ2. Note that the distance metric may not be Euclidean

distance. An example of this model is a cellular network in which the user’s location

is taken as the location of its current basestation and the MMCs are co-located with

the basestations. As shown in Section 4.4.3, these locations can be represented as

2-D vectors (i, j) with respect to a reference location (represented by (0, 0)) and the

4.2. Problem Formulation 69

PossiblePossible
migration We alwaysmigration We always

Ob
g

h i haveObserve changing Operate with states have
(t) d h(t)

g g
h(t) t h'(t)

Operate with states h(t+1) h'(t)u(t) and h(t) h(t) to h'(t)
p
(t) d h'(t) h(t+1)= h'(t)() () () () u(t) and h'(t) () ()u(t) and h (t)

……

iTimeTime
Ti l t tTimeslot t

Figure 4.1: Timing of the proposed service migration mechanism.

distance between any two locations can be calculated in terms of the number of hops

to reach from one cell to another cell. We denote the user and service locations at

timeslot t as u(t) and h(t) respectively.

Remark: The problem is formulated for the case of a single user accessing a

single service, i.e., the application graph only contains two nodes, one running at

one of the MMCs, and the other running at the user device. However, our solution

can be applied to manage services for multiple users in a heuristic manner. We

will illustrate such an application in Section 4.4.4, where we also consider aspects

including that MMCs are only deployed at a subset of basestations and a limited

number of services can be hosted at each MMC. We assume in this chapter that

different services are independent of each other, and one service serves a single user.

The notion of “service” in this chapter can also stand for an instance of a particular

type of service, but we do not distinguish between services and instances in this

chapter for simplicity.

4.2.1 Control Decisions and Costs

At the beginning of each slot, the MMC controller can choose from one of the fol-

lowing control options:

1. Migrate the service from location h(t) to some other location h′(t) ∈ Q. This

incurs a migration cost cm(x) that is assumed to be a non-decreasing function

4.2. Problem Formulation 70

of x, where x is the distance between h(t) and h′(t), i.e., x = ‖h(t)− h′(t)‖.

Once the migration is completed, the system operates under state (u(t), h′(t)).

We assume that the time to perform migration is negligible compared to the

time scale of user mobility (as shown in Fig. 4.1).

2. Do not migrate the service. In this case, we have h′(t) = h(t) and the migra-

tion cost is cm(0) = 0.

In addition to the migration cost, there is a data transmission cost incurred by the

user for connecting to the currently active service instance. The transmission cost is

related to the distance between the service and the user after possible migration, and

it is defined as a general non-decreasing function cd(y), where y = ‖u(t) − h′(t)‖.

We set cd(0) = 0.

4.2.2 Performance Objective

Let us denote the overall system state at the beginning of each timeslot (before pos-

sible migration) by s(t) = (u(t), h(t)). The state s(t) is named as the initial state

of slot t. Consider any policy π that makes control decisions based on the state s(t)

of the system, and we use aπ(s(t)) to represent the control action taken when the

system is in state s(t). This action causes the system to transition to a new inter-

mediate state s′(t) = (u(t), h′(t)) = aπ(s(t)). We use Caπ(s(t)) to denote the sum

of migration and transmission costs incurred by a control aπ(s(t)) in slot t, and we

have Caπ(s(t)) = cm(‖h(t)− h′(t)‖) + cd(‖u(t)− h′(t)‖). Starting from any initial

state s(0) = s0 (assuming that the current slot has index 0), the long-term expected

discounted sum cost incurred by policy π is given by

Vπ(s0) = lim
t→∞

E

{
t∑

τ=0

γτCaπ(s(τ))

∣∣∣∣∣s(0) = s0

}
(4.1)

4.2. Problem Formulation 71

where 0 < γ < 1 is a discount factor which is related to how far we look-ahead in

the cost computation. A large value of γ gives more weight to future costs, whereas

a small value of γ gives less weight to future costs.

Our objective is to design a control policy that minimizes the long-term expected

discounted sum total cost starting from any initial state, i.e.,

V ∗(s0) = min
π
Vπ(s0) ∀s0. (4.2)

This problem falls within the class of MDPs with infinite horizon discounted cost.

It is well known that the optimal solution is given by a stationary policy and can be

obtained as the unique solution to the Bellman’s equation:

V ∗(s0) = min
a

{
Ca(s0) + γ

∑
s1∈Q×Q

Pa(s0),s1V
∗(s1)

}
(4.3)

where Pa(s0),s1 denotes the probability of transitioning from state s′(0) = s′0 = a(s0)

to s(1) = s1. Note that the intermediate state s′(t) has no randomness when s(t) and

a(·) are given, thus we only consider the transition probability from s′(t) to the next

state s(t+ 1) in (4.3). Also note that we always have h(t+ 1) = h′(t).

4.2.3 Characteristics of Optimal Policy

We next characterize some structural properties of the optimal solution. The follow-

ing proposition states that it is not optimal to migrate the service to a location that is

farther away from the user than the current service location, as one would intuitively

expect.

Proposition 4.1. Let a∗(s) = (u, h′) denote the optimal action at any state s =

(u, h). Then, we have ‖u− h′‖ ≤ ‖u− h‖. (If the optimal action is not unique, then

there exists at least one such optimal action.)

4.3. Constant Cost Model under 1-D Mobility 72

Corollary 4.1. If cm(x) and cd(y) are both constants (possibly of different values)

for x, y > 0, and cm(0) < cm(x) and cd(0) < cd(y) for x, y > 0, then migrating to

locations other than the current location of the mobile user is not optimal.

See Appendix C.2 for the proofs of Proposition 4.1 and Corollary 4.1.

4.2.4 Generic Notations

In the remainder of this chapter, where there is no ambiguity, we reuse the nota-

tions P , Ca(·), V (·), and a(·) to respectively represent transition probabilities, one-

timeslot costs, discounted sum costs, and actions of different MDPs.

4.3 Constant Cost Model under 1-D Mobility

In this section, we consider the simple case where users follow a 1-D mobility model.

4.3.1 Definitions

We consider a 1-D region partitioned into a discrete set of areas, each of which is

served by an MMC, as shown in Fig. 1.1. Such a scenario models user mobility on

roads, for instance.

Mobile users are assumed to follow a 1-D asymmetric random walk mobility

model. In every new timeslot, a user moves with probability p (or q) to the area that

is on the right (or left) of its previous area, it stays in the same area with probability

1− p− q. If the system is sampled at handoff instances, then 1− p− q = 0, but we

consider the general case with 0 ≤ 1 − p − q ≤ 1. Obviously, this mobility model

can be described as a Markov chain.

The state of the user is defined as the offset between the mobile user location

and the location of the MMC running the service at the beginning of a slot, before

4.3. Constant Cost Model under 1-D Mobility 73

possible service migration, i.e., the state in slot t is defined as e(t) = u(t) − h(t),

where u(t) is the location (index of area) of the mobile user, and h(t) the location

(index of area) of the MMC hosting the service. Note that e(t) can be zero, positive,

or negative. For simplicity, we omit the variable t and the policy subscript π in the

following.

Because we consider a scenario where all MMCs are connected via the backhaul

(as shown in Fig. 1.1), and the backhaul can be regarded as a central entity (which

resembles the case for cellular networks, for example), in this section, we define the

migration and transmission costs respectively as follows:

cm(x) =

0, if x = 0

1, if x > 0

(4.4)

cd(y) =

0, if y = 0

ξ, if y > 0

. (4.5)

This gives the following one-timeslot cost function for taking action a in state e:

Ca(e) =

0, if no migration or data transmission, i.e., e = a(e) = 0

ξ, if only data transmission, i.e., e = a(e) 6= 0

1, if only migration, i.e., e 6= a(e) = 0

ξ + 1, if both migration and data transmission, i.e., e 6= a(e) 6= 0

(4.6)

Equation (4.6) is explained as follows. If the action a under state e causes no migra-

tion or data transmission (e.g., if the user and the MMC hosting the service are in the

same location, i.e., e = 0, and we do not migrate the service to another location), we

do not need to communicate via the backhaul network, and the cost is zero. A non-

4.3. Constant Cost Model under 1-D Mobility 74

…

Timet t+1

State
observation

Possible
migration

State
observation

Operating after possible
migration at time t

Possible
migration

0 1 2 … N-1 N

p p

qq

p

q

1-p-q 1-p-q 1-p-q1-p-q
p

M M+1 … -2 -1

p

q q

p

q

1-p-q 1-p-q 1-p-q
p

q

q 1-p-q p

Micro-
cloud 1

Micro-
cloud 2

Micro-
cloud i

Area 1 Area i
…

Area 2

Backhaul network

…

Figure 4.2: MDP model for service migration. The solid lines denote transition
under action a = 0 and the dotted lines denote transition under action a = 1. When
taking action a = 1 from any state, the next state is e = −1 with probability q, e = 0
with probability 1− p− q, or e = 1 with probability p.

zero cost is incurred when the user and the MMC hosting the service are in different

locations (i.e., u 6= h). In this case, if we do not migrate the service to the current

user location at the beginning of the timeslot (i.e., u 6= h = h′), the data between

the MMC and mobile user need to be transmitted via the backhaul network. This

data transmission incurs a cost of ξ. When migrating to the current user location

(i.e., u = h′ 6= h), we need resources to support migration, incurring a migration

cost that is assumed to be 1, i.e., the cost Ca(e) is normalized by the migration cost.

Finally, if we migrate to a location other than the current user location, so that data

transmission still occurs after migration (i.e., u 6= h′ 6= h), the cost is ξ + 1.

4.3.1.1 Characteristics of the Optimal Solution

Note that the cost definitions in (4.4) and (4.5), thus (4.6), satisfy the conditions for

Corollary 4.1. Therefore, we only have two candidates for optimal actions, which

are migrating to the current user location and not migrating. This simplifies the

action space to two actions: a migration action, denoted as a = “migrate”; and a no-

migration action, denoted as a = “not migrate”. In practice, there is usually a limit

on the maximum allowable distance between the mobile user and the MMC hosting

its service for the service to remain usable. We model this limitation by a maximum

negative offset M and a maximum positive offset N (where M < 0, N > 0), such

that the service must be migrated (a = “migrate”) when the system enters state M

4.3. Constant Cost Model under 1-D Mobility 75

or N . This implies that, although the user can move in an unbounded space, the state

space of our MDP for service control is finite. The overall transition diagram of the

resulting MDP is illustrated in Fig. 4.2. Note that because each state transition is the

concatenated effect of (possible) migration and user movement, and the states are

defined as the offset between user and service locations, the next state after taking a

migration action is either −1, 0, or 1.

4.3.1.2 Modified Cost Function

With the above considerations, the cost function in (4.6) can be expressed as the

following:

Ca(e) =

0, if e = 0

ξ, if e 6= 0,M < e < N, a = “not migrate”

1, if e 6= 0,M ≤ e ≤ N, a = “migrate”

(4.7)

4.3.1.3 Modified Bellman’s Equations

With the one-timeslot cost defined as in (4.7), we obtain the following Bellman’s

equations for the discounted sum cost when respectively taking actions

a = “not migrate” and a = “migrate” at state e:

V (e|a = “not migrate”) =

γ
∑1

j=−1 P0jV (j), if e = 0

ξ + γ
∑e+1

j=e−1 PejV (j), if e 6= 0,M<e<N

(4.8)

V (e|a = “migrate”) =

γ
∑1

j=−1 P0jV (j), if e = 0

1 + γ
∑1

j=−1 P0jV (j), if e 6= 0,M≤e≤N
(4.9)

4.3. Constant Cost Model under 1-D Mobility 76

where the transition probability Pij is related to parameters p and q as defined earlier.

The discounted sum cost V (e) when following the optimal policy is

V (e) =

min{V (e|a = “not migrate”), V (e|a = “migrate”)}, if M<e<N

V (e|a = “migrate”), if e=M or e=N

(4.10)

4.3.2 Optimal Threshold Policy

4.3.2.1 Existence of Optimal Threshold Policy

We first show that there exists a threshold policy which is optimal for the MDP in

Fig. 4.2.

Proposition 4.2. There exists a threshold policy (k1, k2), where M < k1 ≤ 0 and

0 ≤ k2 < N , such that when k1 ≤ e ≤ k2, the optimal action for state e is a∗(e) =

“not migrate”, and when e < k1 or e > k2, a∗(e) = “migrate”.

Proof. It is obvious that different actions for state zero a(0) = “not migrate” and

a(0) = “migrate” are essentially the same, because the mobile user and the MMC

hosting its service are in the same location under state zero, either action does not

incur cost and we always have Ca(0)(0) = 0. Therefore, we can conveniently choose

a∗(0) = “not migrate”.

In the following, we show that, if it is optimal to migrate at e = k1 − 1 and

e = k2 + 1, then it is optimal to migrate at all states e with M ≤ e ≤ k1 − 1 or

k2 + 1 ≤ e ≤ N . We relax the restriction that we always migrate at states M and N

for now, and later discuss that the results also hold for the unrelaxed case. We only

focus on k2 + 1 ≤ e ≤ N , because the case for M ≤ e ≤ k1 − 1 is similar.

4.3. Constant Cost Model under 1-D Mobility 77

If it is optimal to migrate at e = k2 + 1, we have

V (k2 + 1|a = “migrate”) ≤ ξ

∞∑
t=0

γt =
ξ

1− γ
(4.11)

where the right hand-side of (4.11) is the discounted sum cost of a never-migrate

policy supposing that the user never returns back to state zero when starting from

state e = k2 + 1. This cost is an upper bound of the cost incurred from any possible

state-transition path without migration, and migration cannot bring higher cost than

this because otherwise it contradicts the presumption that it is optimal to migrate at

e = k2 + 1.

Suppose we do not migrate at a state e′ where k2 + 1 < e′ ≤ N , then we have a

(one-timeslot) cost of ξ in each timeslot until the user reaches a migration state (i.e., a

state at which we perform migration). From (4.9), we know that V (e|a = “migrate”)

is constant for any e 6= 0. Therefore, any state-transition path L starting from state

e′ has a discounted sum cost of

VL(e′) = ξ
tm−1∑
t=0

γt + γtmV (k2 + 1|a = “migrate”)

where tm > 0 is a parameter representing the first timeslot that the user is in a

migration state after reaching state e′ (assuming that we reach state e′ at t = 0),

which is dependent on the state-transition path L. We have

VL(e′)− V (k2 + 1|a = “migrate”)

= ξ
(1− γtm)

1− γ
−
(
1− γtm

)
V (k2 + 1|a = “migrate”)

=
(
1− γtm

)(ξ

1− γ
− V (k2 + 1|a = “migrate”)

)
≥ 0

where the last inequality follows from (4.11). It follows that, for any possible state-

transition path L, VL(e′) ≥ V (k2 + 1|a = “migrate”). Hence, it is always optimal

4.3. Constant Cost Model under 1-D Mobility 78

to migrate at state e′, which brings cost V (e′|a = “migrate”) = V (k2 + 1|a =

“migrate”).

The result also holds with the restriction that we always migrate at states M

and N , because no matter what thresholds (k1, k2) we have for the relaxed problem,

migrating at states M and N always yield a threshold policy.

Proposition 4.2 shows the existence of an optimal threshold policy. The optimal

threshold policy exists for arbitrary values of M , N , p, and q.

4.3.3 Simplifying the Cost Calculation

The existence of the optimal threshold policy allows us simplify the cost calculation,

which helps us develop an algorithm that has lower complexity than standard MDP

solution algorithms. For the policy specified by the thresholds (k1, k2), the value

updating function (4.10) can be changed to the following:

V (e) =

V (e|a = “not migrate”), if k1 ≤ e ≤ k2

V (e|a = “migrate”), otherwise
(4.12)

From (4.8) and (4.9), we know that, for a given policy with thresholds (k1, k2), we

only need to compute V (e) with k1 − 1 ≤ e ≤ k2 + 1, because the values of V (e)

with e ≤ k1 − 1 are identical, and the values of V (e) with e ≥ k2 − 1 are also

identical. Note that we always have k1 − 1 ≥ M and k2 + 1 ≤ N , because k1 > M

and k2 < N as we always migrate when at states M and N .

Define

v(k1,k2) = [V (k1 − 1) V (k1) · · ·V (0) · · ·V (k2) V (k2 + 1)]T (4.13)

4.3. Constant Cost Model under 1-D Mobility 79

c(k1,k2) =

[
1 ︸ ︷︷ ︸
−k1 elements

ξ · · · ξ 0 ︸ ︷︷ ︸
k2 elements

ξ · · · ξ 1

]T

(4.14)

P′(k1,k2) =

P0,k1−1 · · · P00 · · · P0,k2+1

Pk1,k1−1 · · · Pk1,0 · · · Pk1,k2+1

...
...

...

P0,k1−1 · · · P00 · · · P0,k2+1

...
...

...

Pk2,k1−1 · · · Pk2,0 · · · Pk2,k2+1

P0,k1−1 · · · P00 · · · P0,k2+1

(4.15)

where superscript “T” denotes the transpose of the matrix.

Then, (4.8) and (4.9) can be rewritten as

v(k1,k2) = c(k1,k2) + γP′(k1,k2)v(k1,k2) (4.16)

The value vector v(k1,k2) can be obtained by

v(k1,k2) =
(
I− γP′(k1,k2)

)−1
c(k1,k2) (4.17)

The matrix
(
I− γP′(k1,k2)

)
is invertible for 0 < γ < 1, because in this case

there exists a unique solution for v(k1,k2) from (4.16), which is a known property

for MDPs. Equation (4.17) can be computed using Gaussian elimination that has a

complexity of O
(
(|M |+N)3).

4.3.4 Algorithm for Finding the Optimal Thresholds

To find the optimal thresholds, we can perform a search on values of (k1, k2). Fur-

ther, because an increase/decrease in V (e) for some e increases/decreases each ele-

4.3. Constant Cost Model under 1-D Mobility 80

ment in the cost vector v due to cost propagation following balance equations (4.8)

and (4.9), we only need to minimize V (e) while considering a specific state e. We

propose an algorithm for finding the optimal thresholds, as shown in Algorithm 4.1,

which is a modified version of the standard3 policy iteration mechanism [41, Chapter

6].

Algorithm 4.1 is explained as follows. We keep iterating until the thresholds

no longer change, which implies that the optimal thresholds have been found. The

thresholds (k∗1, k
∗
2) are those obtained from each iteration.

Lines 4–6 compute V (e) for all e under the given thresholds (k∗1, k
∗
2). Then, Lines

8–22 determine the search direction for k1 and k2. Because V (e) in each iteration

is computed using the current thresholds (k∗1, k
∗
2), we have actions a(k∗1) = a(k∗2) =

“not migrate”, and (4.8) is automatically satisfied when replacing its left hand-side

with V (k∗1) or V (k∗2). Lines 9 and 16 check whether iterating according to (4.9) can

yield lower cost. If it does, it means that migrating is a better action at state k∗1 (or

k∗2), which also implies that we should migrate at states e with M ≤ e ≤ k∗1 (or

k∗2 ≤ e ≤ N) according to Proposition 4.2. In this case, k∗1 (or k∗2) should be set

closer to zero, and we search through those thresholds that are closer to zero than k∗1

(or k∗2). If Line 9 (or Line 16) is not satisfied, according to Proposition 4.2, it is good

not to migrate at states e with k∗1 ≤ e ≤ 0 (or 0 ≤ e ≤ k∗2), so we search k1 (or k2) to

the direction approaching M (or N), to see whether it is good not to migrate under

those states.

Lines 23–37 adjust the thresholds. If we are searching toward state M or N and

Line 25 is satisfied, it means that it is better not to migrate under this state (ki), and

we update the threshold to ki. When Line 27 is satisfied, it means that it is better to

migrate at state ki. According to Proposition 4.2, we should also migrate at any state

3We use the term “standard” here to distinguish with the modified policy iteration mechanism
proposed in Algorithm 4.1.

4.3. Constant Cost Model under 1-D Mobility 81

Algorithm 4.1 Modified policy iteration algorithm for finding the optimal thresholds
1: Initialize k∗1 ← 0, k∗2 ← 0
2: repeat
3: k′∗1 ← k∗1 , k′∗2 ← k∗2 //record previous thresholds
4: Construct c(k∗1 ,k∗2)

and P′
(k∗1 ,k∗2)

according to (4.14) and (4.15)

5: Evaluate v(k∗1 ,k∗2)
from (4.17)

6: Extend v(k∗1 ,k∗2)
to obtain V (e) for all M ≤ e ≤ N

7: for i = 1, 2 do
8: if i = 1 then
9: if 1 + γ

∑1
j=−1 P0jV (j) < V (k∗1) then

10: dir← 1, loopVec← [k∗1 + 1, k∗1 + 2, ..., 0]
11: k∗1 ← k∗1 + 1
12: else
13: dir← 0, loopVec← [k∗1 − 1, k∗1 − 2, ...,M + 1]
14: end if
15: else if i = 2 then
16: if 1 + γ

∑1
j=−1 P0jV (j) < V (k∗2) then

17: dir← 1, loopVec← [k∗2 − 1, k∗2 − 2, ..., 0]
18: k∗2 ← k∗2 − 1
19: else
20: dir← 0, loopVec← [k∗2 + 1, k∗2 + 2, ..., N − 1]
21: end if
22: end if
23: for ki = each value in loopVec do
24: if dir = 0 then
25: if ξ + γ

∑ki+1
j=ki−1 Pki,jV (j) < V (ki) then

26: k∗i ← ki
27: else if ξ + γ

∑ki+1
j=ki−1Pki,jV (j)>V (ki) then

28: exit for
29: end if
30: else if dir = 1 then
31: if 1 + γ

∑1
j=−1 P0jV (j) < V (ki) then

32: k∗i ← ki − sign(ki)
33: else if 1 + γ

∑1
j=−1 P0jV (j) > V (ki) then

34: exit for
35: end if
36: end if
37: end for
38: end for
39: until k∗1 = k′∗1 and k∗2 = k′∗2
40: return k∗1 , k∗2

4.3. Constant Cost Model under 1-D Mobility 82

closer toM orN than state ki, thus we exit the loop. If we are searching toward state

zero and Line 31 is satisfied, it is good to migrate under this state (ki), therefore the

threshold is set to one state closer to zero (ki − sign(ki)). When Line 33 is satisfied,

we should not migrate at state ki. According to Proposition 4.2, we should also not

migrate at any state closer to zero than state ki, and we exit the loop.

Proposition 4.3. The threshold-pair (k∗1, k
∗
2) is different in every iteration of the loop

starting at Line 2, otherwise the loop terminates.

Proof. The loop starting at Line 2 changes k∗1 and k∗2 in every iteration so that V (e)

for all e become smaller. It is therefore impossible that k∗1 and k∗2 are the same as in

one of the previous iterations and at the same time reduce the value of V (e), because

V (e) computed from (4.17) is the stationary cost value for thresholds (k∗1, k
∗
2). The

only case when (k∗1, k
∗
2) are the same as in the previous iteration (which does not

change V (e)) terminates the loop.

Corollary 4.2. The number of iterations in Algorithm 4.1 is O(|M |N).

Proof. According to Proposition 4.3, there can be at most |M |N +1 iterations in the

loop starting at Line 2.

If we use Gaussian elimination (with complexity O
(
(|M |+N)3)) to compute

(4.17), the overall time-complexity of Algorithm 4.1 isO
(
|M |N (|M |+N)3). This

is a promising result because the overall complexity of standard value or policy

iteration methods for solving MDPs are generally dependent on the discount fac-

tor γ [42].

Regarding the space-complexity issue, i.e., necessary memory storage, we can

see that the non-constant size arrays in Algorithm 4.1 include v(k∗1 ,k∗2)
, c(k∗1 ,k∗2)

, and

P′
(k∗1 ,k∗2)

, so the space complexity of this algorithm is O
(
(|M |+N)2), where the

square is due to matrix P′. Note that we also need to store non-truncated versions of

v, c, and P′, but the order of complexity remains the same. This space-complexity

4.3. Constant Cost Model under 1-D Mobility 83

is also in the same order as standard value and policy iteration algorithms which also

need to store non-truncated arrays of costs and transition probabilities. We do not

analyze the detailed change in memory occupation of different approaches because

it can largely depend on how well the code is optimized for memory.

4.3.5 Simulation Results

In the simulations, we set the number of states |M | = N = 10. The transition

probabilities p and q are randomly generated. Simulations are run with 1000 different

random seeds in each setting to obtain the overall performance.

Distribution of Optimal Thresholds: We first study the distribution of optimal

thresholds found from the proposed threshold-based method under different values

of ξ. Recall that as defined in (4.6), ξ stands for the data transmission cost, while

the migration cost is defined to be always equal to 1. A larger value of ξ stands for

a larger transmission cost. The frequency of different optimal threshold values is

shown in Fig. 4.3, where the frequency is defined as the percentage that each thresh-

old value is found as optimum, among all 1000 simulation instances. Note that the

thresholds k1 and k2 can only take integer values within the interval of [−10, 10], but

we have connected these discrete points in the plot to illustrate the overall distribu-

tion.

Several interesting observations can be seen in Fig. 4.3. First, because we always

migrate at states M = −10 and N = 10 as discussed in Section 4.3.1.1, we always

have k∗1 ≥ −9 and k∗2 ≤ 9. Thus the frequencies of thresholds k1 = −10 and

k2 = 10 are always zero. Next, when ξ = 0, we always have the optimal thresholds

k∗1 = −9 and k∗2 = 9, which means that we never migrate except at states M and

N . We refer to such a policy as “never-migrate” in later discussion. The reason for

having such optimal thresholds is because the transmission cost is zero in this case,

4.3. Constant Cost Model under 1-D Mobility 84

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=0

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=0.2

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=0.4

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=0.6

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=0.8

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=1

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=1.5

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=2

−10 0 10
0

0.2

0.4

0.6

0.8

1
ξ=2.5

Threshold value

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

k*
1

k*
2

Figure 4.3: Frequency of different optimal threshold values under γ = 0.9.

4.3. Constant Cost Model under 1-D Mobility 85

and there is no benefit from performing migration, except at states M and N which

is enforced in the problem formulation. When ξ increases, the optimal thresholds

tend to become closer to zero, because migration is more beneficial for reducing the

overall cost when the transmission cost is large. We see a spike in the frequencies

for thresholds k1 = −9 and k2 = 9 when ξ ≤ 0.8, due to the truncation effect of

states |M | and N . The simulation instances that have these optimal threshold values

correspond to those that would have optimal thresholds at or beyond the [−9, 9] limit

if we would have larger values of |M | andN . When ξ ≥ 2, the optimal thresholds k∗1

and k∗2 are always zero, because the transmission cost is so large in this case so that

it is beneficial to always migrate to the user location. We refer to such a migration

policy as “always-migrate” in later discussion.

Time-Complexity and Discounted Sum Costs: We now study the

time-complexity of different MDP solution approaches and discounted sum costs of

different migration policies. We use two measures of time-complexity. One is the

physical time of running the algorithms in MATLAB (referred to as computation

time), on a computer with 64-bit Windows 7, Intel Core i7-2600 CPU, and 8GB

memory, without any other foreground tasks running simultaneously (but there

might be some background tasks running which are hard to control). The other

measure is the number of floating-point operations (FLOPs), which is independent

of background tasks thus more objective, but less intuitive than the computation

time. The number of FLOPs has been collected using the toolbox in [43]. Figs.

4.4–4.6. show the computation time, number of FLOPs, and discounted sum

costs under different values of ξ, respectively with γ = 0.5, 0.9, 0.99. For time

complexity evaluation, we compare the proposed threshold approach against

standard value and policy iteration methods [41, Chapter 6]. The value iteration

terminates according to an error bound of ε = 0.1 in the discounted sum cost. Note

4.3. Constant Cost Model under 1-D Mobility 86

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

C
om

pu
ta
tio
n

tim
e

(s
) Proposed

Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
10

2

10
3

10
4

10
5

N
um

be
r

of
 F

LO
P

s

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

ξ

D
is

co
un

te
d

su
m

 c
os

t

Optimal
Never migrate
Always migrate

Figure 4.4: Performance under different ξ with γ = 0.5.

4.3. Constant Cost Model under 1-D Mobility 87

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

C
om

pu
ta
tio
n

tim
e

(s
)

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
10

2

10
3

10
4

10
5

N
um

be
r

of
 F

LO
P

s

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

ξ

D
is

co
un

te
d

su
m

 c
os

t

Optimal
Never migrate
Always migrate

Figure 4.5: Performance under different ξ with γ = 0.9.

4.3. Constant Cost Model under 1-D Mobility 88

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

C
om

pu
ta
tio
n

tim
e

(s
)

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
10

2

10
4

10
6

10
8

N
um

be
r

of
 F

LO
P

s

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

ξ

D
is

co
un

te
d

su
m

 c
os

t

Optimal
Never migrate
Always migrate

Figure 4.6: Performance under different ξ with γ = 0.99.

4.3. Constant Cost Model under 1-D Mobility 89

that the proposed method and the standard policy iteration method always incur the

optimal cost. For discounted sum cost evaluation, we compare the cost of the

optimal migration policy to that of never-migrate and always-migrate policies.

The results show that the proposed method always has lowest computation time

and almost always has lowest number of FLOPs. This is because the proposed al-

gorithm simplifies the solution search procedure compared to standard mechanisms.

Specifically, the computation time of the standard policy iteration method is 2 to 5

times larger than that of the proposed algorithm, while the value iteration approach

consumes longer time.

Compared to the computation time, the trend of the number of FLOPs varies

more with different values of ξ. Particularly for the proposed approach, the number

of FLOPs is high when ξ is small, and it decreases substantially when ξ is large. We

think this is because the complexity of matrix inversion is adequately weighted when

counting the number of FLOPs, but less weighted when measuring the computation

time, because MATLAB generally computes matrix operations significantly faster

than other procedures written in MATLAB code. When ξ is small, the optimal policy

becomes close to a never-migrate policy (see earlier discussion on Fig. 4.3). In this

case, the reduced transition probability matrix P′(k1,k2) defined in (4.15) is usually

large, thus a large number of FLOPs is needed to compute the inverse in (4.17). We

also note here that the initial policies in all three algorithms are set as the always-

migrate policy. Conversely, when ξ is large, the optimal policy is close to an always-

migrate policy and the size of P′(k1,k2) is usually small, resulting in a small number

of FLOPs required for matrix inversion. We can also see a similar but much less

obvious trend for the standard policy iteration approach, which we think is also due

to the complexity of matrix inversion, because MATLAB may have mechanisms to

simplify the inversion procedure according to the matrix structure.

When comparing the figures for different values of γ, we can see a clear increase

4.3. Constant Cost Model under 1-D Mobility 90

in the complexity of value iteration when γ increases. This is because for a larger

γ, it takes a longer time for the discounted sum cost to converge when iterating

according to (4.8)–(4.10), and value iteration is based on such iterations.

The third subfigures in each of Figs. 4.4–4.6 show the optimal cost compared to

a never-migrate or always-migrate policy, where we note that the optimal cost can be

found from the proposed threshold-based algorithm. As discussed earlier, we also

see here that the optimal cost approaches the cost of a never-migrate policy when

ξ is small, and it approaches the cost of an always-migrate policy when ξ is large.

There is an intersection point of the costs of never-migrate and always-migrate poli-

cies. When γ = 0.5, the intersection point is at around ξ = 0.9, and it is close to

the cost of optimal policy under the same value of ξ. We can infer that the optimal

policy approaches either a never-migrate policy or an always-migrate policy in this

case. When γ is larger, the gap between the intersection point and optimal cost is

also larger. In this case, the optimal policy is likely to be neither never-migrate nor

always-migrate, meaning that the optimal thresholds lie somewhere between 0 and

±9, as shown in Fig. 4.3 when ξ takes a proper value. The reason for this phe-

nomenon is that with a small γ, the future costs have low weights in the discounted

sum cost expression (4.1), so migration decision is made mainly based on the instan-

taneous cost. In the extreme case where γ = 0, the optimal policy would only min-

imize the one-slot cost Ca(e) defined in (4.7), which means it would never migrate

if ξ < 1 and always migrate if ξ > 1. Therefore, the gap between the intersection

point and optimal cost is small when γ is small, and large when γ is large.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 91

4.4 Constant-Plus-Exponential Cost Model under 2-

D Mobility

In this section, we consider 2-D mobility models with more general cost functions.

We first outline the necessity of simplifying the search space, then introduce the

distance-based MDP, which will be used to approximate the 2-D MDP later in this

section.

4.4.1 Simplifying the Search Space

Because the optimality of threshold policy discussed in Section 4.3 does not directly

apply to the more general case involving 2-D mobility and non-constant transmis-

sion/migration costs, we need to find alternative ways to simplify the solution space.

Note that Proposition 4.1 simplifies the search space for the optimal policy con-

siderably. However, it is still very challenging to derive the optimal control policy

for the general model presented in Section 4.2, particularly when the state space

{s(t)} is large. One possible approach to address this challenge is to re-define the

state space to represent only the distance between the user and service locations

d(t) = ‖u(t) − h(t)‖. The motivation for this comes from the observation that the

cost functions in our model depend only on the distance (see cost definition in Sec-

tion 4.2.1). Note that in general, the optimal control actions can be different for two

states s0 and s1 that have the same user-service distance. However, it is reasonable to

use the distance as an approximation of the state space for many practical scenarios

of interest, and this simplification allows us to formulate a far more tractable MDP.

We discuss the distance-based MDP in the next section, and show how the results

on the distance-based MDP can be applied to 2-D mobility models and real-world

mobility traces in Sections 4.4.3 and 4.4.4.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 92

1 1 11 1-p-q 1-p-q 1-p-q1-p 1 p q 1-p-q 1 p q1-p00

p ppp p ppp0 p ppp0

0 1 2 N 1 N0 1 2 … N-1 N0 1 2 N 1 N
qq qqq qqq q

1q 1-p-q pq 1 p q p
(N) 1

q p
a(N) = 1a(N) 1

N li t i l id dNonlinear cost, single sidedNonlinear cost, single sided

Figure 4.7: An example of distance-based MDP with the distances {d(t)} (before
possible migration) as states. In this example, migration is only performed at state
N , and only the possible action of a(N) = 1 is shown for compactness. The solid
lines denote state transitions without migration.

4.4.2 Optimal Policy for Distance-Based MDP

In this section, we consider a distance-based4 MDP where the states {d(t)} represent

the distances between the user and the service before possible migration (an example

is shown in Fig. 4.7), i.e., d(t) = ‖u(t)−h(t)‖. Similar to Section 4.3, we define the

parameter N as an application-specific maximum allowed distance, and we always

perform migration when d(t) ≥ N . We set the actions a(d(t)) = a(N) for d(t) > N ,

so that we only need to focus on the states d(t) ∈ [0, N]. After taking action a(d(t)),

the system operates in the intermediate state d′(t) = a(d(t)), and the value of the

next state d(t + 1) follows the transition probability Pd′(t),d(t+1) which is related

to the mobility model of the user. To simplify the solution, we restrict the transition

probabilities Pd′(t),d(t+1) according to the parameters p0, p, and q as shown in Fig. 4.7.

Such a restriction is sufficient when the underlying mobility model is a uniform 1-D

random walk where the user moves one step to the left or right with equal probability

r1 and stays in the same location with probability 1− 2r1, in which case we can set

p = q = r1 and p0 = 2r1. This model is also sufficient to approximate the uniform

2-D random walk model, as will be discussed in Section 4.4.3.2.

For an action of d′(t) = a(d(t)), the new service location h′(t) is chosen such

4We assume that the distance is quantized, as it will be the case with the 2-D model discussed in
later sections.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 93

that x = ‖h(t) − h′(t)‖ = |d(t) − d′(t)| and y = ‖u(t) − h′(t)‖ = d′(t). This

means that migration happens along the shortest path that connects u(t) and h(t),

and h′(t) is on this shortest path (also note that d′(t) ≤ d(t) according to Proposition

4.1). Such a migration is possible for the 1-D case where u(t), h(t), and h′(t) are all

scalar values. It is also possible for the 2-D case if the distance metric is properly

defined (see Section 4.4.3.2 for details). The one-timeslot cost is then Ca(d(t)) =

cm(|d(t)− d′(t)|) + cd(d
′(t)).

4.4.2.1 Constant-Plus-Exponential Cost Functions

To simplify the analysis later, we define the cost functions cm(x) and cd(y) in a

constant-plus-exponential form:

cm(x) =

0, if x = 0

βc + βlµ
x, if x > 0

(4.18)

cd(y) =

0, if y = 0

δc + δlθ
y, if y > 0

(4.19)

where βc, βl, δc, δl, µ, and θ are real-valued parameters.

The functions cm(x) and cd(y) defined above can have different shapes and are

thus applicable to many realistic scenarios (see Fig. 4.8 for an example). They can

approximate an arbitrary cost function as discussed in Appendix B. They also have

nice properties allowing us to obtain a closed-form solution to the discounted sum

cost, based on which we design an efficient algorithm for finding the optimal policy.

The parameters βc, βl, δc, δl, µ, and θ are selected such that cm(x) ≥ 0, cd(y) ≥

0, and both cm(x) and cd(y) are non-decreasing respectively in x and y for x, y ≥ 0.

Explicitly, we have µ ≥ 0; βl ≤ 0 when µ ≤ 1; βl ≥ 0 when µ ≥ 1; βc ≥ −βl;

θ ≥ 0; δl ≤ 0 when θ ≤ 1; δl ≥ 0 when θ ≥ 1; and δc ≥ −δl. The definition that

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 94

0 10 20 30 40 50
0

0.5

1

1.5

2

 y

c d (
y)

δ
c
=1, δ

l
= −1, θ=0.9

δ
c
= −0.4, δ

l
=0.4, θ=1.03

δ
c
=3000, δ

l
= −3000, θ=0.99999

Figure 4.8: Example of constant-plus-exponential cost function cd(y).

cm(0) = cd(0) = 0 is for convenience, because a non-zero cost for x = 0 or y = 0

can be offset by the values of βc and δc, thus setting cm(0) = cd(0) = 0 does not

affect the optimal decision.

With this definition, the values of βc + βl and δc + δl can be regarded as constant

terms of the costs, at least such an amount of cost is incurred when x > 0 and y > 0,

respectively. The parameters µ and θ specify the impact of the distance x and y,

respectively, to the costs, and their values can be related to the network topology and

routing mechanism of the network. The parameters βl and δl further adjust the costs

proportionally.

4.4.2.2 Closed-Form Solution to Discounted Sum Cost

Problem Formulation with Difference Equations: From (4.1), we can get the

following balance equation on the discounted sum cost for a given policy π:

Vπ(d(0)) = Caπ(d(0)) + γ

aπ(d(0))+1∑
d(1)=aπ(d(0))−1

Paπ(d(0)),d(1)Vπ(d(1)). (4.20)

In the following, we will omit the subscript π and write d(0) as d for short.

Proposition 4.4. For a given policy π, let {ñk : k ≥ 0} denote the series of all

migration states (such that a(ñk) 6= ñk) as specified by policy π, where 0 ≤ ñk ≤ N .

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 95

The discounted sum cost V (d) for d ∈ [ñk−1, ñk] (where we define ñ−1 , 0 for

convenience) when following policy π can be expressed as

V (d)=Akζ
d
1 +Bkζ

d
2 +D +

H · θd if 1− φ1

θ
− φ2θ 6= 0

Hd · θd if 1− φ1
θ
− φ2θ = 0

(4.21)

where Ak and Bk are constants corresponding to the interval [ñk−1, ñk], the coeffi-

cients ζ1, ζ2, D, and H are expressed as follows:

ζ1 =
1 +
√

1− 4φ1φ2

2φ2

, ζ2 =
1−
√

1− 4φ1φ2

2φ2

(4.22)

D =
φ3

1− φ1 − φ2

(4.23)

H =

φ4

1−φ1
θ
−φ2θ

if 1− φ1
θ
− φ2θ 6= 0

φ4
φ1
θ
−φ2θ

if 1− φ1
θ
− φ2θ = 0

(4.24)

where we define φ1 , γq
1−γ(1−p−q) , φ2 , γp

1−γ(1−p−q) , φ3 , δc
1−γ(1−p−q) , and φ4 ,

δl
1−γ(1−p−q) , and assume that p 6= 0 and q 6= 0.

Proof. Note that (4.20) is a difference equation [44]. Because we only migrate at

states {ñk}, we have a(d) = d for d ∈ (ñk−1, ñk) (∀k). From (4.20), for d ∈

(ñk−1, ñk), we have

V (d) = δc + δlθ
d + γ

d+1∑
d1=d−1

Pdd1V (d1) . (4.25)

We can rewrite (4.25) as

V (d) = φ1V (d− 1) + φ2V (d+ 1) + φ3 + φ4θ
d. (4.26)

This difference function has characteristic roots as expressed in (4.22). When

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 96

0 < γ < 1, we always have ζ1 6= ζ2 under the assumption that p 6= 0 and q 6= 0.

Fixing an index k, for d ∈ (ñk−1, ñk), the homogeneous equation of (4.26) has

general solution

Vh(d) = Akζ
d
1 +Bkζ

d
2 . (4.27)

To solve the non-homogeneous equation (4.26), we try a particular solution in the

form of

Vp(d) =

D +H · θd if 1− φ1

θ
− φ2θ 6= 0

D +Hd · θd if 1− φ1
θ
− φ2θ = 0

(4.28)

where D and H are constant coefficients. By substituting (4.28) into (4.26), we get

(4.23) and (4.24).

Because the expression in (4.26) is related to d−1 and d+1, the result also holds

for the closed interval. Therefore, V (d) can be expressed as (4.21) for d ∈ [ñk−1, ñk]

(∀k).

The above proposition is subject to the assumption that p 6= 0 and q 6= 0. When

p = 0 or q = 0, we will havem1 = m2, in which case we can still find the solution to

the difference equation (4.20) using a similar approach, but we omit the discussion

for brevity.

We also note that for two different states d1 and d2, if policy π has actions

aπ(d1) = d2 and aπ(d2) = d2, then

Vπ(d1) = cm (|d1 − d2|) + Vπ(d2) . (4.29)

Finding the Coefficients: The coefficients Ak and Bk are unknowns in the so-

lution (4.21) that need to be found using additional constraints. Their values may

be different for different k. After Ak and Bk are determined, (4.21) holds for all

d ∈ [0, N].

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 97

We assume 1 − φ1
θ
− φ2θ 6= 0 and 1 − φ2

θ
− φ1θ 6= 0 in the following, the other

cases can be derived in a similar way and are omitted for brevity.

Coefficients for interval [0, ñ0]: We have one constraint from the balance equa-

tion (4.20) for d = 0, which is

V (0) = γp0V (1) + γ(1− p0)V (0). (4.30)

By substituting (4.21) into (4.30), we get

A0(1− φ0ζ1) +B0(1− φ0ζ2)=D(φ0 − 1) +H(φ0θ − 1) (4.31)

where φ0 ,
γp0

1−γ(1−p0)
. We have another constraint by substituting (4.21) into (4.29),

which gives

A0

(
ζ ñ0

1 − ζ
a(ñ0)
1

)
+B0

(
ζ ñ0

2 − ζ
a(ñ0)
2

)
= βc + βlµ

ñ0−a(ñ0) −H
(
θñ0 − θa(ñ0)

)
. (4.32)

We can find A0 and B0 from (4.31) and (4.32).

Coefficients for interval [ñk−1, ñk]: Assume that we have found V (d) for all

d ≤ ñk−1. By letting d = ñk−1 in (4.21), we have the first constraint given by

Akζ
ñk−1

1 +Bkζ
ñk−1

2 = V (ñk−1)−D −H · θñk−1 . (4.33)

For the second constraint, we consider two cases. If a(ñk) ≤ ñk−1, then

Akζ
ñk
1 +Bkζ

ñk
2

= βc + βlµ
ñk−a(ñk) + V (a(ñk))−D −H · θñk . (4.34)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 98

If ñk−1 < a(ñk) ≤ ñk − 1, then

Ak

(
ζ ñk1 − ζ

a(ñk)
1

)
+Bk

(
ζ ñk2 − ζ

a(ñk)
2

)
= βc + βlµ

ñk−a(ñk) −H
(
θñk − θa(ñk)

)
. (4.35)

The values of Ak and Bk can be solved from (4.33) together with either (4.34) or

(4.35).

Solution is in Closed-Form: We note that A0 and B0 can be expressed in closed-

form, and Ak and Bk for all k can also be expressed in closed-form by substituting

(4.21) into (4.33) and (4.34) where necessary. Therefore, (4.21) is a closed-form

solution for all d ∈ [0, N]. Numerically, we can find V (d) for all d ∈ [0, N] in O(N)

time.

4.4.2.3 Algorithm for Finding the Optimal Policy

Standard approaches to solving for the optimal policy of an MDP include value it-

eration and policy iteration [41, Chapter 6]. Value iteration finds the optimal policy

from Bellman’s equation (4.3) iteratively, which may require a large number of it-

erations before converging to the optimal result. Policy iteration generally requires

a smaller number of iterations, because, in each iteration, it finds the exact values

of the discounted sum cost V (d) for the policy resulting from the previous iteration,

and performs the iteration based on the exact V (d) values. However, in general, the

exact V (d) values are found by solving a system of linear equations, which has a

time-complexity of O(N3) when using Gaussian-elimination.

We propose a modified policy-iteration approach for finding the optimal policy,

which uses the above result instead of Gaussian-elimination to compute V (d), and

also only checks for migrating to lower states or not migrating (according to Proposi-

tion 4.1). The algorithm is shown in Algorithm 4.2, where Lines 4–9 find the values

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 99

Algorithm 4.2 Modified policy-iteration algorithm based on difference equations
1: Initialize a(d) = 0 for all d = 0, 1, 2, ..., N
2: Find constants φ0, φ1, φ2, φ3, φ4, ζ1, ζ2, D, and H
3: repeat
4: k ← 0
5: for d = 1...N do
6: if a(d) 6= d then
7: ñk ← d, k ← k + 1
8: end if
9: end for

10: for all ñk do
11: if k = 0 then
12: Solve for A0 and B0 from (4.31) and (4.32)
13: Find V (d) with 0 ≤ d ≤ ñk from (4.21) with A0 and B0 found above
14: else if k > 0 then
15: if a(ñk) ≤ ñk−1 then
16: Solve for Ak and Bk from (4.33) and (4.34)
17: else
18: Solve for Ak and Bk from (4.33) and (4.35)
19: end if
20: Find V (d) with ñk−1 < d ≤ ñk from (4.21) with Ak and Bk found above
21: end if
22: end for
23: for d = 1...N do
24: aprev(d) = a(d)

25: a(d) = arg mina≤d

{
Ca(d) + γ

∑a+1
j=a−1 PajV (j)

}
26: end for
27: until aprev(d) = a(d) for all d
28: return a(d) for all d

of ñk, Lines 10–22 find the discounted sum cost values, and Lines 23–26 update

the optimal policy. The overall time-complexity for each iteration is O (N2) in Al-

gorithm 4.2, which reduces time-complexity because standard5 policy iteration has

complexity O(N3), and the standard value iteration approach does not compute the

exact value function in each iteration and generally has long convergence time.

5We use the term “standard” here to distinguish from the modified policy iteration mechanism
proposed in Algorithm 4.2.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 100

(3 0)(3,0)

(3 1)(3 17) (3,1)(3,17)

()
(,)

()
(,)

(2,0) (3,2)(3,16) (2,0) (3,2)(3,16)

(2 1)(2 11)(3,15) (3 3)(2,1)(2,11)(3,15) (3,3)
(1 0)(2 10) (2 2)(1,0)(2,10) (2,2)

(1 1)(1 5) (3 4)(3 14) (1,1)(1,5) (3,4)(3,14) ()
(0 0) (2 3)(2 9)

()
(0,0) (2,3)(2,9) (,) (,3)(,)

(3 13) (1 4) (1 2) (3 5)(3,13) (1,4) (1,2) (3,5)(,)

(1 3) (2 4)(2 8) (1,3) (2,4)(2,8)

(2 7) (2 5) (3 6)(3 12) (2,7) (2,5) (3,6)(3,12)

(2 6) (3 7)(3 11) (2,6) (3,7)(3,11) (,) (,)
(3 10) (3,8)(3,10) (3,8)(,)

(3 9)(3,9)

Figure 4.9: Example of 2-D offset model on hexagon cells, where N = 3.

4.4.3 Approximate Solution for 2-D Mobility Model

In this section, we show that the distance-based MDP can be used to find a near-

optimal service migration policy, where the user conforms to a uniform 2-D random

walk mobility model in an infinite space. This mobility model can be used as an ap-

proximation to real-world mobility traces (see Section 4.4.4). We consider a hexag-

onal cell structure, but the approximation procedure can also be used for other 2-D

mobility models (such as Manhattan grid) with some parameter changes. The user

is assumed to transition to one of its six neighboring cells at the beginning of each

timeslot with probability r ≤ 1
6
, and stay in the same cell with probability 1− 6r.

4.4.3.1 Offset-Based MDP

Similar to 4.3, we define the offset of the user from the service as a 2-D vector

e(t) = u(t)− h(t) (recall that u(t) and h(t) are also 2-D vectors). Due to the space-

homogeneity of the mobility model, it is sufficient to model the state of the MDP

by e(t) rather than s(t). The distance metric ‖ϕ1 − ϕ2‖ is defined as the minimum

number of hops that are needed to reach cell ϕ2 from cell ϕ1 on the hexagon model.

We name the states with the same value of ‖e(t)‖ as a ring, and express the states

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 101

{e(t)} with polar indices (i, j), where the first index i refers to the ring index, and

the second index j refers to each of the states within the ring, as shown in Fig. 4.9.

For e(t) = (i, j), we have ‖e(t)‖ = i. If u(t) = h(t) (i.e., the actual user and service

locations (cells) are the same), then we have e(t) = (0, 0) and ‖e(t)‖ = 0.

As in the distance-based MDP, we assume in the 2-D MDP that we always mi-

grate when ‖e(t)‖ ≥ N , where N is a design parameter, and we only consider

the state space {e(t)} with ‖e(t)‖ ≤ N . The system operates in the intermedi-

ate state e′(t) = u(t) − h′(t) = a(e(t)) after taking action a(e(t)). The next

state e(t + 1) is determined probabilistically according to the transition probabil-

ity Pe′(t),e(t+1). We have Pe′(t),e(t+1) = 1− 6r when e(t+ 1) = e′(t); Pe′(t),e(t+1) = r

when e(t + 1) is a neighbor of e′(t); and Pe′(t),e(t+1) = 0 otherwise. Note that we

always have e(t) − e′(t) = h′(t) − h(t), so the one-timeslot cost is Ca(e(t)) =

cm(‖e(t)− e′(t)‖) + cd(‖e′(t)‖).

We note that, even after simplification with the offset model, the 2-D offset-based

MDP has a significantly larger number of states compared with the distance-based

MDP, because for a distance-based model with N states (excluding state zero), the

2-D offset model has 3N2 + 3N states (excluding state (0, 0)). Therefore, we use

the distance-based MDP proposed in Section 4.4.2 to approximate the 2-D offset-

based MDP, which significantly reduces the computational time as shown in Section

4.4.3.4.

4.4.3.2 Approximation by Distance-based MDP

In the approximation, the parameters of the distance-based MDP are chosen as p0 =

6r, p = 2.5r, and q = 1.5r. The intuition behind the parameter choice is that, at

state (i′0, j
′
0) = (0, 0) in the 2-D MDP, the aggregate probability of transitioning to

any state in ring i1 = 1 is 6r, so we set p0 = 6r; at any other state (i′0, j
′
0) 6= (0, 0),

the aggregate probability of transitioning to any state in the higher ring i1 = i′0 + 1

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 102

is either 2r or 3r, and the aggregate probability of transitioning to any state in the

lower ring i1 = i′0−1 is either r or 2r, so we set p and q to the median value of these

transition probabilities.

To find the optimal policy for the 2-D MDP, we first find the optimal policy for

the distance-based MDP with the parameters defined above. Then, we map the op-

timal policy from the distance-based MDP to a policy for the 2-D MDP. To explain

this mapping, we note that, in the 2-D hexagon offset model, there always exists at

least one shortest path from any state (i, j) to an arbitrary state in ring i′, the length

of this shortest path is |i − i′|, and each ring between i and i′ is traversed once on

the shortest path. For example, one shortest path from state (3, 2) to ring i′ = 1

is {(3, 2), (2, 1), (1, 0)}. When the system is in state (i, j) and the optimal action

from the distance-based MDP is a∗(i) = i′, we perform migration on the shortest

path from (i, j) to ring i′. If there exist multiple shortest paths, one path is arbi-

trarily chosen. For example, if a(3) = 2 in the distance-based MDP, then we have

either a(3, 2) = (2, 1) or a(3, 2) = (2, 2) in the 2-D MDP. With this mapping, the

one-timeslot cost Ca(d(t)) for the distance-based MDP and the one-timeslot cost

Ca(e(t)) for the 2-D MDP are the same, because the migration distances in the

distance-based MDP and 2-D MDP are the same (thus same migration cost) and

all states in the same ring i′ = ‖e′(t)‖ = d′(t) have the same transmission cost

cd(‖e′(t)‖) = cd(d
′(t)).

4.4.3.3 Bound on Approximation Error

Error arises from the approximation because the transition probabilities in the

distance-based MDP are not exactly the same as that in the 2-D MDP (there is

at most a difference of 0.5r). In this subsection, we study the difference in the

discounted sum costs when using the policy obtained from the distance-based

MDP and the true optimal policy for the 2-D MDP. The result is summarized as

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 103

Proposition 4.5.

Proposition 4.5. Let Vdist(e) denote the discounted sum cost when using the policy

from the distance-based MDP, and let V ∗(e) denote the discounted sum cost when

using true optimal policy of the 2-D MDP, then we have Vdist(e) − V ∗(e) ≤ γrk
1−γ for

all e, where k , maxx {cm (x+ 2)− cm (x)}.

Proof. Details of the proof are presented in Appendix C.3. An outline is given here.

The proof is completed in three steps. First, we modify the states of the 2-D MDP in

such a way that the aggregate transition probability from any state (i′0, j
′
0) 6= (0, 0)

to ring i1 = i′0 + 1 (correspondingly, i1 = i′0−1) is 2.5r (correspondingly, 1.5r). We

assume that we use a given policy on both the original and modified 2-D MDPs, and

show a bound on the difference in the discounted sum costs for these two MDPs. In

the second step, we show that the modified 2-D MDP is equivalent to the distance-

based MDP. This can be intuitively explained by the reason that the modified 2-D

MDP has the same transition probabilities as the distance-based MDP when only

considering the ring index i, and also, the one-timeslot cost Ca(e(t)) only depends

on ‖e(t) − a(e(t))‖ and ‖a(e(t))‖, both of which can be determined from the ring

indices of e(t) and a(e(t)). The third step uses the fact that the optimal policy for

the distance-based MDP cannot bring a higher discounted sum cost for the distance-

based MDP (and hence the modified 2-D MDP) than any other policy. By utilizing

the error bound found in the first step twice, we prove the result.

The error bound is a constant value when all the related parameters are given.

It increases with γ. However, the absolute value of the discounted sum cost also

increases with γ, so the relative error can remain low.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 104

4.4.3.4 Numerical Evaluation

The error bound derived in Section 4.4.3.3 is a worst-case upper bound of the er-

ror. In this subsection, we evaluate the performance of the proposed approximation

method numerically, and focus on the average performance of the approximation.

We consider 2-D random walk mobility with randomly chosen parameter r. The

maximum user-service distance is set as N = 10. The transmission cost function

parameters are selected as θ = 0.8, δc = 1, and δl = −1. With these parameters, we

have δc + δl = 0, which means that there is no constant portion in the cost function.

For the migration cost, we choose µ = 0.8 and fix βc+βl = 1 to represent a constant

server processing cost for migration. The parameter βl ≤ 0 takes different values in

the simulations, to represent different sizes of data to be migrated.

Similar to Section 4.3.5, we perform simulations in MATLAB on a computer

with Intel Core i7-2600 CPU, 8GB memory, and 64-bit Windows 7. We study

the computation time, the number of FLOPs, and the discounted sum cost of the

proposed approach that is based on approximating the original 2-D MDP with the

distance-based MDP.

For the computation time and number of FLOPs, standard value and policy itera-

tion approaches [41, Chapter 6] are used to solve the original 2-D MDP for compar-

ison. The value iteration procedure terminates when the difference in the discounted

sum cost between two iterations is smaller than 0.1 or when a maximum number of

iterations has been reached. The maximum number of iterations is set to 5, which is

a relatively small number in order to avoid excessive simulation time. We will see

later that even with this restriction on maximum number of iterations, value iteration

performs worse than standard policy iteration in terms of both computation time and

number of FLOPs. The standard policy iteration procedure terminates when the op-

timal actions from two consecutive iterations are the same, and it always returns the

true optimal policy and its corresponding cost values.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 105

The discounted sum cost from the proposed approach is compared with the costs

from alternative policies, including the true optimal policy from standard policy iter-

ation on the 2-D model, the never-migrate policy which never migrates except when

at states in ring i ≥ N (in which case the service is migrated to the current location

of the user), the always-migrate policy which always migrates to the current user lo-

cation when the user and the service are at different locations, and the myopic policy

that chooses actions to minimize the one-timeslot cost.

The simulations are run with 50 different random seeds, which generate 50 dif-

ferent values of r, and the overall results are shown in Figs. 4.10–4.12 with different

values of the discount factor γ.

Reduction in Time-Complexity: Figs. 4.10–4.12 show that the computation time

of the proposed method is only about 0.1% of that of standard value or policy iter-

ation. This time reduction is explained as follows. As discussed in Section 4.4.3.2,

for a distance-based MDP with N states (excluding state zero), the 2-D MDP has

N2-D , 3N2 + 3N states (excluding state (0, 0)). When we ignore the complexity of

matrix inversion6 in the policy iteration procedure, the standard value and policy it-

eration approaches on the 2-D MDP have a complexity of O(N2
2-D) in each iteration,

because the optimal action needs to be found for each state, which requires enumer-

ating all the states and all possible actions for each state (similar to Lines 23–26 of

Algorithm 4.2). In the simulations, N = 10, so we have N2-D = 330. Recall that the

complexity of Algorithm 4.2 used in the proposed approach is O(N2), so the ratio

of the computational complexities of different approaches can be approximated by

N2
2-D
N2 ≈ 103. Therefore, the standard value and policy iteration approaches consume

about 103 times more computation time compared to the proposed approach.

When considering the number of FLOPs, the magnitude of reduction of the pro-

6We ignore the complexity of matrix inversion here because MATLAB performs matrix operations
significantly faster than other operations, as discussed in Section 4.3.5.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 106

0 0.5 1 1.5 2
10

−4

10
−2

10
0

10
2

C
om

pu
ta

tio
n

tim
e

(s
)

Proposed

Policy iteration

Value iteration

0 0.5 1 1.5 2
10

2

10
4

10
6

10
8

10
10

N
um

be
r

of
 F

LO
P

s

Proposed

Policy iteration

Value iteration

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Migration cost parameter, −β
l

D
is

co
un

te
d

su
m

 c
os

t

Proposed

Optimal

Never migrate

Always migrate

Myopic

Figure 4.10: Simulation result for 2-D random walk with γ = 0.5.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 107

0 1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

10
2

C
om

pu
ta

tio
n

tim
e

(s
)

Proposed

Policy iteration

Value iteration

0 1 2 3 4 5 6 7 8
10

2

10
4

10
6

10
8

10
10

N
um

be
r

of
 F

LO
P

s

Proposed

Policy iteration

Value iteration

0 1 2 3 4 5 6 7 8
0

5

10

15

20

Migration cost parameter, −β
l

D
is

co
un

te
d

su
m

 c
os

t

Proposed

Optimal

Never migrate

Always migrate

Myopic

Figure 4.11: Simulation result for 2-D random walk with γ = 0.9.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 108

0 5 10 15 20
10

−4

10
−2

10
0

10
2

C
om

pu
ta

tio
n

tim
e

(s
)

Proposed

Policy iteration

Value iteration

0 5 10 15 20
10

2

10
4

10
6

10
8

10
10

N
um

be
r

of
 F

LO
P

s

Proposed

Policy iteration

Value iteration

0 5 10 15 20
0

50

100

150

200

250

Migration cost parameter, −β
l

D
is

co
un

te
d

su
m

 c
os

t

Proposed

Optimal

Never migrate

Always migrate

Myopic

Figure 4.12: Simulation result for 2-D random walk with γ = 0.99.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 109

posed method compared to standard policy and value iteration approaches ranges be-

tween 104 and 105. This reduction is larger than the reduction in computation time.

Reduction in computation time is smaller presumably because of some running time

optimization mechanisms applied in MATLAB for performing matrix operations (as

discussed in Section 4.3.5) and perhaps also some other operations. Note that the

standard policy iteration includes a matrix inversion operation, which has a com-

plexity of O(N3
2-D) when using Gaussian elimination. This brings an approximate

complexity ratio of N3
2-D
N2 ≈ 105. Different from Section 4.3.5, we no longer see a

substantial change in the number of FLOPs under different values of |βl|, because

our proposed approach here does not include matrix inversion, and the transition

probability matrix of the 2-D MDP is less well-structured compared to that of the

1-D MDP (in Section 4.3) so presumably no efficient matrix inversion mechanism

exists in this case.

Another aspect different from Section 4.3.5 is that, here in Figs. 4.10–4.12, we do

not see a substantial change in the time-complexity of value iteration under different

values of γ. The main reason is that we only allow at most 5 iterations in the value

iteration approach here as discussed earlier in this section. This is mainly to avoid

excessive time we need to run the simulation, because the 2-D scenario is much more

complex than the 1-D scenario.

Near-Optimal Cost: We can also see from Figs. 4.10–4.12 that the proposed

method yields a discounted sum cost that is very close to the optimal cost. The

results also provide several insights into the performance of the baseline policies,

which are similar to our observations in the 1-D scenario in Section 4.3.5.

Specifically, the cost of the always-migrate policy approximates the optimal cost

when |βl| is small, and the cost of the never-migrate policy approximates the

optimal cost when |βl| is large. This is because, when |βl| is small, the migration

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 110

cost is relatively small, and migration can be beneficial for most cases; when |βl| is

large, the migration cost is large, and it is better not to migrate in most cases. The

myopic policy is the same as the never-migrate policy when |βl| ≥ 0.5, because

cm(x) and cd(y) are both concave according to the simulation settings and we

always have cm(x) ≥ cd(y) when |βl| ≥ 0.5, where we recall that the myopic policy

does not consider the future impact of actions.

There is an intersection of the costs from never-migrate and always-migrate poli-

cies. When |βl| takes values that are larger than the value at the intersection point,

the optimal cost is close to the cost from the never-migrate policy when γ is small,

and the gap becomes larger with a larger γ. The reason is that the benefits of migra-

tion become more significant when we look farther ahead into the future. We also

note that the cost of never-migrate policy slightly increases as |βl| increases, because

the never-migrate policy also occasionally migrates when the user-service distance

is greater than or equal to N (see earlier definition).

4.4.4 Application to Real-World Scenarios

In this section, we discuss how the aforementioned approaches can be applied to

service migration in the real world, where multiple users and services co-exist in the

cloud system. We note that in practical scenarios, MMCs may not be deployed at

every basestation, and each MMC may have a capacity limit that restricts the number

of services it can host. Theoretically, it is still possible to formulate the service mi-

gration problem with these additional constraints as an MDP. However, the resulting

MDP will have a significantly larger state space than our current model, and it is far

more difficult to solve or approximate this new MDP. While we leave the theoret-

ical analysis of this new MDP as future work, we propose a heuristic approach in

this section to handle these additional constraints. The proposed approach is largely

based on the results and intuitions obtained in previous sections. The 2-D MDP

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 111

approximation approach proposed in Section 4.4.3.2 is used as a subroutine in the

heuristic scheme, and the distance-based MDP resulting from the approximation is

solved using Algorithm 4.2.

4.4.4.1 Mapping between Real-World and MDP-Model

The mapping between the real-world and the MDP model is discussed as follows.

MMC Controller: We assume that there exists a control entity which we refer to

as the MMC controller. The MMC controller does not need to be a separate cloud

entity. Rather, it can be a service running at one of the MMCs.

Basestations: Each basestation (which may or may not have an MMC connected

to it) is assumed to have some basic capability of keeping records on arriving and

departing users as well as performing simple monitoring and computational opera-

tions.

Timeslots: The physical time length corresponding to one timeslot in the MDP

model is a pre-specified parameter, which is a constant for ease of presentation. This

parameter can be regarded as a protocol parameter, and it is not necessary for all

basestations to precisely synchronize on individual timeslots.

Transition Probability: The transition probability parameter r is estimated from

the sample paths of multiple users, using the procedure described in Section 4.4.4.2

below. We define a window length Tw ≥ 1 (represented as the number of timeslots),

which specifies the amount of timeslots to look back to estimate the parameter r. We

consider the case where r is the same across the whole geographical area, which is a

reasonable assumption when different locations within the geographical area under

consideration have similarities (for example, they all belong to an urban area). More

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 112

sophisticated cases can be studied in the future.

Cost Parameters: The cost parameters βc, βl, µ, δc, δl, and θ are selected based

on the actual application scenario, and their values may vary with the background

traffic load of the network and MMC servers.

Discount Factor: The discount factor γ can be selected based on the duration of

services, and a larger γ corresponds to a longer service duration. Such a selection is

because the discount factor γ determines the amount of time to look ahead, if a user

only requires the service for a short time, then there is no need to consider the cost

for the long-term future. For ease of presentation, we set γ as a constant value. In

practice, the value of γ can be different for different users or services.

Policy Update Interval: A policy update interval Tu is defined (represented as the

number of timeslots), at which a new migration policy is computed by the MMC

controller.

4.4.4.2 Overall Procedure

The data collection, estimation, and service placement procedure is described below.

1. At the beginning of each timeslot, the following is performed:

(a) Each basestation obtains the identities of its associated users. Based on

this information, the basestation computes the number of users that have

left the cell (compared to the beginning of the previous timeslot) and the

total number of users that are currently in the cell. This information is

saved for each timeslot for the duration of Tw and will be used in step 2b.

(b) The MMC controller collects information on currently active services

on each MMC, computes the new placement of services according to the

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 113

procedure described in Section 4.4.4.4, and sends the resulting placement

instructions to each MMC. The placements of all services are updated

based on these instructions.

2. At every interval Tu, the following is performed:

(a) The MMC controller sends a request to all basestations to collect the

current statistics.

(b) After receiving the request, each basestation n computes the empirical

probability of users moving outside of the cell as

fn =
1

Tw

t−1∑
τ=t−Tw

m′n(τ)

mn(τ)
(4.36)

where the total number of users that are associated to basestation n in slot

τ is mn(τ), among which m′n(τ) users have disconnected from basesta-

tion n at the end of slot τ and these users are associated to a different

basestation in slot τ + 1; and t denotes the current timeslot index. These

empirical probabilities are sent together with other monitored informa-

tion, such as the current load of the network and MMC server (if the

basestation has an MMC connected to it), to the MMC controller.

(c) After the controller receives responses from all basestations, it performs

the following:

i. Compute the transmission and migration cost parameters βc, βl, µ,

δc, δl, and θ based on the measurements at basestations.

ii. Compute the average of empirical probabilities fn by

f =
1

NBS

∑
n∈NBS

fn (4.37)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 114

where NBS is the set of basestations and NBS = |NBS| is the total

number of basestations. Then, estimate the parameter r by

r̂ = f/6. (4.38)

iii. In the distance-based MDP, set p0 = 6r̂, p = 2.5r̂, and q = 1.5r̂

(as discussed in Section 4.4.3.2), compute and save the optimal

distance-based policy from Algorithm 4.2. Also save the estimated

cost parameters and the optimal discounted sum costs V ∗(d) for all

distances d for later use.

Remark: In the procedure presented above, we have assumed that mn(τ) 6= 0

for all n and τ . This is only for ease of presentation. When there exist some n and τ

such that mn(τ) = 0, we can simply ignore those terms (set the corresponding terms

to zero) in the sums of (4.36) and (4.37), and set the values of Tw and NBS to the

actual number of terms that are summed up in (4.36) and (4.37), respectively. This

simplification does not affect our analysis below if we make a similar substitution in

the analysis for cases with mn(τ) = 0. Thus, we still assume that mn(τ) 6= 0 for all

n and τ in the discussion presented next.

4.4.4.3 Discussion on the Estimation of Parameter r

As introduced in Section 4.4.3, at every timeslot, each user randomly moves to one

of its neighboring cells with probability r and stays in the same cell with probability

1 − 6r. In the real world, the parameter r is unknown a priori and needs to be

estimated based on observations of user movement. Equations (4.36)–(4.38) in the

above procedure serve for this estimation purpose, and the resulting r̂ is an estimator

of r. In the following, we analyze some statistical properties of r̂ and discuss the

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 115

rationale for using such an estimation approach.

We note that the mobility model presented in Section 4.4.3 is for an infinite 2-D

space with an infinite number of cells. In reality, the number of cells is finite. We

assume in our analysis that each user stays in the same cell with probability 1 − 6r

(r ≤ 1
6
) and moves out of its current cell with probability 6r, no matter whether the

cell is at the boundary (such as cells in the outer ring i = 3 in Fig. 4.9) or not. When

a cell is at the boundary, its transition probability to each of its neighboring cells is

larger than r, because it has less than six neighbors. For example, in Fig. 4.9, a user

in cell (3, 0) moves to each of its neighboring cells (including (3, 17), (2, 0), (3, 1))

with probability 2r, and the total probability of moving out of the cell is still 6r.

We also assume that the mobility patterns of different users are independent of each

other.

Proposition 4.6. Assume that each user follows 2-D random walk (defined above)

with parameter r, then r̂ is an unbiased estimator of r, i.e., E {r̂} = r.

Proof. We note that in (4.36), mn(τ) and m′n(τ) are both random variables respec-

tively representing the total number of users associated to basestation (located in

cell) n in slot τ and the number of users that have moved out of cell n at the end of

slot τ . The values of mn(τ) and m′n(τ) are random due to the randomness of user

mobility.

According to the mobility model, each user moves out of its current cell at the

end of a timeslot with probability 6r, where we recall that r ≤ 1
6

by definition.

Hence, under the condition that mn(τ) = k, m′n(τ) follows the binomial distribution

with parameters k and 6r. Thus, the conditional probability

Pr {m′n(τ) = k′|mn(τ) = k} =

 k

k′

 (6r)k
′
(1− 6r)k−k

′
(4.39)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 116

for all 0 ≤ k′ ≤ k.

From the expression of the mean of binomially distributed random variables, we

know that the conditional expectation

E {m′n(τ)|mn(τ)} = 6r ·mn(τ). (4.40)

Combining (4.36)–(4.38), we have

r̂ =
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

m′n(τ)

mn(τ)
. (4.41)

We then have

E {r̂} = E

{
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

m′n(τ)

mn(τ)

}

=
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

E
{
E {m′n(τ)|mn(τ)}

mn(τ)

}

=
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

E
{

6r ·mn(τ)

mn(τ)

}
=

r

NBSTw
NBSTw

= r

where the second equality follows from the law of iterated expectations.

The fact that r̂ is an unbiased estimator of r justifies our estimation approach,

which intuitively means that the long-term average of the estimated value r̂ should

not be too far away from the true value of r.

We analyze the variance of the estimator next. Such analysis is not very easy

due to the dependency among different random variables. To make the analysis

theoretically tractable, we introduce the following assumption.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 117

Assumption 4.1. We assume that m′n(τ) is independent of mn(τ̃), mñ(τ), mñ(τ̃),

m′n(τ̃), m′ñ(τ), and m′ñ(τ̃) (where ñ 6= n and τ̃ 6= τ) when mn(τ) is given.

Essentially, this assumption says that m′n(τ) is only dependent on mn(τ). In

practice when the number of users is large, this assumption can become close to

reality, because the locations of different users are independent of each other, and

also because of the Markovian property which says that future locations of a user

only depends on its present location (and independent of all past locations when the

present location is given).

We defineM , {mn(τ) : ∀n ∈ NBS, τ ∈ [t − Tw, t − 1]} as the set of number

of users at all basestations and all timeslots considered in the estimation.

Proposition 4.7. Assume that Assumption 4.1 is satisfied and each user follows 2-D

random walk (defined at the beginning of Section 4.4.4.3) with parameter r. The

variance of estimator r̂, under the condition thatM is given, is

Var{r̂|M} =
r(1− 6r)

6N2
BST

2
w

(∑
n∈NBS

t−1∑
τ=t−Tw

1

mn(τ)

)
(4.42)

where the conditional variance Var{r̂|M} is defined as

Var{r̂|M} , E
{
r̂2
∣∣M}− (E {r̂|M})2 . (4.43)

Proof. Taking the conditional expectation on both sides of (4.41), we have

E {r̂|M} = E

{
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

m′n(τ)

mn(τ)

∣∣∣∣∣M
}

=
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

E {m′n(τ)|mn(τ)}
mn(τ)

=
1

6NBSTw

∑
n∈NBS

t−1∑
τ=t−Tw

6r ·mn(τ)

mn(τ)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 118

=
r

NBSTw
NBSTw

= r (4.44)

where the second equality is because m′n(τ) is independent of mn(τ̃), mñ(τ), and

mñ(τ̃) (where ñ 6= n and τ̃ 6= τ) whenmn(τ) is given, according to Assumption 4.1.

We thus have (E {r̂|M})2 = r2.

We focus on evaluating E {r̂2|M} in the following. From (4.41), we have

r̂2 =
1

36N2
BST

2
w

(∑
n∈NBS

t−1∑
τ=t−Tw

m′n(τ)

mn(τ)

)2

=
1

36N2
BST

2
w

∑
n∈NBS

t−1∑
τ=t−Tw

(m′n(τ))2

(mn(τ))2
+

∑
n1,n2∈NBS;

τ1,τ2∈[t−Tw,t−1];
n1 6=n2 and/or τ1 6=τ2

m′n1
(τ1)

mn1(τ1)
·
m′n2

(τ2)

mn2(τ2)

 .

(4.45)

We now consider the two parts in (4.45). From the proof of Proposition 4.6, we

know that m′n(τ) follows the binomial distribution when mn(τ) is given. Further,

when mn(τ) is given, m′n(τ) is independent of mn(τ̃), mñ(τ), and mñ(τ̃) (where

ñ 6= n and τ̃ 6= τ), according to Assumption 4.1. Thus, we have

E

{
(m′n(τ))2

(mn(τ))2

∣∣∣∣∣M
}

=
E
{

(m′n(τ))2
∣∣mn(τ)

}
(mn(τ))2

=
mn(τ) · 6r · (1− 6r) + 36r2(mn(τ))2

(mn(τ))2

=
6r · (1− 6r)

mn(τ)
+ 36r2 (4.46)

where the second equality is a known result for binomially distributed random vari-

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 119

ables. We also have

E

{
m′n1

(τ1)

mn1(τ1)
·
m′n2

(τ2)

mn2(τ2)

∣∣∣∣∣M
}

= E

{
m′n1

(τ1)

mn1(τ1)

∣∣∣∣∣mn1(τ1)

}
· E

{
m′n2

(τ2)

mn2(τ2)

∣∣∣∣∣mn2(τ2)

}

=
E
{
m′n1

(τ1)|mn1(τ1)
}

mn1(τ1)
·
E
{
m′n2

(τ2)|mn2(τ2)
}

mn2(τ2)

= 36r2 (4.47)

for n1 6= n2 and/or τ1 6= τ2, where the first equality follows from the fact thatm′n1
(τ1)

and m′n2
(τ2) are independent when mn1(τ1) and mn2(τ2) are given (according to

Assumption 4.1), the last equality follows from (4.40).

We now take the conditional expectation on both sides of (4.45), and substitute

corresponding terms with (4.46) and (4.47). This yields

E
{
r̂2
∣∣M}

=
1

36N2
BST

2
w

(∑
n∈NBS

t−1∑
τ=t−Tw

E

{
(m′n(τ))2

(mn(τ))2

∣∣∣∣∣M
}

+
∑

n1,n2∈NBS;
τ1,τ2∈[t−Tw,t−1];
n1 6=n2 and/or τ1 6=τ2

E

{
m′n1

(τ1)

mn1(τ1)
·
m′n2

(τ2)

mn2(τ2)

∣∣∣∣∣M
}

=
1

36N2
BST

2
w

∑
n∈NBS

t−1∑
τ=t−Tw

(
6r · (1− 6r)

mn(τ)
+ 36r2

)
+

∑
n1,n2∈NBS;

τ1,τ2∈[t−Tw,t−1];
n1 6=n2 and/or τ1 6=τ2

36r2

=

1

36N2
BST

2
w

(
6r · (1− 6r) ·

(∑
n∈NBS

t−1∑
τ=t−Tw

1

mn(τ)

)
+N2

BST
2
w · 36r2

)

=
r(1− 6r)

6N2
BST

2
w

(∑
n∈NBS

t−1∑
τ=t−Tw

1

mn(τ)

)
+ r2. (4.48)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 120

Subtracting (E {r̂|M})2 = r2 from the above yields the result.

Proposition 4.7 gives the conditional variance of estimator r̂ when the values of

mn(τ) are given. It is not straightforward to remove the condition, because it is

hard to find the stationary distribution of user locations in a hexagonal 2-D mobility

model with a finite number of cells. We note that the set of mn(τ) values represents

the set of samples in our estimation problem. In standard estimation problems, the

sample size is usually deterministic, while it is random in our problem due to random

user locations. This causes the difficulty in finding the unconditional variance of our

estimator.

However, Proposition 4.7 is important because it gives us a sense on how large

the gap between r̂ and r is, provided that each user precisely follows the random

walk mobility model. We also have the following corollary which gives an upper

bound of the unconditional variance.

Corollary 4.3. Assume that Assumption 4.1 is satisfied and each user follows 2-D

random walk (defined at the beginning of Section 4.4.4.3) with parameter r. The

unconditional variance of estimator r̂ has the following upper bound:

Var{r̂} ≤ 1

144NBSTw
. (4.49)

Proof. As discussed in Section 4.4.4.2, we assume that mn(τ) 6= 0 for all n and τ .

Thus, we always have 1
mn(τ)

≤ 1 (since mn(τ) is a positive integer) and

∑
n∈NBS

t−1∑
τ=t−Tw

1

mn(τ)
≤ NBSTw. (4.50)

We also have the following bound:

r(1− 6r) ≤ 1

24
(4.51)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 121

for any r ∈ [0, 1
6
]. The law of total variance gives

Var{r̂} = E {Var{r̂|M}}+ Var{E {r̂|M}}

According to (4.44), E {r̂|M} = r which is a constant, thus Var{E {r̂|M}} = 0.

Therefore, we have

Var{r̂} = E {Var{r̂|M}} ≤ max
M

Var{r̂|M} ≤ 1

144NBSTw

where the last inequality follows from substituting (4.50) and (4.51) into (4.42).

We see from Corollary 4.3 that the upper bound of variance is inversely propor-

tional to Tw. This is an intuitive but also very favorable property, which says that

when users follow an ideal random walk mobility model with parameter r, we can

estimate the value of r as accurate as possible if we have a sufficient amount of

samples.

Different from many estimation problems where it is costly (requiring human

participation, data communication, etc.) to obtain samples, it is not too difficult to

collect samples in our case, because each basestation can save user records at every

timeslot, and we can easily adjust the number of samples (proportional to Tw) by

changing the amount of timeslots to search back in the record. Therefore, unlike

many other estimation problems where the goal is to minimize the variance of es-

timator under a given sample size, we do not target this goal here. A much more

important issue in our problem is that the ideal random walk mobility model may

not hold in practice. The parameter estimation procedure in Section 4.4.4.2 concep-

tually considers such potential model violations, and the rationale of this estimation

approach is explained below.

We see in the procedure that we first focus on a particular cell n and compute

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 122

the empirical probability of users moving out of that cell in (4.36), by treating each

timeslot with equal weight. Then, we take the average of such empirical probabilities

of all cells in (4.37). We note that the number of users in different cells and timeslots

may be imbalanced. Thus, in (4.36), the empirical probabilities for different cells

and slots may be computed with different number of users (samples), i.e., different

values of mn(τ).

Suppose we think of an alternative approach which first computes the total num-

ber of users in all cells and all slots (i.e.,
∑

n∈NBS

∑t−1
τ=t−Tw mn(τ)) and the ag-

gregated total number of users leaving their current cells at the end of slots (i.e.,∑
n∈NBS

∑t−1
τ=t−Tw m

′
n(τ)). Then, this approach estimates r by the overall empirical

probability of users moving out of their current cells (i.e.,
∑
n∈NBS

∑t−1
τ=t−Tw m

′
n(τ)

6·
∑
n∈NBS

∑t−1
τ=t−Tw mn(τ)

).

Intuitively, this alternative estimator may bring a lower variance compared to the

current estimator r̂, because it treats all the samples as a whole.

However, note that the uniform random walk mobility model may not hold pre-

cisely in practice; even if it holds, the parameter r may be time-varying or different

in different geographical areas. Therefore, the proposed approach computes the em-

pirical probability for each cell in each slot first, so that different cells and slots are

equally weighted in the estimation, although some cells may have more users than

others in certain slots. This is for the consideration of fairness among different cells,

so that the performance at different cells remains similar. It is also to avoid statis-

tics at a single slot dominating the overall result. Since r may be time-varying in

practice, it is possible that single-slot statistics do not represent the overall case.

4.4.4.4 Service Placement Update

The service placement is updated at the beginning of every timeslot. For each ser-

vice, if its new location is different from its previous location, a migration of this

service is carried out.

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 123

The policy found from the MDP model specifies which cell to migrate to when

the system is in a particular state (u(t), h(t)). However, we may not be able to

apply the policy directly, because not every basestation has an MMC connected to

it and each MMC has a capacity limit. We may need to make some modifications

to the service placement specified by the policy, so that the practical constraints are

not violated. The MDP model also does not specify where to place the service if

it was not present in the system before. In the following, we present a method to

determine the service placement with these practical considerations, which is guided

by the optimal policy obtained from the MDP model and at the same time satisfies

the practical constraints.

In the proposed procedure, we first ignore the MMC capacity limit and repeat

the process presented in steps I and II below for every service. Then, we take into

account the capacity limit, and reassign the locations of some services (in step III)

that were previously assigned to an MMC whose capacity is exceeded.

(I) Initial Service Placement: When the service was not running in the system

before (i.e., it is being initialized), the service is placed onto an MMC that

has the smallest distance to the user. The intuition for this rule is that the

initialization cost and the cost of further operation is usually small with such

a placement.

(II) Dynamic Service Migration: When the service has been initialized earlier

and is currently running in the system, a decision on whether and where to

migrate the service is made. Without loss of generality, assume that the current

timeslot is t = 0. We would like to find an action a that is the solution to the

following problem:

min
a

Ca(d(0)) + γ

a(d(0))+1∑
d(1)=a(d(0))−1

Pa(d(0)),d(1)V
∗(d(1)) (4.52)

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 124

s.t. there exists an MMC such that the user-service

distance is a(d(0)) after migration

where V ∗(d) stands for the optimal discounted sum cost found from step

2(c)iii in Section 4.4.4.2. We note that (4.52) is a one-step value iteration

following the balance equation (4.20). Intuitively, it means that assuming the

optimal actions are taken in future slots, find the action for the current slot that

incurs the lowest discounted sum cost (including both immediate and future

cost). When all basestations have MMCs connected to them, the solution a

to problem (4.52) is the same as the optimal action found from step 2(c)iii in

Section 4.4.4.2. However, a may be different from the optimal action when

some basestations are not connected to MMCs, because there may not exist

an MMC that satisfies the distance specification according to action a. The

resulting distance-based migration action can be mapped to a migration action

on 2-D space using the procedure in Section 4.4.3.2.

(III) Relocate Service(s) if MMC’s Capacity Exceeded: The placement decisions

in steps I and II above do not consider the capacity limit of each MMC, so it is

possible that we find the MMC capacity is exceeded after following the steps

in the above sections. When this happens, we start with an arbitrary MMC

(denoted by i0) whose capacity constraint is violated. We rank all services in

this MMC according to the objective function in (4.52), and start to relocate

the service with the highest objective function value. This service is placed on

an MMC that still has capacity for hosting it, where the placement decision is

also made according to (4.52) but only the subset of MMCs that are still capa-

ble of hosting this service are considered. The above process is repeated until

the number of services hosted at MMC i0 is within its capacity limit. Then,

this whole process is repeated for other MMCs that have violated capacity

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 125

constraints.

Remark: We note that service relocation does not really occur in the system. It

is only an intermediate step in the process of finding new service locations. We use

this two-step approach involving temporary placement and relocation instead of an

alternative one-step approach that checks for MMC capacity when performing the

placement/migration in steps I and II, because with such a two-step approach, we

can leave the low-cost services within the MMC and move high-cost services to an

alternative location.

4.4.4.5 Trace-Driven Simulation

We perform simulation with real-world mobility traces of 536 taxis in San Francisco,

collected on May 31, 2008 [45, 46], where different number of taxis are operating

(i.e., active) at different time of the day. Each active taxi is modeled as a user that

requests a service that is independent of the services of the other taxis. A hexagonal

cell structure with 500 m cell separation and NBS = 331 cells (basestations) in total

is assumed and each taxi is assumed to be connected to the nearest basestation. We

set the physical time length for each timeslot as 60 s. The parameters for data collec-

tion and policy update are set as Tu = 1 slot, and Tw = 60 slots. We choose N = 10,

µ = θ = 0.8, and γ = 0.9. From Corollary 4.3, we know that the standard devia-

tion of estimator r̂ (for an ideal random walk mobility model) is upper-bounded by√
1

144NBSTw
= 0.00059, which is reasonably small. Unless otherwise specified, there

are 100 basestations that have MMCs connected to them and each MMC can host

at most 50 services. The basestations with MMCs are evenly distributed among all

basestations. Note that the locations of taxis in the dataset are unevenly distributed

and the density of taxis can be very high in some areas at certain times of the day.

Similar to Section 4.4.3.4, we compare the performance of the proposed method

with baseline policies including always/never-migrate and myopic. To cope with

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 126

the nature of the policies, the objective function in (4.52) is modified accordingly

for these baseline policies. The objective in (4.52) is defined as the user-service

distance for the always- or never-migrate policies (recall that migration also happens

with never-migrate policy when the user-service distance is N or larger), and it is

defined as the one-timeslot cost for the myopic policy.

Cost definition: It is assumed that the system load is proportional to the number

of taxis in operation, and we define parameters Rt and Rp as weighting factors re-

spectively for transmission bandwidth and MMC processing resources. Then, we

define Gt , 1
/(

1− mcur
Rtmmax

)
and Gp , 1

/(
1− mcur

Rpmmax

)
, where mcur denotes the

number of taxis in operation at the time when the optimal policy is being computed,

and mmax denotes the maximum number of taxis that may simultaneously operate at

any time instant in the considered dataset. The expressions for Gt and Gp have the

same form as the average queuing delay expression in queuing theory [47], and they

mimic the delay of data transmission (Gt) and processing (Gp).

The cost parameters are then defined as βc = Gp + Gt, βl = −Gt, δc = Gt, and

δl = −Gt. With such a definition, we have βc + βl = Gp and δc + δl = 0, which

means that the constant part of the migration cost is Gp (to represent the processing

cost for migration) and there is no constant part in the cost for data transmission.

We set βl = δl = Gt because this part of cost can be regarded as related to data

transmission in both cm(x) and cd(y).

Results: The instantaneous cost in each time slot (i.e., the Ca(s(t)) values) aver-

aged over all users that are active in that slot is collected and shown in Fig. 4.13. The

fluctuation in cost values is due to different system load over the day, and we can see

that the proposed method almost always outperforms the baseline approaches.

To consider the overall performance under different parameter settings, we de-

note the cost of the proposed method as C and the cost of the baseline method under

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 127

00:00 06:00 12:00 18:00 00:00
0.5

1

1.5

2

2.5

3

Time

A
ct

ua
l c

os
t f

ro
m

 tr
ac

es

Never Migrate (A)
Always Migrate (B)
Myopic (C)
Proposed (D)
(Average values)

1.21
1.22
1.23

(D)

(B) (C) (A)

Figure 4.13: Instantaneous average cost per user in each timeslot over a day in trace-
driven simulation, where Rt = Rp = 1.5. An enlarged plot of the circled area is
shown on the top-right of the plot. The arrows annotated with (A), (B), (C), and (D)
point to the average values over the whole day of the corresponding policy.

comparison as C0, and we define the cost reduction as (C0−C)/C0. Fig. 4.14 shows

the cost reductions (averaged over the entire day) under different parameter settings.

From Figs. 4.14(a)–(d), we can see that under the default number of MMCs and

capacity limit at each MMC, the proposed approach is beneficial with cost reductions

ranging from 9% to 44% compared to the never/always-migrate or myopic policies.

From Figs. 4.14(e)–(f), we see that the cost reductions compared to never-migrate

and myopic policies become small in the case where either the number of MMCs is

small or the capacity of each MMC is low. In this case, it is hardly possible to

migrate the service to a better location because the action space for migration is very

small. Therefore, the proposed approach gives a similar cost as baseline policies, but

still outperforms them as indicated by a positive cost reduction on average. The cost

reduction compared to the always-migrate policy becomes slightly higher in the case

of small action space, because the always-migrate policy always incurs migration

cost even though the benefit of such migration is not obvious.

The fact that costs fluctuate over the day and vary with different amount of avail-

4.4. Constant-Plus-Exponential Cost Model under 2-D Mobility 128

1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
p

C
os

t r
ed

uc
tio

n

R
t
=1.1

Over never migrate
Over always migrate
Over myopic

(a)

1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
p

C
os

t r
ed

uc
tio

n

R
t
=1.5

Over never migrate
Over always migrate
Over myopic

(b)

1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

R
t

C
os

t r
ed

uc
tio

n

R
p
=1.1

Over never migrate
Over always migrate
Over myopic

(c)

1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

R
t

C
os

t r
ed

uc
tio

n
R

p
=1.5

Over never migrate
Over always migrate
Over myopic

(d)

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

Number of cells with MMC

C
os

t r
ed

uc
tio

n

R
t
=R

p
=1.5

Over never migrate

Over always migrate

Over myopic

(e)

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Maximum number of services per MMC

C
os

t r
ed

uc
tio

n

R
t
=R

p
=1.5

Over never migrate
Over always migrate
Over myopic

(f)

Figure 4.14: Cost reduction (averaged over the entire day) compared to alterna-
tive policies in trace-driven simulation, the error bars denote the standard deviation
(where we regard the instantaneous cost at different time of the day as samples): (a)–
(b) cost reduction vs. different Rp, (c)–(d) cost reduction vs. different Rt, (e) cost
reduction vs. different number of cells with MMC, (f) cost reduction vs. different
capacity limit of each MMC (expressed as the maximum number of services allowed
per MMC).

4.5. Discussion 129

able resources (which is adjusted by Rt and Rp) also implies that it is necessary to

compute the optimal policy in real-time, based on recent observations of the system

condition.

4.5 Discussion

Some assumptions have been made in this chapter to make the problem theoretically

tractable and also for ease of presentation. In this section, we justify these assump-

tions from a practical point of view and discuss possible extensions.

Cost Functions: To ease our discussion, we have limited our attention to trans-

mission and migration costs in this chapter. This can be extended to include more

sophisticated cost models. For example, the transmission cost can be extended to

include the computational cost of hosting the service at an MMC, by adding a con-

stant value to the transmission cost expression. As in Section 4.4.4.5, the cost values

can also be time-varying and related to the background system load. Furthermore,

the cost definition can be practically regarded as the average cost over multiple loca-

tions, which means that when seen from a single location, the monotonicity of cost

values with distances does not need to apply. This makes the proposed approach less

restrictive in terms of practical applicability.

We also note that it is generally possible to formulate an MDP with additional

dimensions in cost modeling, such as one that includes the state of the network,

load at each specific MMC, state of the service to avoid service interruption when in

critical state, etc. However, this requires a significantly larger state space compared

to our formulation in this chapter, as we need to include those network/MMC/service

states in the state space of the MDP. There is a tradeoff between the complexity of

solving the problem and accuracy of cost modeling. Such issues can be studied in

the future, where we envision similar approximation techniques as in this chapter

4.5. Discussion 130

can be used to approximately solve the resulting MDP.

Single/Multiple Users: Although we have focused on a single user in our problem

modeling, practical cases involving multiple users running independent services can

be considered by setting cost functions related to the background traffic generated by

other users, then considering each user independently, as in the cost definition of the

simulation in Section 4.4.4.5. More general cases where each MMC has a capacity

limit and not all basestations have MMCs attached to it can be tackled using the

heuristic approach presented in Section 4.4.4. From a theoretical perspective, one

can also formulate this and other generalized problems as an MDP with larger state

space (similar to the generalized cost model discussed above), but we leave it as

future work.

Random Walk: The random walk mobility model is used as a modeling assump-

tion, which not only simplifies the theoretical analysis, but also makes the practical

implementation of the proposed method fairly simple in the sense that only the em-

pirical probability of users moving outside of the cell needs to be recorded (see

Section 4.4.4.2). This model can capture the average mobility of a large number

of users. The simulation results in Section 4.4.4.5 confirm that this model provides

good performance, even though individual users do not necessarily follow a random

walk.

Centralized/Distributed Control: We have focused on a centralized control

mechanism in this chapter for ease of presentation. However, many parts of the

proposed approach can be performed in a distributed manner. For example, in step

1b in Section 4.4.4.2, the service placement decision can be made among a smaller

group of MMCs if the controller sends the results from step 2(c)iii to these MMCs.

In particular, the temporary service placement decision in Sections I and II can be

4.6. Summary 131

made locally on each MMC (provided that it knows the locations of other MMCs).

The capacity violation check in Section III can also be performed locally. If some

MMCs are in excess of capacity, service relocation can be performed using a few

control messages exchanged between MMCs, where the number of necessary

messages is proportional to the number of services to relocate. Relocation would

rarely occur if the system load is not very high. The computation of average

empirical probability in step 2(c)ii in Section 4.4.4.2 can also be distributed in the

sense that a subset of MMCs compute local averages, which are subsequently sent

to the MMC controller that computes the global average.

MMC-Basestation Co-location: For ease of presentation, we have assumed that

MMCs are co-located with basestations. However, our proposed approach is not

restricted to such cases and can easily incorporate scenarios where MMCs are not

co-located with basestations as long as the costs are geographically dependent.

4.6 Summary

We have taken an MDP-based approach to dynamic service migration in this chapter.

Noting that the state space of the MDP for the original problem can be arbitrarily

large, we have made simplifications that are either provably optimal or suboptimal

with a provable optimality gap. We have also discussed ways to implement the

proposed algorithms in practical systems, and evaluated their performance with both

synthetic mobility traces and real-world mobility traces of San Francisco taxis.

CHAPTER 5

Dynamic Service Placement with

Predicted Future Costs

5.1 Introduction

The previous chapter presented an MDP-based approach to dynamic service migra-

tion. Although the proposed approach is simple, it is constrained to cases where

the user mobility follows or can be approximated by a mobility model that can be

described by a Markov chain. We note that there are also practical cases where the

Markovian assumption is not valid [48]. Furthermore, the definition of costs related

to the locations of users and service instances may be inapplicable if the load on dif-

ferent MMCs are imbalanced or if we consider the centralized cloud as a placement

option.

In this chapter, we assume that there is an underlying mechanism to predict the

future costs to some known accuracy. Using these predicted costs, we consider a

more general setting that may have different forms of cost functions, as well as

heterogeneous network structure and mobility models. Meanwhile, different from

Chapter 4 where we mainly consider services that are constantly running for each

user, we consider service instances that may arrive and depart over time.

5.1. Introduction 133

5.1.1 Related Work

Systems with online (and usually unpredictable) arrivals and departures have been

studied in the field of online approximation algorithms [24, 49]. The goal is to design

efficient algorithms (usually with polynomial time-complexity) that have reasonable

competitive ratios. However, most existing work focuses on problems that can be

formulated as integer linear programs. Problems that have convex but non-linear

objective functions have attracted attention only very recently [50, 51], where the

focus is on online covering problems in which new constraints arrive over time. Our

problem is different from the existing work in the sense that the online arrivals in

our problem are abstracted as change in constraints (or, with a slightly different but

equivalent formulation, adding new variables) instead of adding new constraints,

and we consider the average cost over multiple timeslots. Meanwhile, online de-

partures are not considered in [50, 51]. We also note that existing online algorithms

with provable performance guarantees are often of theoretical nature [24, 49, 50, 51],

which may not be straightforward to apply in practical systems. At the same time,

most online algorithms applied in practice are of heuristic nature without provable

performance guarantees, which may perform poorly particularly under critical set-

tings. We propose a simple and practically applicable online algorithm with provable

performance guarantees in this chapter, and also verify its performance with simula-

tion using both synthetic arrivals and real-world user traces.

5.1.2 Main Contributions

In this chapter, we consider a general setting which allows heterogeneity in cost val-

ues, network structure, and mobility models. We assume that the cost is related to

a finite set of parameters, which can include the locations and preferences of users,

load in the system, database locations, etc. We focus on the case where there is an

5.1. Introduction 134

underlying mechanism to predict the future values of these parameters1, and also

assume that the prediction mechanism provides the most likely future values and

an upper bound on possible deviation of the actual value from the predicted value.

Such an assumption is valid for many prediction methods that provide guarantees on

prediction accuracy. Based on the predicted parameters, the (predicted) future costs

of each configuration can be found, in which each configuration represents one par-

ticular placement sequence of service instances. While we do not deal with specific

cost prediction methods in this thesis, a brief summary of possible approaches we

can use is given in Section 5.2.2.

With the above assumption, we formulate a problem of finding the optimal place-

ment sequence of service instances that minimizes the average cost over time. We

define a look-ahead window to represent the amount of time that we look (predict)

into the future. The main contributions of this chapter are summarized as follows:

1. We first focus on the offline problem of service instance placement using the

predicted costs within a specific look-ahead window, where we assume that

the service instance arrivals and departures within this look-ahead window are

known beforehand. We show that this problem is equivalent to a shortest-path

problem and propose an algorithm (Algorithm 5.2 in Section 5.3.3) to find its

optimal solution, by leveraging dynamic programming techniques.

2. We note that it is often practically infeasible to know in advance about when a

service instance will arrive or depart. Meanwhile, Algorithm 5.2 may have ex-

ponential time-complexity when there exist multiple service instances, which

means that it can be very time consuming to find the solution. Therefore, we

propose an online approximation algorithm that finds the placement of each

1We regard these cost parameters as predictable because they are generally related to the overall
state of the system or historical pattern of users, which are unlikely to vary significantly from its
previous state or pattern within a short time. This is different from arrivals and departures of service
instances, which can be spontaneous and unlikely to follow a predictable pattern.

5.2. Problem Formulation 135

service instance at the time it arrives. This online algorithm has polynomial

time-complexity and can find the solution within a reasonably short time. It

calls Algorithm 5.2 as a subroutine on each service instance arrival. We an-

alytically evaluate the performance of this online algorithm compared to the

optimal offline placement. The proposed online algorithm isO(1)-competitive

for certain types of cost functions (including those which are linear, polyno-

mial, or in some other specific form), under some mild assumptions.

3. Considering the existence of prediction errors, we propose a method to find

the optimal look-ahead window size, such that an upper bound on the actual

placement cost is minimized.

4. The effectiveness of the proposed approach is evaluated by simulations with

both synthetic service instance arrivals and real-world mobility traces of San

Francisco taxis.

5.2 Problem Formulation

We consider a cloud computing system as shown in Fig. 1.1, where the clouds are

indexed by n ∈ {1, 2, ..., N}. Each cloud n can be either an MMC or a centralized

cloud. All MMCs together with the centralized cloud can host service instances

that may arrive and leave the system over time. A service instance is a process

that is executed for a particular task of a particular cloud service, which may or

may not be embedded into a containing environment (such as virtual machine or

Linux container). Each service instance may serve one or multiple users, where

there usually exists data transfer between the instance and the users it is serving. A

time-slotted system as shown in Fig. 5.1 is considered, in which the actual physical

time interval corresponding to each slot t = 1, 2, 3, ... can be either the same or

different.

5.2. Problem Formulation 136

Timeslot tT slots

…1 2 3 … …
T slots T slots

Possible migration
… … …

Cost prediction for next T slots

…

Figure 5.1: Timing of the proposed approach.

We consider a window-based control framework, where every T slots, a con-

troller performs cost prediction and computes the service instance placement se-

quence for the next T slots. We define these T consecutive slots as a look-ahead

window. Service instance placement within each window are found either at the be-

ginning of the window (in the offline case) or whenever an instance arrives (in the

online case). We limit ourselves within one look-ahead window when finding the

placement sequence. In other words, we do not attempt to find the placement in the

next window until the time for the current window has elapsed and the next window

starts. Our solution can also be extended to a slot-based control framework where

the controller computes the next T -slot service placement sequence at the beginning

of every slot, based on predicted cost parameters for the next T slots. We leave the

detailed comparison of these frameworks and their variations for future work.

5.2.1 Definitions

We introduce some definitions in the following.

5.2.1.1 Service Instances

Service instances may arrive and depart over time. We keep an index counter to

assign an index for each new instance. The counter is initialized to zero when the

cloud system starts to operate2. Upon a service instance arrival, we increment the

2This is only for ease of presentation. In practice, the index can be reset when the maximum
possible number of the counter is reached.

5.2. Problem Formulation 137

counter by one, so that if the previously arrived instance has index i, a newly arrived

instance will have index i + 1. With this definition, if i < i′, instance i arrives no

later than instance i′. A particular instance i can only arrive once, and we assume

that arrivals always occur at the beginning of a slot and departures always occur at

the end of a slot. For example, consider timeslots t = 1, 2, 3, 4, 5, instance i = 2

may arrive at the beginning of slot t = 2, and depart at the end of slot t = 4. At any

timeslot t, instance i can have one of the following states: not arrived, running, or

departed. For the above example, instance i = 2 has not yet arrived in slot t = 1,

it is running in slots t = 2, 3, 4, and it has already departed in slot t = 5. Note that

an instance can be running across multiple windows each containing T slots before

it departs.

5.2.1.2 Configurations

Consider an arbitrary sequence of consecutive timeslots t ∈ {t0, t0+1, ..., t0+Q−1},

where Q is an integer. Assume that the instance with the smallest index running in

slot t0 has index i0, and the instance with the largest index running in any of the slots

within {t0, ..., t0 +Q− 1} has index i0 +M − 1. According to the index assignment

discussed in Section 5.2.1.1, there can be at most M instances running in any slot

t ∈ {t0, ..., t0 +Q− 1}.

We define a Q-by-M matrix denoted by π, where its (q, i)th (q ∈ {1, ..., Q})

element (π)qi ∈ {0, 1, 2, ..., N} denotes the location of service instance i in slot

tq , t0 + q − 1, in which “,” stands for “is defined to be equal to”. We set (π)qi

according to the state of instance i in slot tq, as follows

(π)qi =

0, if i is not running in slot tq

n, if i is running in cloud n in slot tq

5.2. Problem Formulation 138

where instance i is not running if it has not yet arrived or has already departed. The

matrix π is called the configuration of instances in slots {t0, ..., t0+Q−1}. Through-

out this chapter, we use matrix π to represent configurations in different subsets of

timeslots. We will write π(t0, t1, ..., tm) to explicitly denote the configuration in

slots {t0, t1, ..., tm} (and we have Q = tm − t0 + 1), and we write π for short where

the considered slots can be inferred from the context. When considering a single slot

t, π(t) becomes a vector (i.e., Q = 1).

Remark: Note that the configurations in different slots can appear either in the

same matrix or in different matrices. This means, from π(t0, ..., t0 + Q − 1), we

can get π(t) for any t ∈ {t0, ..., t0 + Q − 1}, as well as π(t − 1, t) for any t ∈

{t0 + 1, ..., t0 + Q − 1}, etc., and vice versa. For ease of presentation later in this

chapter, we define (π(0))i = 0 for any i.

5.2.1.3 Costs

Similar to Chapter 4, we consider two types of costs. The local cost U(t,π(t)) spec-

ifies the cost of data transmission (e.g., between each pair of user and service in-

stance) and processing in slot t when the configuration in slot t is π(t). Its value can

depend on many factors, including user location, network condition, load of clouds,

etc., as discussed in Section 5.1.2. When a service instance is initiated in slot t, the

local cost in slot t also includes the cost of initial placement of the corresponding

service instance(s). We then define the migration cost W (t,π(t − 1),π(t)), which

specifies the cost related to migration between slots t − 1 and t, which respectively

have configurations π(t − 1) and π(t). There is no migration cost in the very first

timeslot (start of the system), thus we define W (1, ·, ·) = 0. The sum of local and

migration costs in slot t when following configuration π(t− 1, t) is given by

Cπ(t−1,t)(t) , U(t,π(t)) +W (t,π(t− 1),π(t)). (5.1)

5.2. Problem Formulation 139

The above defined costs are aggregated costs for all clouds and transmission links in

the system.

5.2.2 Actual and Predicted Costs

To distinguish between the actual and predicted cost values, for a given configuration

π(t− 1, t), we let Aπ(t) denote the actual value of Cπ(t), and let Dt0
π (t) denote the

predicted most likely value of Cπ(t), when cost-parameter prediction is performed

at the beginning of slot t0. For completeness of notations, we define Dt0
π (t) = Aπ(t)

for t < t0, because at the beginning of t0, the costs of all past timeslots are known.

For t ≥ t0, we assume that the absolute difference between Aπ(t) and Dt0
π (t) is at

most

ε(τ) , max
π(t−1,t),t0

∣∣∣Aπ(t−1,t)(t0 + τ)−Dt0
π(t−1,t)(t0 + τ)

∣∣∣
which represents the maximum error when looking ahead for τ slots, among all

possible configurations π and all possible prediction time instant t0. The function

ε(τ) is assumed to be non-decreasing with τ , because we generally cannot have

lower error when we look farther ahead into the future. The specific value of ε(τ) is

assumed to be provided by the cost prediction module.

How to Obtain and Predict Cost Parameters: We note that specific methods for

obtaining current cost parameters and predicting their future values are beyond the

scope of this thesis, but we anticipate that existing approaches for cloud monitoring

and future cost prediction can be applied. We provide a brief discussion on possible

approaches one can use.

We start with monitoring the current cloud performance and user locations. The

simplest way for cloud monitoring is to send the current parameters that can be di-

rectly measured on the system (such as CPU and memory utilization) to the cloud

controller. However, such simple methods may either generate high overhead for

5.2. Problem Formulation 140

control information exchange or be inaccurate due to the possibly abrupt change

in computational resource occupation of cloud applications. More systematic ap-

proaches for cloud monitoring are discussed in the survey in [52], where it is shown

that different monitoring mechanisms target slightly different goals, for example

some focus on the accuracy of monitored parameters while others focus on the adapt-

ability to a change in resource occupation. The user locations can be monitored by

determining which basestation each user is connected to. This granularity of loca-

tion is sufficient for the case where MMCs are connected directly to basestations.

A simple monitoring approach can notify the cloud controller of user handoff in-

stances between different basestations, so that the controller always keeps track of

which basestation each user is associated to.

After the current state of the system has been monitored, the future states (pa-

rameters in the cost model) need to be predicted to determine the predicted future

cost. One simple approach for this purpose is to measure cost parameters based on

current observation, and regard them as parameters for the future cost until the next

measurement is taken. The prediction accuracy in this case is related to how fast the

cost parameters vary, which can be estimated from historical records of these param-

eters. There are more intelligent ways for making predictions, which are expected

to be more accurate than the simple approach which takes current measurements as

future values. For example, for predicting future cloud performance, one can use

linear models such as Kalman filters, discrete models such as hidden Markov chains,

or ideas from expert systems [53]. For predicting future user locations, one can make

use of social network information of users to derive each user’s intent of moving to

a particular area, and some periodicity of user mobility that can be derived from the

user’s historical mobility traces [54], for instance.

5.3. Offline Service Placement with Given Look-Ahead Window Size 141

5.2.3 Our Goal

Our ultimate goal is to find an optimal configuration π∗(1, ...,∞) that minimizes the

actual average cost over sufficiently long time, i.e.

π∗(1, ...,∞)=arg min
π(1,...,∞)

lim
Tmax→∞

∑Tmax
t=1 Aπ(t−1,t)(t)

Tmax
. (5.2)

However, it is impractical to find the optimal solution to (5.2), because we cannot

precisely predict the future costs and also do not have exact knowledge on instance

arrival and departure events in the future. Therefore, we focus on obtaining an ap-

proximate solution to (5.2) by utilizing predicted cost values that are collected every

T slots.

Now, the service placement problem includes two separable parts: one is finding

the look-ahead window size T , which will be discussed in Section 5.5; the other

is finding the placement sequence (configuration) within each window, where we

consider both offline and online placements and will be discussed in Section 5.3 (for

offline placement) and Section 5.4 (for online placement). The offline placement

assumes that at the beginning of window T , we know the exact time of when each

instance arrives and departs within the rest of window T . The online placement does

not assume this knowledge. We note that the notion of “offline” here does not imply

exact knowledge of future costs. The predicted costs are used in both offline and

online placements.

5.3 Offline Service Placement with Given

Look-Ahead Window Size

In this section, we focus on the offline placement problem. We denote the configu-

ration found for this problem by πoff.

5.3. Offline Service Placement with Given Look-Ahead Window Size 142

Algorithm 5.1 Procedure for offline service placement
1: Initialize t0 = 1
2: loop
3: At the beginning of slot t0, find the solution to (5.3)
4: Apply placements πoff(t0, ..., t0 + T − 1) in timeslots t0, ..., t0 + T − 1
5: t0 ← t0 + T
6: end loop

5.3.1 Procedure

We start by illustrating the high-level procedure of finding πoff. When the look-

ahead window size T is given, the placement sequence πoff is found sequentially

for each window (containing timeslots t0, ..., t0 + T − 1), by solving the following

optimization problem:

πoff(t0, ..., t0+T−1) = arg min
π(t0,...,t0+T−1)

t0+T−1∑
t=t0

Dt0
π(t−1,t)(t) (5.3)

whereDt0
π (t) can be found based on the parameters obtained from the cost prediction

module. The procedure is shown in Algorithm 5.1.

In Algorithm 5.1, whenever we solve (5.3), we get the value of πoff for additional

T slots. Such a solution is sufficient in practice because we only need to know

where to place the instances in the current slot. The value of Dt0
π(t−1,t)(t) in (5.3)

depends on the configuration in slot t0 − 1, i.e. π(t0 − 1), according to (5.1). When

t0 = 1, π(t0 − 1) can be regarded as an arbitrary value, because the migration cost

W (t, ·, ·) = 0 for t = 1.

The intuitive explanation of (5.3) is that, at the beginning of slot t0, it finds the

optimal configuration that minimizes the predicted cost over the next slots (including

t0) up to t0 + T − 1, given the locations of instances in the previous slot t0 − 1. We

focus on solving (5.3) next.

5.3. Offline Service Placement with Given Look-Ahead Window Size 143

π(t0)=(1,0) π(t0)=(2,0)

π(t0+1)=(1,1) π(t0+1)=(1,2) π(t0+1)=(2,1)

π(t0+2)=(1,1) π(t0+2)=(1,2) π(t0+2)=(2,1)

π(t0-1)

B

Dπ
t0(t0)

Dπ
t0(t0+1)

Dπ
t0(t0+2)

0

π(t0+1)=(2,2)

π(t0+2)=(2,2)

Instance
i=2 arrives
in slot t0+1

Figure 5.2: Shortest-path formulation with N = 2, M = 2, and T = 3. Instance
i = 1 is running in all slots, instance i = 2 arrives at the beginning of slot t0 + 1 and
is running in slots t0 + 1 and t0 + 2.

5.3.2 Equivalence to Shortest-Path Problem

Problem (5.3) is equivalent to a shortest-path problem with Dt0
π(t−1,t)(t) as weights,

as shown in Fig. 5.2. Each edge represents one possible combination of configura-

tions in adjacent timeslots, and the weight on each edge is the predicted cost for such

configurations. The configuration in slot t0 − 1 is always given, and the number of

possible configurations in subsequent timeslots is at most NM , where M is defined

as in Section 5.2.1.2 for the current window {t0, ..., t0 +T −1}. Node B is a dummy

node to ensure that we find a single shortest path, and the edges connecting node B

have zero weights. It is obvious that the optimal solution to (5.3) can be found by

taking the shortest (minimum-weighted) path from node π(t0 − 1) to node B in Fig.

5.2, and the nodes that the shortest path traverses correspond to the optimal solution

πoff(t0, ..., t0 + T − 1) for (5.3).

5.3.3 Algorithm

We can solve the abovementioned shortest-path problem by means of dynamic pro-

gramming [36]. The algorithm is shown in Algorithm 5.2, where we use Up(t,m)

5.4. Complexity Reduction and Online Service Placement 144

and Wp(t, m̃,m) to respectively denote the predicted local and migration costs,

when π(t) = m and π(t−1) = m̃. In the algorithm, Lines 5–16 iteratively finds the

shortest path (minimum objective function) for each timeslot. In each iteration, the

optimal solution for every possible (single-slot) configuration m is found by solving

Bellman’s equation of the problem (Line 11). Then, the final optimal configuration

is found in Lines 17 and 18. It is obvious that output of this algorithm satisfies Bell-

man’s principle of optimality, so the result is the shortest path and hence the optimal

solution to (5.3).

Complexity: When the vectors πm and ξm are stored as linked-lists, Algo-

rithm 5.2 has time-complexity O
(
N2MT

)
. This is because the minimization in Line

11 requires enumerating at most NM possible configurations, and there can be at

most NMT possible combinations of values of t and m.

5.4 Complexity Reduction and Online Service Place-

ment

The complexity of Algorithm 5.2 is exponential unless the number of service in-

stances M is a constant. Therefore, it is desirable to reduce its complexity. In this

section, we propose a method that can find an approximate solution to (5.3) and, at

the same time, handle online service instance arrivals and departures. We will also

show that (5.3) is NP-hard when the number of service instances M is non-constant,

which justifies the need to solve (5.3) approximately in an efficient manner.

5.4.1 Procedure

In the online case, we modify the procedure given in Algorithm 5.1 so that instances

are placed one-by-one, where each placement greedily minimizes the objective func-

tion given in (5.3), while the configurations of previously placed instances remain

5.4. Complexity Reduction and Online Service Placement 145

Algorithm 5.2 Algorithm for solving (5.3)
1: Define variables m and m̃ to represent configurations respectively in the current

and previous iteration
2: Define vectors πm and ξm for all m, where πm (correspondingly, ξm) records

the optimal configuration given that the configuration at the current (correspond-
ingly, previous) timeslot of iteration is m

3: Define variables µm and νm for all m to record the sum cost values from slot t0
respectively to the current and previous slot of iteration, given that the configu-
ration is m in the current or previous slot

4: Initialize µm ← 0 and πm ← ∅ for all m
5: for t = t0, ..., t0 + T − 1 do
6: for all m do
7: νm ← µm

8: ξm ← πm

9: end for
10: for all m do
11: m̃∗ ← arg minm̃ {νm̃ + Up(t,m) +Wp(t, m̃,m)}
12: πm(t0, ..., t− 1)← ξm̃∗(t0, ..., t− 1)
13: πm(t)←m
14: µm ← νm̃∗ + Up(t,m) +Wp(t, m̃

∗,m)
15: end for
16: end for
17: m∗ ← arg minm µm

18: πoff(t0, ..., t0 + T − 1)← πm∗(t0, ..., t0 + T − 1)
19: return πoff(t0, ..., t0 + T − 1)

5.4. Complexity Reduction and Online Service Placement 146

unchanged.

We assume that each service instance i has a maximum lifetime Tlife(i), denoting

the maximum number of remaining timeslots (including the current slot) that the

instance remains in the system. The value of Tlife(i) may be infinity for instances

that can potentially stay in the system for an arbitrary amount of time. The actual

time that the instance stays in the system may be shorter than Tlife(i), but it cannot be

longer than Tlife(i). When an instance leaves the system before its maximum lifetime

has elapsed, we say that such a service instance departure is unpredictable.

We denote the configuration matrix π following online placement by πon. The

configuration πon is updated every time when an instance arrives or unpredictably

departs. At the beginning of the window (before any instance has arrived), it is

initiated as an all-zero matrix.

For a specific look-ahead window {t0, ..., t0 + T − 1}, when service instance i

arrives in slot t ∈ {t0, ..., t0 + T − 1}, we assume that this instance stays in the

system until slot te = min {t+ Tlife(i)− 1; t0 + T − 1}, and accordingly update the

configuration matrix by

πon(t, ..., te) = arg min
π(ta,...,te)

te∑
t=ta

Dt0
π(t−1,t)(t) (5.4)

s.t. π(t, ..., te) = πon(t, ..., te) except for column i.

Note that only the configuration of service instance i (which is stored in the ith

column of π) is found and updated in (5.4), the configurations of all other instances

i′ 6= i remain unchanged. The solution to (5.4) can still be found with Algorithm

5.2. The only difference is that vectors m and m̃ now become scalar values within

{1, ..., N}, because we only consider the configuration of a single instance i. The

complexity in this case becomes O(N2T). At the beginning of the window, all the

instances that have not departed after slot t0−1 are seen as arrivals in slot t0, because

5.4. Complexity Reduction and Online Service Placement 147

Algorithm 5.3 Procedure for online service placement
1: Initialize t0 = 1
2: loop
3: Initialize πon(t0, ..., t0 + T − 1) as an all-zero matrix
4: for each timeslot t = t0, ..., t0 + T − 1 do
5: for each instance i arriving at the beginning of slot t do
6: te ← min {t+ Tlife(i)− 1; t0 + T − 1}
7: Update πon(t, ..., te) with the result from (5.4)
8: Apply configurations specified in the ith column of πon(t, ..., te) for ser-

vice instance i in timeslots t, ..., te until instance i departs
9: end for

10: for each instance i departing at the end of slot t do
11: Set the ith column of πon(t+ 1, ..., t0 + T − 1) to zero
12: end for
13: end for
14: t0 ← t0 + T
15: end loop

we independently consider the placements in each window of size T . When multiple

instances arrive simultaneously, an arbitrary arrival sequence is assigned to them, and

the instances are still placed one-by-one by greedily minimizing (5.4).

When an instance i unpredictably departs at the end of slot t ∈ {t0, ..., t0+T−1},

we update πon such that the ith column of πon(t+ 1, ..., t0 + T − 1) is set to zero.

The online procedure described above is shown in Algorithm 5.3. Recall that

πon(t, ..., te) and πon(t + 1, ..., t0 + T − 1) are both part of a larger configuration

matrix πon(t0, ..., t0 + T − 1) (see Section 5.2.1.2).

Complexity: When placing a total of M instances, for a specific look-ahead win-

dow with size T , we can find the configurations of these M instances with complex-

ity O(N2TM), because (5.4) is solved M times, each with complexity O(N2T).

Remark: It is important to note that in the above procedure, the configuration

matrix πon (and thus the cost value Dt0
π(t−1,t)(t) for any t ∈ {t0, ..., t0 + T − 1})

may vary upon instance arrival or departure. It follows that the T -slot sum cost∑t0+T−1
t=t0

Dt0
πon(t−1,t)(t) may vary whenever an instance arrives or departs at an arbi-

trary slot t ∈ {t0, ..., t0 + T − 1}, and the value of
∑t0+T−1

t=t0
Dt0

πon(t−1,t)(t) stands

5.4. Complexity Reduction and Online Service Placement 148

for the predicted sum cost (over the current window containing T slots) under the

current configuration, assuming that no new instance arrives and no instance unpre-

dictably departs in the future. This variation in configuration and cost upon instance

arrival and departure is frequently noted in the performance analysis presented next.

5.4.2 Performance Analysis

It is clear that for a single look-ahead window, Algorithm 5.3 has polynomial time-

complexity while Algorithm 5.1 has exponential time-complexity. In this subsection,

we show the NP-hardness of the offline service placement problem, and discuss the

optimality gap between the online algorithm and the optimal offline placement. Note

that we only focus on a single look-ahead window in this subsection. The interplay of

multiple look-ahead windows and the impact of the window size will be considered

in Section 5.5.

5.4.2.1 Definitions

For simplicity, we analyze the performance for a slightly restricted (but still general)

class of cost functions. We introduce some additional definitions next.

Indexing of Instances: Without loss of generality, we assume that the instance

with lowest index in the current window {t0, ..., t0 +T − 1} has index i = 1, and the

last instance that arrives before the current time of interest has index i = M , where

the current time of interest can be any time within the current window. With this

definition, M does not need to be the largest index in window {t0, ..., t0 + T − 1}.

Instead, it can be the index of any instance that arrives within {t0, ..., t0 +T −1} The

cost of placing up to (and including) instanceM is considered, where some instances

i ≤M may have already departed from the system.

5.4. Complexity Reduction and Online Service Placement 149

Configuration Sequence: When considering a window of T slots, we define a set

of T -dimensional vectors Λ , {(λ1, ..., λT) : λm ∈ {0, 1, ..., N},∀m ∈ {1, ..., T},

where λm is non-zero for at most one block of consecutive values of m}. We also

define a vector λ ∈ Λ to represent one possible configuration sequence of a single

service instance across these T consecutive slots. For any instance i, the ith column

of configuration matrix π(t0, ..., t0 + T − 1) is equal to one particular value of λ.

We also define a binary variable xiλ, where xiλ = 1 if service instance i operates

in configuration sequence λ across slots {t0, ..., t0 + T − 1} (i.e., the ith column

of π(t0, ..., t0 + T − 1) is equal to λ), and xiλ = 0 otherwise. We always have∑
λ∈Λ xiλ = 1 for all i ∈ {1, ...,M}.

We note that the values of xiλ may vary over time due to arrivals and unpre-

dictable departures of service instances, which can be seen from Algorithm 5.3 and

by noting the relationship between λ and π. Before instance i arrives, xiλ0 = 1

for λ0 = [0, ..., 0] which contains all zeros, and xiλ = 0 for λ 6= λ0. Upon arrival

of instance i, we have xiλ0 = 0 and xiλ1 = 1 for a particular λ1. When instance

i unpredictably departs, its configuration sequence switches from λ1 to an alterna-

tive (but partly correlated) sequence λ′1 according to Line 11 in Algorithm 5.3, after

which xiλ1 = 0 and xiλ′1 = 1.

Resource Consumption: We assume that the costs are related to the resource

consumption, and for ease of presentation, we consider two types of resource con-

sumptions. The first type is associated with serving user requests, i.e., data trans-

mission and processing when a cloud is running a service instance, which we refer

to as local resource consumption. The second type is associated with migration, i.e.,

migrating a service instance from one cloud to another cloud, which we refer to as

migration resource consumption.

If we know that instance i operates under configuration sequence λ, then we

5.4. Complexity Reduction and Online Service Placement 150

know whether instance i is placed on cloud n in slot t, for any n ∈ {1, ..., N} and

t ∈ {t0, ..., t0 +T −1}. We also know whether instance i is migrated from cloud n to

cloud h (h ∈ {1, 2, ..., N}) between slots t− 1 and t. We use aiλn(t) ≥ 0 to denote

the local resource consumption at cloud n in slot twhen instance i is operating under

λ, and use biλnh(t) ≥ 0 to denote the migration resource consumption when instance

i operating under λ is assigned to cloud n in slot t−1 and to cloud h in slot t, where

we note that the configuration in slot t0 − 1 (before the start of the current window)

is assumed to be given and thus independent of λ. The values of aiλn(t) and biλnh(t)

are either service-specific parameters that are known beforehand, or they can be

found as part of cost prediction.

We denote the sum local resource consumption at cloud n by

yn(t) ,
∑M

i=1

∑
λ∈Λ aiλn(t)xiλ, and denote the sum migration resource

consumption from cloud n to cloud h by znh(t) ,
∑M

i=1

∑
λ∈Λ biλnh(t)xiλ. We

may omit the argument t in the following discussion.

Remark: The local and migration resource consumptions defined above can be

related to CPU occupation, communication bandwidth, etc., or the sum of them. We

only consider these two types of resource consumption for ease of presentation. By

applying the same theoretical framework, the performance gap results (presented

later) can be extended to incorporate multiple types of resources and more sophisti-

cated cost functions, and similar results are obtained for the general case.

Costs: We refine the costs defined in Section 5.2.1.3 by considering the cost for

each cloud or each pair of clouds. The local cost at cloud n in timeslot t is denoted

by un,t (yn(t)). When a service instance is initiated in slot t, the local cost in slot t

also includes the cost of initial placement of the corresponding service instance(s).

The migration cost from cloud n to cloud h between slots t − 1 and t is denoted

by wnh,t (yn(t− 1), yh(t), znh(t)). Besides znh(t), the migration cost is also related

5.4. Complexity Reduction and Online Service Placement 151

to yn(t − 1) and yh(t), because additional processing may be needed for migration,

and the cost for such processing can be related to the current load at clouds n and h.

The functions un,t (y) and wnh,t (yn, yh, znh) can be different for different timeslots

t and different clouds n and h, and they can depend on many factors, such as user

location, network condition, background load of the cloud, etc. Noting that any

constant term added to the cost function does not affect the optimal configuration,

we set un,t(0) = 0 and wnh,t(0, 0, 0) = 0. We also set wnh,t(·, ·, 0) = 0, because

there is no migration cost if we do not migrate. There is also no migration cost at

the start of the first timeslot, thus we set wnh,t(·, ·, ·) = 0 for t = 1. With the above

definition, the aggregated costs U(t,π(t)) andW (t,π(t−1),π(t)) can be explicitly

expressed as

U(t,π(t)) ,
N∑
n=1

un,t (yn(t)) (5.5)

W(t,π(t−1),π(t)),
N∑
n=1

N∑
h=1

wnh,t(yn(t−1), yh(t), znh(t)) . (5.6)

We then assume that the following assumption is satisfied for the cost functions,

which holds for a large class of practical cost functions, such as those related to delay

performance or load balancing [17].

Assumption 5.1. Both un,t(y) and wnh,t(yn, yh, znh) are convex non-decreasing

functions of y (or yn, yh, znh), satisfying:

• dun,t
dy

(0) > 0

• ∂wnh,t
∂znh

(·, ·, 0) > 0 for t ≥ 2

for all t, n, and h (unless stated otherwise), where dun,t
dy

(0) denotes the derivative

of un,t with respect to (w.r.t.) y evaluated at y = 0, and ∂wnh,t
∂znh

(·, ·, 0) denotes the

partial derivative of wnh,t w.r.t. znh evaluated at znh = 0 and arbitrary yn and yh.

5.4. Complexity Reduction and Online Service Placement 152

Vector Notation: To simplify the presentation, we use vectors to denote a col-

lection of variables across multiple clouds, slots, or configuration sequences. For

simplicity, we index each element in the vector with multiple indices that are related

to the index of the element, and use the general notion (g)m1m2
(or (g)m1m2m3

) to

denote the (m1,m2)th (or (m1,m2,m3)th) element in an arbitrary vector g. Because

we know the range of each index, multiple indices can be easily mapped to a sin-

gle index (such as using the vectorization operation when g is a matrix). We regard

each vector as a single-indexed vector for the purpose of vector concatenation (i.e.,

joining two vectors into one vector) and gradient computation later.

We define vectors y (with NT elements), z (with N2T elements), x (with

M(N + 1)T elements), aiλ (with NT elements), and biλ (with N2T elements), for

every value of i ∈ {1, 2, ...,M} and λ ∈ Λ. Different values of i and λ correspond

to different vectors aiλ and biλ. The elements in these vectors are defined as

follows:

(y)nt , yn(t), (z)nht , znh(t), (x)iλ , xiλ,

(aiλ)nt , aiλn(t), (biλ)nht , biλnh(t).

As discussed earlier in this section, xiλ may unpredictably change over time due to

arrivals and departures of service instances. It follows that the vectors x, y, and

z may vary over time (recall that y and z are dependent on x by definition). The

vectors aiλ and biλ are constant.

Alternative Cost Expression: Using the above definitions, we can write the sum

cost of all T slots as follows

D̃ (x) , D̃ (y, z) ,
t0+T−1∑
t=t0

[
N∑
n=1

un,t (yn(t))

+
N∑
n=1

N∑
h=1

wnh,t (yn(t− 1), yh(t), znh(t))

]
(5.7)

5.4. Complexity Reduction and Online Service Placement 153

where the cost function D̃(·) can be expressed either in terms of x or in terms of

(y, z). The cost function defined in (5.7) is equivalent to
∑t0+T−1

t=t0
Dt0

π(t−1,t)(t), read-

ers are also referred to the per-slot cost defined in (5.1) for comparison. The value

of D̃ (x) or, equivalently, D̃ (y, z) may vary over time due to service arrivals and

unpredictable service instance departures as discussed above.

5.4.2.2 Equivalent Problem Formulation

With the above definitions, the offline service placement problem in (5.3) can be

equivalently formulated as the following, where our goal is to find the optimal con-

figuration for all service instances 1, 2, ...,M (we consider the offline case here

where we know when each instance arrives and no instance will unpredictably leave

after they have been placed):

min
x

D̃ (x) (5.8)

s.t.
∑
λ∈Λi

xiλ = 1,∀i ∈ {1, 2, ...,M}

xiλ ∈ {0, 1},∀i ∈ {1, 2, ...,M},λ ∈ Λi

where Λi ⊆ Λ is a subset of configuration sequences that contains those vectors

whose elements are non-zero starting from the slot at which i arrives and ending at

the slot at which i departs, while all other elements of the vectors are zero.

We now show that (5.8), and thus (5.3), is NP-hard even in the offline case, which

further justifies the need for an approximation algorithm for solving the problem.

Proposition 5.1. (NP-Hardness) The problem in (5.8), and thus (5.3), is NP-hard.

Proof. We show that problem (5.8) can be reduced from the partition problem, which

is known to be NP-complete [55, Corollary 15.28]. The partition problem is defined

as follows.

5.4. Complexity Reduction and Online Service Placement 154

Definition of Partition Problem: Given positive integers v1, v2, ..., vM , is there a

subset S ⊆ {1, 2, ...,M} such that
∑

j∈S vj =
∑

j∈Sc vj , where Sc is the comple-

ment set of S?

Similar to the proof of [55, Theorem 18.1], we define a decision version of the

bin packing problem, where we assume that there are M items each with size

ai ,
2vi∑M
j=1 vj

for all i ∈ {1, 2, ...,M}, and the problem is to determine whether these M items can

be packed into two bins each with unit size (i.e., its size is equal to one). It is obvious

that this bin packing decision problem is equivalent to the partition problem.

To solve the above defined bin packing decision problem, we can set t0 = 1,

T = 1, andN = 2 in (5.8). Because we attempt to place all items, we set Λi = {1, 2}

for all i. By definition, wkl,t(·, ·, ·) = 0 for t = 1. We omit the subscript t in the

following as we only consider a single slot. We define aiλn = ai for all λ, n, and

define

un(y) =

εy, if y ≤ 1

2ε
c

(y − 1) + ε, if y > 1

(5.9)

where c , 1∑M
j=1 vj

, and ε > 0 is an arbitrary constant.

Because vi is a positive integer for any i, we have that ai
c

= 2vi is always a

positive integer, and 1
c

=
∑M

j=1 vj is also always a positive integer. It follows that y

can only be integer multiples of c (where we recall that y is the sum of ai for those

items i that are placed in the bin), and there exists a positive integer c′ ,
∑M

j=1 vj

such that c′c = 1. Thus, when y > 1, we always have y − 1 ≥ c. Therefore,

the choice of un(y) in (5.9) guarantees that un(yn) ≥ 3ε > 2ε whenever bin n

(n ∈ {1, 2}) exceeds its size, and
∑2

n=1 un (yn) ≤ 2ε when no bin has exceeded its

size. At the same time, un(y) satisfies Assumption 5.1 as long as c ≤ 2.

5.4. Complexity Reduction and Online Service Placement 155

By the definition of c, we always have c ≤ 2 because
∑M

j=1 vj ≥ 1. To solve

the bin packing decision problem defined above (thus the partition problem), we

can solve (5.8) with the above definitions. If the solution is not larger than 2ε, the

packing is feasible and the answer to the partition problem is “yes”; otherwise, the

packing is infeasible and the answer to the partition problem is “no”. It follows that

problem (5.8) is “at least as hard as” the partition problem, which proves that (5.8)

is NP-hard.

An online version of problem (5.8) can be constructed by updating Λi over time.

When an arbitrary instance i has not yet arrived, we define Λi as the set containing an

all-zero vector. After instance i arrives, we assume that it will run in the system until

te (defined in Section 5.4.1), and update Λi to conform to the arrival and departure

times of instance i (see above). After instance i departs, Λi can be further updated

so that the configurations corresponding to all remaining slots are zero.

5.4.2.3 Performance Gap

As discussed earlier, Algorithm 5.3 solves (5.8) in a greedy manner, where each

service instance i is placed to greedily minimize the objective function in (5.8). In

the following, we compare the result from Algorithm 5.3 with the true optimal result,

where the optimal result assumes offline placement. We use x and (y, z) to denote

the result from Algorithm 5.3, and use x∗ and (y∗, z∗) to denote the optimal result.

Lemma 5.1. (Convexity of D̃(·)) When Assumption 5.1 is satisfied, the cost function

D̃ (x) or, equivalently, D̃ (y, z) is a non-decreasing convex function w.r.t. x, and it

is also a non-decreasing convex function w.r.t. y and z.

Proof. According to Assumption 5.1, un,t (yn(t)) andwnh,t (yn(t− 1), yh(t), znh(t))

are non-decreasing convex functions. Because yn(t) and znh(t) are linear mappings

of xiλ with non-negative weights for any t, n, and h, and also because the sum

5.4. Complexity Reduction and Online Service Placement 156

of non-decreasing convex functions is still a non-decreasing convex function, the

lemma holds [56, Section 3.2].

In the following, we use ∇x to denote the gradient w.r.t. each element in vector

x, i.e., the (i,λ)th element of∇xD̃(x) is ∂D̃(x)
∂xiλ

. Similarly, we use∇y,z to denote the

gradient w.r.t. each element in vector (y, z), where (y, z) is a vector that concate-

nates vectors y and z.

Proposition 5.2. (Performance Gap) When Assumption 5.1 is satisfied, we have

D̃(x) ≤ D̃(φψx∗) (5.10)

or, equivalently,

D̃ (y, z) ≤ D̃ (φψy∗, φψz∗) (5.11)

where φ and ψ are constants satisfying

φ ≥ ∇y,zD̃ (ymax + aiλ, zmax + biλ) · (aiλ,biλ)

∇y,zD̃ (y, z) · (aiλ,biλ)
(5.12)

ψ ≥ ∇xD̃ (x) · x
D̃(x)

=
∇y,zD̃ (y, z) · (y, z)

D̃ (y, z)
(5.13)

for any i and λ ∈ Λi, in which ymax and zmax respectively denote the maximum values

of y and z (the maximum is taken element-wise) at any time within slots {t0, ..., t0 +

T − 1} until the current time of interest, (aiλ,biλ) is a vector that concatenates aiλ

and biλ, and “·” denotes the dot-product.

Proof. See Appendix C.4.

Remark: We note that according to the definition of M in Section 5.4.2.1, the

bound given in Proposition 5.2 holds at any time of interest within slots {t0, ..., t0 +

T − 1}, i.e., for any number of instances that has arrived to the system, where some

of them may have already departed.

5.4. Complexity Reduction and Online Service Placement 157

5.4.2.4 Intuitive Explanation to the Constants φ and ψ

The constants φ and ψ in Proposition 5.2 are related to “how convex” the cost func-

tion is. Here, we use the second order derivative as a measure of convexity, and we

say that a function is more convex if it has a larger second order derivative. In other

words, they are related to how fast the cost of placing a single instance changes under

different amount of existing resource consumption.

Figure 5.3 shows an illustrative example, where we only consider one cloud

and one timeslot (i.e., t = 1, T = 1, and N = 1). In this case, setting φ =

dD̃
dy

(ymax + amax)
/
dD̃
dy

(y) satisfies (5.12), where amax denotes the maximum resource

consumption of a single instance. Similarly, setting ψ = dD̃
dy

(y) · y
/
D̃(y) satisfies

(5.13). We can see that the values of φ and ψ need to be larger when the cost function

is more convex. For the general case, there is a weighted sum in both the numerator

and denominator in (5.12) and (5.13). However, when we look at a single cloud (for

the local cost) or a single pair of clouds (for the migration cost) in a single timeslot,

the above intuition still applies.

So, why is the optimality gap larger when the cost functions are more convex,

i.e., have a larger second order derivative? We note that in the greedy assignment

procedure in Algorithm 5.3, we choose the configuration of each instance i by mini-

mizing the cost under the system state at the time when instance i arrives, where the

system state represents the local and migration resource consumptions as specified

by vectors y and z. When cost functions are more convex, for an alternative system

state (y′, z′), it is more likely that the placement of instance i (which was determined

at system state (y, z)) becomes far from optimum. This is because if cost functions

are more convex, the cost increase of placing a new instance i (assuming the same

configuration for i) varies more when (y, z) changes. This intuition is also confirmed

by formal results as described next.

5.4. Complexity Reduction and Online Service Placement 158

D(y)

ymax+amaxy

ψdenom

ψnum

φdenom
φnum

~

Figure 5.3: Illustration of the performance gap for t = 1, T = 1, and N = 1,
where amax denotes the maximum resource consumption of a single instance. In this
example, (5.12) becomes φ ≥ φnum

φdenom
, and (5.13) becomes ψ ≥ ψnum

ψdenom
.

5.4.2.5 Performance with Linear Cost Functions

When the cost functions are linear, in the form of

un,t(y) = γn,ty (5.14)

wnh,t (yn, yh, znh) = κ
(1)
nh,tyn + κ

(2)
nh,tyh + κ

(3)
nh,tznh (5.15)

where the constants γn,t ≥ 0 and κ(1)
nh,t, κ

(2)
nh,t, κ

(3)
nh,t ≥ 0, we have the following result.

Proposition 5.3. When the cost functions are defined as in (5.14) and (5.15) while

satisfying Assumption 5.1, Algorithm 5.3 provides the optimal solution.

Proof. We have

∇y,zD̃ (ymax + aiλ, zmax + biλ) = ∇y,zD̃ (y, z)

∇y,zD̃ (y, z) · (y, z) = D̃ (y, z)

because the gradient in this case is a constant. Hence, choosing φ = ψ = 1 satis-

fies (5.12) and (5.13), yielding D̃(x) ≤ D̃(x∗) which means that the solution from

5.4. Complexity Reduction and Online Service Placement 159

Algorithm 5.3 is not worse than the optimal solution.

This implies that the greedy service placement is optimal for linear cost func-

tions, which is intuitive because the previous placements have no impact on the cost

of later placements when the cost function is linear.

5.4.2.6 Performance with Polynomial Cost Functions

Consider polynomial cost functions in the form of

un,t(y) =
∑
ρ

γ
(ρ)
n,ty

ρ (5.16)

wnh,t (yn, yh, znh) =
∑
ρ1

∑
ρ2

∑
ρ3

κ
(ρ1,ρ2,ρ3)
nh,t yρ1n y

ρ2
h z

ρ3
nh (5.17)

where ρ, ρ1, ρ2, ρ3 are integers satisfying ρ ≥ 1, ρ1 + ρ2 + ρ3 ≥ 1 and the constants

γ
(ρ)
n,t ≥ 0, κ(ρ1,ρ2,ρ3)

nh,t ≥ 0.

We first introduce the following assumption which can be satisfied in most prac-

tical systems with an upper bound on resource consumptions and departure rates.

Assumption 5.2. The following is satisfied:

• For all i,λ, n, h, t, there exists a constants amax and bmax, such that

aiλn(t) ≤ amax and biλnh(t) ≤ bmax

• The number of instances that unpredictably leave the system in each slot is

upper bounded by a constant Bd.

Proposition 5.4. Assume that the cost functions are defined as in (5.16) and (5.17)

while satisfying Assumptions 5.1 and 5.2.

Let Ω denote the highest order of the polynomial cost functions. Specifically,

Ω , max{ρ; ρ1 + ρ2 + ρ3}, subject to γ(ρ)
n,t > 0 and κ(ρ1,ρ2,ρ3)

nh,t > 0.

5.4. Complexity Reduction and Online Service Placement 160

Define Γ(I(M)) , D̃(xI(M))
/
D̃(x∗I(M)), where I(M) is a problem input3 con-

taining M instances, and xI(M) and x∗I(M) are respectively the online and offline

(optimal) results for input I(M). We say that Algorithm 5.3 is c-competitive in plac-

ing M instances if Γ , maxI(M) Γ(I(M)) ≤ c for a given M .

We have:

• Algorithm 5.3 is O(1)-competitive.

• In particular, for any δ > 0, there exists a sufficiently large M , such that

Algorithm 5.3 is
(
ΩΩ + δ

)
-competitive.

Proof. See Appendix C.5.

Proposition 5.4 states that the competitive ratio does not indefinitely increase

with increasing number of instances (specified by M). Instead, it approaches a con-

stant value when M becomes large.

When the cost functions are linear as in (5.14) and (5.15), we have Ω = 1. In this

case, Proposition 5.4 gives a competitive ratio upper bound of 1 + δ (for sufficiently

large M) where δ > 0 can be arbitrarily small, while Proposition 5.3 shows that

Algorithm 5.3 is optimal. This means that the competitive ratio upper bound given

in Proposition 5.4 is asymptotically tight as M goes to infinity.

5.4.2.7 Performance with Other Forms of Cost Functions

Algorithm 5.3 is also O(1)-competitive for some more general forms of cost func-

tions. For example, consider a simple case where there is no migration resource

consumption, i.e. biλnh(t) = 0 for all i,λ, n, h. Define un0,t(y) = γy for some cloud

n0 and all t, where γ > 0 is a constant. For all other clouds n 6= n0, define un,t(y)

as a general cost function while satisfying Assumption 5.1 and some additional mild

3A particular problem input specifies the time each instance arrives/departs as well as the values
of aiλ and biλ for each i,λ.

5.5. Optimal Look-Ahead Window Size 161

assumptions presented below. Assume that there exists a constant amax such that

aiλn(t) ≤ amax for all i,λ, n, t.

Because un,t(y) is convex non-decreasing and Algorithm 5.3 operates in a greedy

manner, if dun,t
dy

(y) > γ, no new instance will be placed on cloud n, as it incurs higher

cost than placing it on n0. As a result, the maximum value of yn(t) is bounded, let

us denote this upper bound by ymax
n (t). We note that ymax

n (t) is only dependent on the

cost function definition and is independent of the number of arrived instances.

Assume un,t(ymax
n (t)) < ∞ and dun,t

dy
(ymax
n (t) + amax) < ∞ for all n 6= n0 and

t. When ignoring the cost at cloud n0, the ratio Γ(I(M)) does not indefinitely grow

with incoming instances, because among all yn(t) ∈ [0, ymax
n (t)] for all t and n 6= n0,

we can find φ and ψ that satisfy (5.12) and (5.13), we can also find the competitive

ratio Γ , maxI(M) Γ(I(M)). The resulting Γ is only dependent on the cost function

definition, hence it does not keep increasing with M . Taking into account the cost

at cloud n0, the above result still applies, because the cost at n0 is linear in yn0(t),

so that in either of (5.12), (5.13), or in the expression of Γ(I(M)), the existence

of this linear cost only adds a same quantity (which might be different in different

expressions though) to both the numerator and denominator, which does not increase

Γ (because Γ ≥ 1).

The cloud n0 can be considered as the backend cloud, which usually has abun-

dant resources thus its cost-per-unit-resource often remains unchanged. This exam-

ple can be generalized to cases with non-zero migration resource consumption, and

we will illustrate such an application in the simulations in Section 5.6.

5.5 Optimal Look-Ahead Window Size

In this section, we study how to find the optimal window size T to look-ahead.

When there are no errors in the cost prediction, setting T as large as possible can

5.5. Optimal Look-Ahead Window Size 162

potentially bring the best long-term performance. However, the problem becomes

more complicated when we consider the prediction error, because the farther ahead

we look into the future, the less accurate the prediction becomes. When T is large,

the predicted cost value may be far away from the actual cost, which can cause the

configuration obtained from the predicted cost with size-T windows (denoted by πp)

deviate significantly from the true optimal configuration (obtained from actual costs)

π∗. Note that πp and π∗ specify the configurations for an arbitrarily large number

of timeslots, as in (5.2). Conversely, when T is small, the solution may not perform

well in the long-term, because the look-ahead window is small and the long-term

effect of service placement is not considered. Therefore, we have to find the optimal

value of T which minimizes both the impact of prediction error and the impact of

truncating the look-ahead time-span.

We first define a constant σ, which satisfies

max
π(t−1,t)

Wa(t,π(t− 1),π(t)) ≤ σ (5.18)

for any t, to represent the maximum value of the actual migration cost in any slot,

where Wa(t,π(t − 1),π(t)) denotes the actual migration cost. The value of σ is

system-specific and is related to the cost definition.

To help with our analysis below, we define the sum-error starting from slot t0 up

to slot t0 + T − 1 as

F (T) ,
t0+T−1∑
t=t0

ε(t− t0). (5.19)

Because ε(t − t0) ≥ 0 and ε(t − t0) is non-decreasing with t, it is obvious that

F (T +2)−F (T +1) ≥ F (T +1)−F (T). Hence, F (T) is a convex non-decreasing

function for T ≥ 0, where we define F (0) = 0.

5.5. Optimal Look-Ahead Window Size 163

5.5.1 Upper Bound on Cost Difference

In the following, we focus on the objective function given in (5.2), and study how

worse the configuration πp can perform, compared to the optimal configuration π∗.

Proposition 5.5. For look-ahead window size T , suppose that we can solve (5.3)

with competitive ratio Γ ≥ 1, the upper bound on the cost difference (while taking

the competitive ratio Γ into account) from placement sequences πp and π∗ is given

by

lim
Tmax→∞

(∑Tmax
t=1 Aπp(t)

Tmax
−Γ

∑Tmax
t=1 Aπ∗(t)

Tmax

)
≤ (Γ+1)F (T)+σ

T
. (5.20)

Proof. Define Tmax > 1 as an arbitrarily large timeslot index. We note that there are⌊
Tmax
T

⌋
full look-ahead windows of size T within timeslots from 1 to Tmax, where bxc

denotes the integral part of x. In the last window, there are Tmax − T ·
⌊
Tmax
T

⌋
slots.

We have

F

(
Tmax − T ·

⌊
Tmax

T

⌋)
≤
Tmax − T ·

⌊
Tmax
T

⌋
T

F (T) (5.21)

because F (T) is convex non-decreasing and F (0) = 0.

For the true optimal configuration π∗, according to the definitions of ε(τ) and

F (T), the difference in the predicted and actual sum-costs satisfies

Tmax∑
t=1

Dπ∗(t)−
Tmax∑
t=1

Aπ∗(t)

≤
⌊
Tmax

T

⌋
F (T) + F

(
Tmax − T ·

⌊
Tmax

T

⌋)
≤ Tmax

T
F (T) (5.22)

where the last inequality follows from (5.21). Similarly, for the configuration πp

obtained from predicted costs, we have

Tmax∑
t=1

Aπp(t)−
Tmax∑
t=1

Dπp(t) ≤
Tmax

T
F (T). (5.23)

5.5. Optimal Look-Ahead Window Size 164

In the following, we establish the relationship between π∗ and πp. Assume that,

in (5.3), we neglect the migration cost at the beginning of each look-ahead window,

i.e. we consider each window independently and there is no migration cost in the

first timeslot of each window, then we have

Tmax∑
t=1

Dπp(t) ≤ Γ
Tmax∑
t=1

Dπ∗(t)

where the constant Γ ≥ 1 is the competitive ratio of solving (5.3). This holds be-

cause there is no connection between different windows, thus the optimal sequences

(considering predicted costs) obtained from (5.3) constitute the optimal sequence up

to a factor Γ for all timeslots [1, Tmax]. Now we relax the assumption and consider the

existence of migration cost in the first slot of each window. Note that we cannot have

more than
⌊
Tmax
T

⌋
+ 1 windows and the first timeslot t = 1 does not have migration

cost. Thus,
Tmax∑
t=1

Dπp(t) ≤ Γ
Tmax∑
t=1

Dπ∗(t) +
Tmax

T
σ. (5.24)

The bound holds because regardless of the configuration in slot t0− 1, the migration

cost in slot t0 cannot exceed σ.

By multiplying Γ on both sides of (5.22) and summing up the result with (5.24),

we get
Tmax∑
t=1

Dπp(t)− Γ
Tmax∑
t=1

Aπ∗(t) ≤
Tmax

T
(ΓF (T) + σ) . (5.25)

Summing up (5.23) with (5.25), dividing both sides by Tmax, and taking the limit on

both sides yields the proposition.

We assume in the following that the competitive ratio Γ is independent of the

choice of T , and regard it as a given parameter in the problem of finding optimal T .

This assumption is justified because the performance gap results in Propositions 5.2,

5.3, and 5.4 are not related to the window size T . We define the optimal look-ahead

5.5. Optimal Look-Ahead Window Size 165

window size as the solution to the following optimization problem:

min
T

(Γ + 1)F (T) + σ

T
(5.26)

s.t. T ≥ 1.

Considering the original objective in (5.2), the problem (5.26) can be regarded as

finding the optimal look-ahead window size such that an upper bound of the objective

function in (5.2) is minimized (according to Proposition 5.5). The solution to (5.26)

is the optimal window size to look-ahead so that (in the worst case) the cost is closest

to the cost from the optimal configuration π∗.

5.5.2 Characteristics of the Problem in (5.26)

In the following, we study the characteristics of (5.26). To help with the analysis, we

interchangeably use variable T to represent either a discrete or a continuous variable.

We define a continuous convex functionG(T), where T ≥ 1 is a continuous variable.

The function G(T) is defined in such a way that G(T) = F (T) for all the discrete

values T ∈ {1, 2, ...}, i.e. G(T) is a continuous time extension of F (T). Such a

definition is always possible by connecting the discrete points in F (T). Note that

we do not assume the continuity of the derivatives of G(T), which means that dG(T)
dT

may be non-continuous and d2G(T)
dT 2 may be +∞. However, these do not affect our

analysis below. We will work with continuous values of T in some parts and will

discretize it when appropriate.

We define a function θ(T) , (Γ+1)G(T)+σ
T

to represent the objective function in

(5.26) after replacing F (T) withG(T), where T is regarded as a continuous variable.

We take the logarithm of θ(T), yielding

ln θ = ln ((Γ + 1)G(T) + σ)− lnT. (5.27)

5.5. Optimal Look-Ahead Window Size 166

Taking the derivative of ln θ, we have

d ln θ

dT
=

(Γ + 1)dG(T)
dT

(Γ + 1)G(T) + σ
− 1

T
. (5.28)

We set (5.28) equal to zero, and rearrange the equation, yielding

Φ(T) , (Γ + 1)T
dG(T)

dT
− (Γ + 1)G(T)− σ = 0. (5.29)

Proposition 5.6. Let T0 denote a solution to (5.29), if the solution exists, then the

optimal look-ahead window size T ∗ for problem (5.26) is either bT0c or dT0e, where

bxc and dxe respectively denote the floor (rounding down to integer) and ceiling

(rounding up to integer) of x .

Proof. Taking the derivative of Φ(T), we get

dΦ

dT
= (Γ + 1)T

d2G(T)

dT 2
≥ 0 (5.30)

where the last inequality is because G(T) is convex. This implies that Φ(T) is non-

decreasing with T . Hence, there is at most one consecutive interval of T (the interval

may only contain one value) such that (5.29) is satisfied. We denote this interval by

[T−, T+], and a specific solution to (5.29) is T0 ∈ [T−, T+].

We note that d ln θ
dT

and Φ(T) have the same sign, because d ln θ
dT

≶ 0 yields Φ(T) ≶

0 and vice versa, which can be seen from (5.28) and (5.29). When T < T−, we

have Φ(T) < 0 and hence d ln θ
dT

< 0; when T > T+, we have Φ(T) > 0 and

hence d ln θ
dT

> 0. This implies that ln θ, thus θ(T), keeps decreasing with T until the

optimal solution is reached, and afterwards it keeps increasing with T . It follows

that the minimum value of θ(T) is attained at T ∈ [T−, T+]. Because T0 ∈ [T−, T+]

and T ∗ is a discrete variable, we complete the proof.

Note that we do not consider the convexity of θ(T) in the above analysis. From

5.5. Optimal Look-Ahead Window Size 167

the proof of Proposition 5.6, we can also conclude the following corollary.

Corollary 5.1. For window sizes T and T + 1, if θ(T) < θ(T + 1), then the optimal

size T ∗ ≤ T ; if θ(T) > θ(T + 1), then T ∗ ≥ T + 1; if θ(T) = θ(T + 1), then

T ∗ = T .

5.5.3 Finding the Optimal Solution

According to Proposition 5.6, we can solve (5.29) to find the optimal look-ahead

window size. When G(T) (and F (T)) can be expressed in some specific analyti-

cal forms, the solution to (5.29) can be found analytically. For example, consider

G(T) = F (T) = βTα, where β > 0 and α > 1. In this case, T0 =
(

σ
(Γ+1)β(α−1)

) 1
α

,

and T ∗ = arg minT∈{bT0c,dT0e} θ (T). One can also use such specific forms as an

upper bound for a general function.

When G(T) (and F (T)) have more general forms, we can perform a search on

the optimal window size according to the properties discussed in Section 5.5.2. Be-

cause we do not know the convexity of θ(T) or Φ(T), standard numerical methods

for solving (5.26) or (5.29) may not be efficient. However, from Corollary 5.1, we

know that the local minimum point of θ(T) is the global minimum point, so we can

develop algorithms that use this property.

Because the optimal window size T ∗ takes discrete values, we can perform a

discrete search on T ∈ {1, 2, ..., Tm}, where Tm > 1 is a pre-specified upper limit

on the search range. We then compare θ(T) with θ(T +1) and determine the optimal

solution according to Corollary 5.1. One possible approach is to use binary search,

as shown in Algorithm 5.4, which has time-complexity of O (log Tm).

Remark: We note that the exact value of Γ may be difficult to find in practice,

and (5.20) is an upper bound which may have a gap from the actual value of the left

hand-side of (5.20). Therefore, in practice, we can regard Γ as a tuning parameter,

which can be tuned so that the resulting window size T ∗ yields good performance.

5.6. Simulation Results 168

Algorithm 5.4 Binary search for finding optimal window size
1: Initialize variables T− ← 1 and T+ ← Tm
2: repeat
3: T ← b(T− + T+) /2c
4: if θ(T) < θ(T + 1) then
5: T+ ← T
6: else if θ(T) > θ(T + 1) then
7: T− ← T + 1
8: else if θ(T) = θ(T + 1) then
9: return T //Optimum found

10: end if
11: until T− = T+

12: return T−

For a similar reason, the parameter σ can also be regarded as a tuning parameter in

practice.

5.6 Simulation Results

In this section, we evaluate the performance of the proposed approach with simu-

lations. We assume that there exist a backend cloud (with index n0) and multiple

MMCs. A service instance can be placed either on one of the MMCs or on the

backend cloud. We first define

R(y) ,

1

1− y
Y
, if y < Y

+∞, if y ≥ Y

(5.31)

where Y denotes the capacity of a single MMC. Then, we define the local and mi-

gration costs as in (5.5), (5.6), with

un,t(yn(t)) ,

g̃yn(t), if n = n0

yn(t)R(yn(t)) + grn(t), if n 6= n0

(5.32)

5.6. Simulation Results 169

wnh,t(yn(t− 1), yh(t), znh(t))

,

h̃znh(t), if n = n0 or/and h = n0

znh(t) (R(yn(t)) +R(yh(t))) + hsnh(t), else
(5.33)

where yn(t) and znh(t) are defined in the same way as in Section 5.4.2.1, rn(t) is

the sum of the communication distances between each instance running on cloud n

all users connected to this instance, snh(t) is the communication distance between

clouds n and hmultiplied by the number migrated instances from cloud n to cloud h,

and g̃, g, h̃, h are simulation parameters. The communication distance is expressed

in the number of hops on the communication network.

In the cost functions defined in (5.32) and (5.33), as in Section 5.4.2.7 (but with

migration cost here), the local and migration costs involving the backend cloud n0

are linear in the corresponding resource consumptions yn(t) and znh(t). When not

involving the backend cloud, the cost functions have two terms. The first term

containing R(·) can be explained as related to the queuing delay of data process-

ing/transmission, where we note that the function R(·) has a similar form as the

average queueing delay expression from queueing theory, and the additional coef-

ficient yn(t) or znh(t) scales the delay by the total amount of workload so that the

experience of all service instances (hosted at the cloud or being migrated) are consid-

ered. This expression is also a widely used objective (such as in [17]) which pushes

the system towards a load-balanced state. The second term is related to the distance

of data transmission or migration.

Note that the above defined cost functions are heterogeneous, because the cost

definitions are different depending on whether the backend cloud is involved or not.

Therefore, we cannot directly apply the existing MDP-based approaches to solve this

problem.

5.6. Simulation Results 170

5.6.1 Synthetic Arrivals and Departures

To evaluate how much worse the online placement (presented in Section 5.4) per-

forms compared to the optimal offline placement (presented in Section 5.3), we first

consider a setting with synthetic instance arrivals and departures. For simplicity, we

ignore the migration cost and set g = 0 to make the local cost independent of the

distance rn(t). We set Y = 5, g̃ = 3, and the total number of clouds N = 5 among

which one is the backend cloud. We simulate 4000 arrivals, where the local resource

consumption of each arrival is uniformly distributed within interval [0.5, 1.5]. Before

a new instance arrives, we generate a random variable ζ that is uniformly distributed

within [0, 1]. If ζ < 0.1, one randomly selected instance that is currently running in

the system (if any) departs. We only focus on the cost in a single timeslot and as-

sume that arrival and departure events happen within this slot. The online placement

greedily places each instance, while the offline placement considers all instances as

an entirety. We compare the cost of the proposed online placement algorithm with

a lower bound on the cost of the optimal placement. The optimal lower bound is

obtained by solving an optimization problem that allows every instance to be arbi-

trarily split across multiple clouds, in which case the problem becomes a convex

optimization problem due to the relaxation of integer constraints.

The simulation is run with 100 different random seeds. Fig. 5.4 shows the over-

all results. We see that the cost is convex increasing when the number of arrived

instances is small, and it increases linearly when the number of instances becomes

large, because in the latter case, the MMCs are close to being overloaded and most

instances are placed at the backend cloud. In Fig. 5.4(b), we show the average per-

formance ratio, defined as

Γavg ,
mean

(
D̃(x)

)
mean

(
D̃(x∗)

) (5.34)

5.6. Simulation Results 171

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

Number of arrived instances

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Proposed
Optimal lower bound

0 10 20
0

5

10

15

(a)

0 1000 2000 3000 4000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Number of arrived instances

U
pp

er
 b

ou
nd

 o
f a

vg
. p

er
f.

ra
tio

(b)

Figure 5.4: Results with synthetic traces: (a) objective function value, (b) average
performance ratio.

which is an analogy for the competitive ratio. The difference is that the average

performance ratio quantifies the performance gap in an average sense, while com-

petitive ratio quantifies the worst-case performance gap. Because we cannot find

the real worst case from a limited number of simulation instances, we plot the av-

erage performance here. We see that the average performance ratio converges with

increasing number of instances, which supports our analysis in Section 5.4.2.7.

5.6.2 Real-World Traces

To further evaluate the performance while considering the impact of prediction errors

and look-ahead window size, we perform simulations using real-world San Francisco

taxi traces obtained on May 31, 2008 [45, 46]. We assume that the MMCs are

deployed according to a hexagonal cellular structure, and the distance between the

center points of adjacent cells is 1000 m. We consider N − 1 = 91 cells (thus

MMCs), one backend cloud, and 50 users (taxis) in total and not all the users are

active (which can be derived from the dataset) at a given time. A user may require at

most one service at a time from the cloud when it is active, where the duration that

5.6. Simulation Results 172

each active user requires (or, does not require) service is exponentially distributed

with a mean value of 50 slots (or, 10 slots). When a user requires service, we assume

that there is a service instance for this particular request (independent from other

users) running on one of the clouds. The local and migration (if migration occurs)

resource consumptions of each such instance are set to 1. We assume that the online

algorithm has no knowledge on the departure time of instances and set Tlife = ∞

for all instances. Note that the taxi locations in the dataset are unevenly distributed,

with most taxis in the central area of San Francisco, so it is still possible that one

MMC hosts multiple services although the maximum possible number of instances

(50) is smaller than the number of MMCs (91). The distance metric (for evaluating

rn(t) and snh(t)) is defined as the minimum number of hops between two locations

on the cellular structure. The physical time corresponding to each slot is set to 60 s.

We set the parameters Γ = 1.5, σ = 2, Y = 5, g̃ = h̃ = 3, g = h = 0.2. The cost

prediction error is assumed to have an upper bound in the form of F (T) = βTα (see

Section 5.5.3), where we fix α = 1.1. The prediction error is generated randomly

while ensuring that the upper bound is satisfied. The simulation results are shown in

Fig. 5.5.

In Fig. 5.5(a), we can see that the result of the proposed online placement ap-

proach (E) performs close to the case of online placement with precise future knowl-

edge (D), where approach D assumes that all the future costs as well as instance

arrival and departure times are precisely known, but we still use the online algo-

rithm to determine the placement (i.e., we greedily place each instance), because the

offline algorithm is too time consuming due to its high complexity. The proposed

method E also outperforms alternative methods including only placing on MMCs

and never migrate the service instance after initialization (A), always following the

user when the user moves to a different cell (B), as well as always placing the service

instance on the backend cloud (C). In approaches A and B, the instance placement is

5.6. Simulation Results 173

00:00 06:00 12:00 18:00 00:00
0

20

40

60

80

100

120

140

160

180

200

Time

A
ct

ua
l c

os
t

Only MMC, never migrate (A)
Only MMC, always migrate (B)
Only centralized cloud (C)
Precise future knowledge (D)
Proposed (E)
(Average values)

(A) (B) (C)

(E)(D)

(a)

0 20 40 60 80 100
41

42

43

44

45

46

47

48

49

50

51

Look−ahead window size T

A
ct

ua
l c

os
t

Proposed (E), β=0.2

Proposed (E), β=0.4

Proposed (E), β=0.6

Proposed (E), β=0.8

Proposed (E), β=1.0

Precise (D)

T*

T*

T*

T* T*

(b)

Figure 5.5: Results with real-world traces (where the costs are summed over all
clouds, i.e., the A(t) values): (a) Actual costs at different time of a day, where β =
0.4 for the proposed method E. The arrows point to the average values over the whole
day of the corresponding policy. (b) Actual costs averaged over the whole day.

determined greedily so that the distance between the instance and its corresponding

user is the shortest, subject to the MMC capacity constraint Y so that the costs are

finite (see (5.31)). The fluctuation of the cost during the day is because of different

number of users that require the service (thus different system load).

In Fig. 5.5(b), we show the average cost over the day with different look-ahead

window sizes and β values, where the average results from 8 different random seeds

are shown. Recall that β quantifies the prediction error upper bound, and a large β

indicates a large prediction error. The main observation from Fig. 5.5(b) is that for

each value of β we consider in the simulation, the optimal window size (T ∗, pointed

by arrows in the figure) found from the method proposed in Section 5.5 is close to the

actual optimal window size that brings the lowest cost (which can be seen in the cost

plot for the particular value of β). This implies that the proposed method for finding

T ∗ is reasonably accurate. We also see that different β values yield different optimal

window sizes; the optimal window size is small when β is large. This is because a

5.7. Summary 174

larger β corresponds to a larger prediction error. When the prediction error is large,

the algorithm should not look too far ahead into the future, to avoid bringing in a

large error which would bias the optimal placement decision in both short and long

term.

5.7 Summary

In this chapter, we have studied the dynamic service placement problem utilizing

predicted future costs. Noting that the actual future costs cannot be obtained pre-

cisely, we have proposed a method that utilizes predicted future costs with a known

upper bound on the prediction error to make placement decisions that are close to

the true optimum. The method includes finding the optimal window size to look

ahead as well as finding the optimal configuration within each look-ahead window.

For the latter aspect, we have considered both the optimal offline placement and an

approximate online placement with provable performance guarantee.

CHAPTER 6

Emulation-Based Study

6.1 Introduction

Summing up all the previous chapters, we have proposed algorithms for both initial

service placement and real-time service migration (see Section 1.1 for an overview

on these two subproblems). The analysis started from a theoretical perspective, with

practical considerations discussed subsequently in some chapters. The performances

of algorithms have also been evaluated using real-world user mobility traces in Chap-

ters 4 and 5. These contributions and discussions are from both theoretical and prac-

tical perspectives, which justify the reasoning of algorithm design, performances of

proposed algorithms, and practical applicability of the algorithms.

In this chapter, we aim to further push the theoretical results one step closer to

practice. We present a framework for conducting experiments in an emulated cloud

environment that contains one centralized core cloud and multiple MMCs, which

jointly cover an area that contains multiple mobile users. The emulation is performed

using the Common Open Research Emulator (CORE) [57, 58] which embeds the

Extendable Mobile Ad-hoc Network Emulator (EMANE) [59]. In CORE/EMANE,

each network (physical) node is encapsulated into a virtual container which can run

a piece of code independent of other nodes. These network (physical) nodes are then

connected via emulated network (physical) links for which the quality may vary over

time and may be related to the location of nodes (for wireless links). Implementing

algorithms in CORE enables more realistic experimentation compared to simulation,

6.1. Introduction 176

thus providing insight into what behavior or performance we can expected when

implementing these algorithms in real systems.

The emulation-based study we consider in this chapter has the following key

differences from the theoretical work in previous chapters:

1. In the emulation, the parameters related to the transmission and migration

costs are estimated based on real-time network measurements, which can be

subject to fluctuations and inaccuracies.

2. A fully distributed system is considered in the emulation. No node (i.e., core

cloud, MMC, or user) in the network has full control over other nodes. They

can only communicate with each other by exchanging control messages over

the communication network.

3. The emulation considers realistic communication links that may experience

loss and delay as a result of congestion and/or physical layer effects. Control

messages may also be delayed or lost.

The ultimate goal of emulation study is to evaluate the theoretical findings (such

as those presented in previous chapters) in realistic settings where some assumptions

made for theoretical tractability may not hold. However, non-trivial effort is needed

to achieve this ultimate goal, because we need to properly translate the theoretical

setting into a practical setting. For example, we have to collect all the information

an algorithm needs for decision making, which by itself requires notable implemen-

tation effort because the transmission cost, for example, can be related to the users’

associated basestations, signal strength of wireless channels, topology of backhaul

network, etc. In a practical emulation environment such as CORE/EMANE, devel-

oping a program for obtaining all such information is not straightforward but doable

if sufficient time is allowed. For simplicity, we propose an initial emulation frame-

work in this chapter, and perform emulation with some simple service migration

6.2. System Architecture 177

Figure 6.1: System architecture for CORE emulation.

algorithms. This sets the foundation of emulating more sophisticated algorithms

with realistic applications in the future.

6.2 System Architecture

In the CORE emulation, we abstract the application scenario depicted in Fig. 1.1 into

the system architecture shown in Fig. 6.1. In Fig. 6.1, node n1 is the core centralized

cloud; nodes n2, n3, and n4 are MMCs; and nodes n5 and n6 are users. Note that

this is only an example and the number of MMCs and users can be arbitrary in the

emulation.

6.2.1 Network Connection and User Mobility

The core cloud is connected with each MMC via a persistent link configured with a

relative low bandwidth and a relatively large delay.

Each MMC and each user has a wireless interface, which has an IP address

of 20.0.0.x and is configured by the configuration node wlan7 in Fig. 6.1.

Throughout the emulation, we use a fixed range radio propagation model. A pair

of nodes within the specified range can communicate with each other, and they can-

6.2. System Architecture 178

not communicate if they are outside the specified range, where a node can be either

a user or an MMC. More realistic propagation models can be considered in the fu-

ture using functionalities of EMANE. The OSPF-MDR routing protocol [60] is used

for routing among the wireless nodes. A pair of nodes may communicate either in

single-hop or multi-hop depending on their distance.

We consider in the emulation the case where MMCs are static and users are mo-

bile. This is only to ease the emulation setup, and the same design principle can be

applied to scenarios where MMCs are also mobile. We employ the EMANE event

service to use existing traces to govern the mobility of users. The mobility is de-

scribed by an Emulation Event Log (EEL) file. To receive messages from EMANE,

each user has an additional wireless interface with an IP address of 30.0.0.x,

which is configured by the configuration node wlan8. This interface is used only

for communicating with EMANE (which is executed outside the emulator in the

emulator’s host machine) so that the user locations remain updated in real time ac-

cording to the trace file. It does not participate in any actual communication in the

emulated network.

With the above setting, the core cloud, MMCs, and users can communicate with

each other. The wireless connections are also updated in real-time based on locations

of users. Users do not have a direct connection with the core cloud, but they can

connect to the core via an MMC.

6.2.2 Service Model

We consider a relatively simple service model as presented next, while noting that

more sophisticated cases can be built based on the emulation framework we present

here.

We assume that each user is running one (independent) service instance in the

cloud, and the terms “service” and “service instance” are exchangeably used. Ser-

6.2. System Architecture 179

vice components can only be placed on MMCs and no service component is placed

on the core cloud. This simplifies the control procedure of service placement, while

more sophisticated cases involving the core cloud can be considered in the future

by extending the current framework. For now, the role of the core cloud is to act as

a controller for service placement, which is a relatively robust setup for a central-

ized control approach because the system can still work even if some MMCs fail to

function.

We consider a delay-sensitive situational awareness application, such as the face

recognition application introduced in Section 1.1. In such applications, each user

regularly sends data (e.g., images as in the face recognition application) describing

its current surrounding to the MMC that is hosting its service. The MMC analyzes

user data1 to extract user situation (e.g., detecting and tagging objects and faces in

images) and sends the results back to the user, also in a regular manner. We abstract

this process as UDP packet transfer between the user and the MMC, and we name

these packets as service packets to distinguish them from control packets introduced

later. The service packet transmission is initiated by the MMC. The MMC sends

a MMC_SERVICE_PACKET to each user (for which it is hosting a service) at a

pre-specified interval. After receiving this packet, the user responds with its own

USER_SERVICE_PACKET that contains newly measured data to the MMC.

The performance metric of the service is the round-trip delay of transmitting ser-

vice packets from the MMC to the user and then back to the MMC. This mimics

situational awareness applications that need to collect user data as quickly as pos-

sible so that rapid decisions can be made. This round-trip delay can be seen as the

transmission cost between the user and the MMC.

1Note that this is a simplified version of the face recognition example presented in Section 1.1. We
assume here that the face recognition module and the database are also placed on the MMC, which
can be a feasible configuration when the database is not too large. This is a simplification and more
general cases can be considered in the future.

6.3. Packet Exchange and Placement Control 180

For simplicity, in the emulation framework proposed in this chapter, we assume

that each MMC can host any number of services. In more realistic scenarios, differ-

ent services may consume different amount of resources of the hosting MMC, and

the number of services that a MMC can host will be subject to its capacity limit.

We envision that algorithms presented in previous chapters can be used for making

placement decisions in such capacity-limiting scenarios. Most of these algorithms

either explicitly or implicitly incorporate capacity constraints, and are able to avoid

placing new services on MMCs that result in violation of the capacity constraints.

We also assume that service migration can be completed instantaneously, and

leave the more realistic case where there is a cost (such as interruption of service,

bandwidth consumption for transferring application data) associated with migration

as future work. As an indicator of the migration cost, we record the number of migra-

tions in the emulation results in Section 6.4. We also note that for real applications,

the migration cost can be related to the state of the application at the time when

migration is performed. While the algorithms presented in previous chapters have

considered the migration cost, they have not considered the application state which

could impact the migration cost. This aspect is worth studying in the future. The em-

ulation framework we present in this chapter can be an essential tool for such a study,

because we can run real applications on our emulated MMC platform, which would

be very helpful for studying the interplay between application state and migration

cost.

6.3 Packet Exchange and Placement Control

6.3.1 Control Messages

Control messages need to be exchanged for performance measurement and control-

ling the placement of services. All messages are sent in UDP packets. The different

6.3. Packet Exchange and Placement Control 181

types of messages are described as follows.

6.3.1.1 Beacon Messages from Core Cloud

At a pre-specified interval, the centralized core cloud sends out a beacon message

CORE_BEACON_MMC to each MMC, and it also sends out a beacon message

CORE_BEACON_USER to each user. This is to notify MMCs and users of some

status information, including the set of users each MMC should currently serve, the

set of users each MMC should probe for delay measurement, etc. Before sending

these beacon messages, the core cloud makes decisions such as where to place the

service for each user.

6.3.1.2 Connection Request

In order for the core cloud to know which MMCs and users are currently

present in the system, each MMC sends MMC_CONNECT and each user sends

USER_CONNECT at a pre-specified interval.

6.3.1.3 Delay Probing

Probing for delay measurement is initiated by each MMC at a pre-specified in-

terval. Every MMC probes a set of users as instructed by the core cloud. This

set of users should be within a specific proximity of the MMC, so that the MMC

is potentially suitable of running services for these users. An MMC first sends

MMC_DELAY_PROBE to all the users it intends to probe. Upon receiving this mes-

sage, each user immediately replies with a USER_DELAY_PROBE to the MMC that

sent this message. The MMC calculates the round-trip delay for the particular user

and sends the result to the core cloud with an MMC_USER_DELAY_MEASURED

message. After the core cloud has received this delay information, it stores it in a list

so that it can be used for making service placement decisions before sending beacon

6.3. Packet Exchange and Placement Control 182

Algorithm 6.1 Procedure at the core cloud
1: loop
2: if timer t(CORE_BEACON_MMC) expired then
3: Update beacon information, such as the placement of services for all users

(obtained based on the recorded delay measurements)
4: Send CORE_BEACON_MMC to each MMC
5: Reset timer t(CORE_BEACON_MMC)
6: end if
7: if timer t(CORE_BEACON_USER) expired then
8: Update beacon information
9: Send CORE_BEACON_USER to each user

10: Reset timer t(CORE_BEACON_USER)
11: end if
12: if received MMC_USER_DELAY_MEASURED then
13: Update the recorded delay statistics
14: end if
15: if received MMC_CONNECT or USER_CONNECT then
16: Update the MMC or user record
17: end if
18: end loop

messages.

We note that one may think of using service packets for delay measurement.

However, service packets are only transmitted between a user and the particular

MMC that is hosting its service, and the delay of transmitting packets between the

user and other MMCs cannot be obtained from service packets. Therefore, we in-

troduce additional packets for delay probing, which is usually substantially shorter

than service packets.

6.3.2 Packet Exchange and Control Procedure

The detailed procedures that are executed at the core cloud, MMC, and user are

respectively shown in Algorithms 6.1, 6.2, and 6.3, where we use the notation t(A)

to denote the timer for packet A, the packet A is sent when t(A) expires.

6.3. Packet Exchange and Placement Control 183

Algorithm 6.2 Procedure at each MMC
1: loop
2: if timer t(MMC_CONNECT) expired then
3: Send MMC_CONNECT to the core cloud
4: Reset timer t(MMC_CONNECT)
5: end if
6: if timer t(MMC_DELAY_PROBE) expired then
7: Send MMC_DELAY_PROBE to each user it intends to probe
8: Reset timer t(MMC_DELAY_PROBE)
9: end if

10: if timer t(MMC_SERVICE_PACKET) expired then
11: Send MMC_SERVICE_PACKET to each user it is serving
12: Reset timer t(MMC_SERVICE_PACKET)
13: end if
14: if received USER_DELAY_PROBE then
15: Calculate the round-trip delay and send the result via

MMC_USER_DELAY_MEASURED to the core cloud
16: end if
17: end loop

Algorithm 6.3 Procedure at each user
1: loop
2: if timer t(USER_CONNECT) expired then
3: Send USER_CONNECT to the core cloud
4: Reset timer t(USER_CONNECT)
5: end if
6: if received t(MMC_DELAY_PROBE) then
7: Send USER_DELAY_PROBE to the originating MMC
8: end if
9: if received t(MMC_SERVICE_PACKET) then

10: Send USER_SERVICE_PACKET to the originating MMC
11: end if
12: end loop

6.3.3 Service Placement Decisions

In the emulation, we consider three different policies for deciding the service place-

ment. These are described as follows.

6.3. Packet Exchange and Placement Control 184

6.3.3.1 Always Migrate (AM)

In the AM policy, the core cloud always looks at its most recently received delay

measurements, and places the service for each user to the MMC that has the lowest

delay as measured by the latest probe. This policy puts strong emphasis on mini-

mizing the transmission cost (round-trip delay), and does not consider the migration

cost (number of migrations).

6.3.3.2 Infrequently Migrate (IM)

The IM policy is similar to the AM policy, except that migration can only occur at an

interval denoted by τ . The value of τ is normally large compared to the delay probing

interval, so that migration happens infrequently. The initial placement of services is

not restricted by τ , which means that if a user is not served by any cloud previously,

its service can be placed immediately after the core cloud (controller) recognizes

that it has established connection with an MMC. The IM policy attempts to bound

the migration cost, while the transmission cost may be large because services may

not be migrated soon enough after the transmission delay has changed. The IM

policy mimics the never migrate policy used for comparison in previous chapters.

We use IM instead of never migrate here to avoid the system being trapped in the

initial state.

6.3.3.3 Moving Average + Hysteresis (MAH)

The MAH policy does not use the instantaneous delay measurement for service

placement and migration decisions. Instead, it uses an exponentially-weighted mov-

ing averaged delay for decision making. For each MMC i and user j, the moving

average is performed according to

Dij(m) = αDij(m− 1) + (1− α)dij(m) (6.1)

6.4. Emulation Scenario and Results 185

where dij(m) is the mth round-trip delay for MMC-user pair (i, j) that has been

received by the core cloud, Dij(m) is the delay used for decision making after re-

ceiving the mth and before receiving the (m + 1)th measurement, 0 ≤ α ≤ 1 is a

controllable parameter for moving average computation.

The MAH policy also has a hysteresis delay value ε ≥ 0. If the service for user j

is previously running at MMC i, a migration to MMC i′ only occurs whenDi′j(m) <

Dij(m)− ε. This prevents frequent migration between different MMCs.

We can see that the MAH policy can be configured to achieve various trade-

offs between the transmission and migration costs by tuning the values of α and ε.

It is used here as an alternative representative of the theoretical results in previous

chapters, which jointly consider the transmission and migration costs. The MAH

policy is simpler than the algorithms in previous chapters, but also less robust due to

the existence of parameters α and ε that are subject to tuning. We also note that the

AM policy is a special case of the MAH policy under α = ε = 0.

6.4 Emulation Scenario and Results

We created an emulation scenario that consists of 20 users and 16 MMCs distributed

in the San Francisco area, as shown in Fig. 6.2. We assume that the MMCs are

static. The user mobility is generated using the San Francisco taxi dataset [45, 46]

that has also been used in earlier chapters. To reduce the required emulation time

and see the impact of user mobility, we compressed the timescale by a factor of 6, so

that 6 seconds in the original trace is one second in the emulation. We note that the

San Francisco taxi traces is only one representative of a real-world mobility pattern,

which is the mobility of vehicles moving in a city area. Some other mobility patterns

that can be helpful for evaluating the performance of MMCs include vehicles moving

on highways, pedestrians moving in cities, etc. It can be worthwhile to carry out an

6.4. Emulation Scenario and Results 186

Figure 6.2: Emulation scenario (source of map: https://maps.google.com/).

in-depth study using different mobility patterns in the future.

We ran the emulation for 15, 000 seconds, in which we applied either

the AM, IM, or MAH policy for service placement. The interval of sending

CORE_BEACON_MMC, CORE_BEACON_USER, and MMC_DELAY_PROBE is

specified by parameter T which take different values in the emulation. The value of

T specifies the interval of delay probing and service placement update. Other

parameter settings in the emulation are summarized in Table 6.1.

We first set T = 2 s and focus on the instantaneous results in the first 3, 000

seconds of emulation. The instantaneous round-trip delay of service packets under

different policies is shown in Fig. 6.3, where the results for service packets corre-

sponding to different MMC-user pairs are merged into the same timeline and plotted

in one graph. We can see that there are many spikes in the figure, which indicates that

the delay exhibits large variation. Reasons for this include variation in network traf-

fic, diversity of user and service locations, as well as the change of user and service

locations over time. The last reason is obvious from Fig. 6.3(b), where the delay has

6.4. Emulation Scenario and Results 187

Table 6.1: Emulation setup
Parameter name Value
Wireless communication bandwidth 10 Mbps
One-hop wireless communication range 6, 000 m
One-hop wireless communication delay 20 ms
Bandwidth of link connecting MMC and core cloud 10 Mbps
Delay of link connecting MMC and core cloud 500 ms
Size of MMC_SERVICE_PACKET 1, 000 Bytes
Size of USER_SERVICE_PACKET 50, 000 Bytes
Interval of sending MMC_SERVICE_PACKET 2 s
Interval of sending MMC_CONNECT 10 s
Interval of sending CORE_BEACON_MMC,
CORE_BEACON_USER, and MMC_DELAY_PROBE

T (variable)

Parameter τ in IM policy 100 s
Parameter α in MAH policy 0.5

Parameter ε in MAH policy 10 ms

a block pattern because the IM policy only migrates (and thereby changing service

locations) once in 100 seconds.

To obtain a more comprehensible set of results, we perform cumulative moving

average with a window size of 50 s on the instantaneously measured data. At each

time instant (in the resolution of one second), we look back to the past 50 s (or up

to the emulation start time, whichever is later) and plot the average result within this

window. The moving averaged delay is shown in Fig. 6.4(a), and Fig. 6.4(b) shows

the average number of service migrations within the 50 s window size. We can see

that compared to the AM and MAH policies, the IM policy may cause blocks of large

delays, because services may be placed at non-optimal locations for a long time.

The overall performance with different values of T is shown in Fig. 6.5, where

the results are collected starting from 1, 000 s emulation time to remove the impact

of variation in the initialization time under different T . We see that as expected,

the AM policy always has the largest number of migrations. It is interesting that

round-trip delay of the AM policy is also generally larger than that of the MAH

policy, mainly because the AM policy uses instantaneous delay measurements for

6.4. Emulation Scenario and Results 188

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

R
ou

nd
−

tr
ip

 d
el

ay
 o

f s
er

vi
ce

 p
ac

ke
ts

 (
se

co
nd

s)

(a)

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

R
ou

nd
−

tr
ip

 d
el

ay
 o

f s
er

vi
ce

 p
ac

ke
ts

 (
se

co
nd

s)

(b)

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

R
ou

nd
−

tr
ip

 d
el

ay
 o

f s
er

vi
ce

 p
ac

ke
ts

 (
se

co
nd

s)

(c)

Figure 6.3: Instantaneous round-trip delays of service packets for the first 3, 000 s of
emulation with T = 2 s: (a) AM policy, (b) IM policy, (c) MAH policy.

6.4. Emulation Scenario and Results 189

0 1000 2000 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (seconds)

A
ve

ra
ge

 r
ou

nd
−

tr
ip

 d
el

ay
 o

f s
er

vi
ce

 p
ac

ke
ts

 (
se

co
nd

s)

AM
IM
MAH

(a)

0 1000 2000 3000
0

1

2

3

4

5

6

7

8

Time (seconds)

A
ve

ra
ge

 n
um

be
r

of
 m

ig
ra

tio
ns

 p
er

 s
ec

on
d

AM
IM
MAH

(b)

Figure 6.4: Moving average results for the first 3, 000 s of emulation with T = 2 s:
(a) round-trip delay of service packets, (b) number of migrations.

service placement decisions, which may fluctuate substantially over time and cause

the placement decision deviate away from the optimum. Instead, the MAH policy is

more stable because it has the moving average and hysteresis building blocks. The

delay performance of the MAH policy is also generally better than the IM policy,

because services are migrated to good locations more frequently.

The performance is related to the value of the interval T . It is clear that T = 0.5 s

brings the worst performance, in which case the control messages overload the net-

work. For the MAH policy, its lowest delay and highest number of received service

packets (which represents the packet success rate) is attained at T = 2 s, while giv-

ing an intermediate number of migrations. We also note that the average delay of

the MAH policy is the lowest among all the policies when T = 2 s, also with lower

standard deviation than all other cases. This implies that the MAH policy can be

beneficial for delay-sensitive applications. When T is large, the delay performance

does not vary significantly with different T , but the number of received service pack-

6.4. Emulation Scenario and Results 190

0.5 1 2 3 5 10 20 50 100
−0.2

0

0.2

0.4

0.6

0.8

R
ou

nd
−

tr
ip

 d
el

ay
 o

f s
er

vi
ce

 p
ac

ke
ts

 (
s)

Probing and placement update interval T (s)

AM
IM
MAH

(a)

0.5 1 2 3 5 10 20 50 100
0

2

4

6

8

10

12

14

A
ve

ra
ge

 n
um

be
r

of
 m

ig
ra

tio
ns

 p
er

 s
ec

on
d

Probing and placement update interval T (s)

AM
IM
MAH

(b)

0.5 1 2 3 5 10 20 50 100
2.5

2.55

2.6

2.65

2.7

2.75

2.8
x 10

5

N
um

be
r

of
 r

ec
ei

ve
d

se
rv

ic
e

pa
ck

et
s

Probing and placement update interval T (s)

AM IM MAH

(c)

Figure 6.5: Overall results: (a) average round-trip delay of service packets (error
bars denote the standard deviation), (b) average number of migrations per second,
(c) total number of received service packets.

6.5. Summary 191

ets decreases with T . The network in this case is not overloaded, thus the delay is

not very large. However, due to obsolete delay measurement and prolonged service

placement update, the service location may be far away from user location, so that

the connection between the MMC and the user has multiple hops, causing higher

packet loss. The slight fluctuation in the performance with different values of T is

due to randomness in the emulation.

6.5 Summary

In this chapter, we have taken an initial step to an emulation-based study of service

placement/migration in an MMC environment containing mobile users. We have

proposed a simple emulation framework that can be used as a foundation for more

sophisticated emulations in the future.

CHAPTER 7

Conclusions and Future Work

7.1 Contributions and Conclusions

This thesis has focused on service placement in a networked cloud environment con-

taining mobile micro-clouds (MMCs). The hierarchical structure of MMCs allows us

to exploit and develop new algorithms for service graph placement, which are more

efficient than existing approaches. Meanwhile, MMCs bring in much more user and

infrastructure dynamics compared to a traditional cloud environment, and we have

therefore proposed mechanisms for controlling the service placement/migration to

cope with these dynamics. The main contributions of this thesis are summarized as

follows.

7.1.1 Application Graph Placement

In Chapter 3, we have studied the placement of an incoming stream of application

graphs onto a physical graph. With the goal of minimizing the maximum resource

utilization at physical nodes and links, we have proposed an exact optimal algorithm

for placing one linear application graph onto a tree physical graph, as well as ap-

proximation algorithms for placing tree application graphs onto tree physical graphs.

When the maximum number of unplaced junction nodes on any path from the root to

a leaf (in the application graph) is a constant, the proposed algorithm has polynomial

time-complexity and provides polynomial-logarithmic (poly-log) worst-case perfor-

mance bound. Besides the theoretical evaluation of the worst-case performance, we

7.1. Contributions and Conclusions 193

have also shown the average performance via simulation. A combination of these

results implies that the proposed method performs reasonably well on average and it

is also robust in extreme cases. Moreover, the method we propose is relatively easy

to implement in practice.

The results in Chapter 3 can be regarded as an initial step towards a more com-

prehensive study in this direction. Many constraints in the problem formulation are

for simplicity of presentation, and can be readily relaxed for a more general problem.

For example, the tree application and physical graph restriction is not absolutely es-

sential for the applicability of the key concepts in our proposed algorithms. Modified

algorithms based on similar ideas would work for more general graphs as long as the

cycle-free constraint is satisfied. While we have not considered services leaving

at some time after their arrival, our algorithm can be extended to incorporate such

cases using the idea in [61]. The algorithm for cases with unplaced junction nodes

is essentially considering the scenario where there exists some low-level placement

(for each of the branches) followed by some high level placement (for the junction

nodes). Such ideas may also be useful in developing practical distributed algorithms

with provable performance guarantees.

7.1.2 MDP-Based Approach to Dynamic Service Migration

In Chapter 4, we have studied service migration in MMCs to cope with user mobility

and network changes. The problem is formulated as an MDP, but its state space can

be arbitrarily large. To make the problem tractable, we have considered reasonable

simplifications for 1-D and 2-D user mobility models.

For the 1-D case, we have considered a constant cost model and proposed a

threshold policy-based mechanism for service migration in MMCs. We have shown

the existence of a threshold policy that is an optimal policy, and have proposed an

algorithm for finding the optimal thresholds. The proposed algorithm has polynomial

7.1. Contributions and Conclusions 194

time-complexity, which is independent of the discount factor γ. This is promising

because the time-complexity of standard algorithms for solving MDPs, such as the

value or policy iteration methods, is generally dependent on the discount factor, and

those solutions can only be shown to have polynomial time-complexity when the

discount factor is regarded as a constant [42].

For the 2-D case, we have considered a constant-plus-exponential cost model.

We have reduced the general problem into an MDP that only considers a meaningful

parameter, namely the distance between the user and service locations. The distance-

based MDP has several structural properties that allow us to develop an efficient al-

gorithm for finding its optimal policy. We have then shown that the distance-based

MDP is a good approximation to scenarios where the users move in a 2-D space,

which is confirmed by analytical and numerical evaluations. Afterwards, we have il-

lustrated the application of our solution in practical scenarios where many theoretical

assumptions are relaxed. Our evaluation based on real-world mobility traces of San

Francisco taxis shows the superior performance of the proposed solution compared

to baseline solutions.

The results of Chapter 4 provide an efficient solution to service migration in

MMCs. Further, we envision that the approaches used in this chapter can be ex-

tended to a range of other problems that share similar properties. The highlights

of our approaches include: a closed-form solution to the discounted sum cost of a

particular class of MDPs, which can be used to simplify the procedure for finding

the optimal policy; a method to approximate an MDP (in a particular class) with one

that has much smaller state space, where the approximation error can be quantified

analytically; and a method to collect statistics from the real-world environment to

serve as parameters of the MDP.

7.1. Contributions and Conclusions 195

7.1.3 Dynamic Service Placement with Predicted Future Costs

Noting that the MDP-based approach can be difficult to apply to cases with more

general user mobility and cost functions, we have assumed the ability of predict-

ing future costs to some known accuracy in Chapter 5. This allows us to develop

a mechanism for dynamic service placement in more general scenarios, including

those where service instances arrive and depart without prior knowledge. We have

defined a window to specify the time to look (or predict) ahead. Cost prediction

is performed at the beginning of each look-ahead window. Based on the predicted

cost, we find the service placement sequence, where we have considered both the

optimal offline placement and approximate online placement. The online placement

algorithm has polynomial time-complexity and we have analytically shown its op-

timality gap. Its competitive ratio is a constant for certain types of cost functions.

We have then studied how to find the optimal look-ahead window size. The per-

formance of the proposed approach is verified via simulations using both synthetic

mobility traces and real-world mobility traces of San Francisco taxis.

The theoretical framework used for analyzing the performance of online place-

ment can be extended to incorporate more general cases, such as those where there

exist multiple types of resources in each cloud. We envision that the performance

results will be qualitatively similar. We also note that our framework can be applied

to analyzing a large class of online resource allocation problems that have convex

objective functions.

7.1.4 Emulation-Based Study

With the goal of studying the performance of the above theoretical results in

a more practical setting, we have proposed an emulation framework based on

CORE/EMANE in Chapter 6. Different from its previous chapters, Chapter 6

7.2. Future Work 196

considers realistic exchange of control and service packets. The emulation results

show several insightful observations, such as the impact of randomness and delay

on the service placement performance in a realistic network setting.

7.2 Future Work

Some possible areas of future work are summarized as follows.

Queuing Aware Scheduling of Service Requests: The approaches presented in

this thesis have focused on scenarios where users are continuously connected to ser-

vices. In reality, user requests may be buffered at the cloud for some time before

they are served. Service placement with consideration of queuing/buffering can be

studied in the future. We envision that queuing-aware scheduling techniques, such

as Lyapunov optimization [62], can be used for such study. One such attempt is

recently reported in [63].

Distributed Decision Making: In the approaches presented in this thesis, deci-

sions on service placement are made by a centralized controller. This is usually

feasible in practice because we can always see the controller as a service running at

one or multiple clouds. However, it is desirable to have a distributed control mech-

anism for the sake of robustness. Issues regarding distributed service placement can

be studied in the future, where randomization techniques such as in [64] and [65]

can be used.

Practical Aspects: As MMCs have not yet been largely deployed in practice, it is

definitely worth studying its implementation issues and identifying new challenges

from a practical angle, which in turn can introduce new problems that are worthwhile

for theoretical study. The emulation framework proposed in Chapter 6 can be useful

7.2. Future Work 197

for such study. For example, we can implement the theoretical results in Chapters

3–5 on the emulator and investigate how they perform. We can also connect real

applications to the emulator. Several new challenges arise with running real applica-

tions on MMCs, such as: What is the best way of performing service migration and

what are the (real) costs associated with it? Service migration is expected to occur

more frequently in MMCs than in centralized clouds, because otherwise the benefits

of MMCs can no longer be fully realized as users tend to move out of their original

area in mobile environments.

Bibliography

Note: The numbers at the end of each reference stand for the page numbers where

the reference has been cited.

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud comput-

ing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. 1

[2] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the state

of mobile cloud computing,” in Proceedings of the third ACM workshop on

Mobile cloud computing and services. ACM, 2012, pp. 21–28. 1

[3] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satyanarayanan,

“vTube: efficient streaming of virtual appliances over last-mile networks,” in

Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013,

p. 16. 1

[4] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards

wearable cognitive assistance,” in Proc. of ACM MobiSys, 2014. 1, 2, 7

[5] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,

“Cloudlets: at the leading edge of mobile-cloud convergence,” in Proc. of Mo-

biCASE 2014, Nov. 2014. 1, 2, 7

[6] “Smarter wireless networks,” IBM Whitepaper No. WSW14201USEN, Feb.

2013. [Online]. Available: www.ibm.com/services/multimedia/Smarter_

wireless_networks.pdf 2

[7] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck, K. Joshi,

and K. Sabnani, “An open ecosystem for mobile-cloud convergence,” IEEE

Communications Magazine, vol. 53, no. 3, pp. 63–70, Mar. 2015. 2

www.ibm.com/services/multimedia/Smarter_wireless_networks.pdf
www.ibm.com/services/multimedia/Smarter_wireless_networks.pdf

Bibliography 199

[8] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha,

“The role of cloudlets in hostile environments,” IEEE Pervasive Computing,

vol. 12, no. 4, pp. 40–49, Oct. 2013. 2, 7

[9] S. Davy, J. Famaey, J. Serrat-Fernandez, J. Gorricho, A. Miron, M. Dramitinos,

P. Neves, S. Latre, and E. Goshen, “Challenges to support edge-as-a-service,”

IEEE Communications Magazine, vol. 52, no. 1, pp. 132–139, Jan. 2014. 2, 7

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proceedings of the first edition of the MCC workshop

on Mobile cloud computing. ACM, 2012, pp. 13–16. 2, 7

[11] Z. Becvar, J. Plachy, and P. Mach, “Path selection using handover in mobile

networks with cloud-enabled small cells,” in Proc. of IEEE PIMRC 2014, Sept.

2014. 2, 7

[12] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated clouds and

distributed mobile networks,” IEEE Network, vol. 27, no. 5, pp. 12–19, Sept.

2013. 2, 7

[13] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satya-

narayanan, “The impact of mobile multimedia applications on data center con-

solidation,” in Cloud Engineering (IC2E), 2013 IEEE International Conference

on, March 2013, pp. 166–176. 2, 7

[14] M. Satyanarayanan, “A brief history of cloud offload: A personal journey

from odyssey through cyber foraging to cloudlets,” SIGMOBILE Mob. Com-

put. Commun. Rev., vol. 18, no. 4, pp. 19–23, Jan. 2015. 2, 7

[15] S. Wang, L. Le, N. Zahariev, and K. K. Leung, “Centralized rate control mech-

anism for cellular-based vehicular networks,” in Proc. of IEEE GLOBECOM

2013, 2013. 2, 7

Bibliography 200

[16] A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual net-

work embedding: A survey,” IEEE Communications Surveys and Tutorials,

vol. 15, no. 4, pp. 1888–1906, 2013. 7, 20

[17] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual network

embedding algorithms with coordinated node and link mapping,” IEEE/ACM

Transactions on Networking, vol. 20, no. 1, pp. 206–219, 2012. 7, 24, 25, 26,

55, 56, 151, 169

[18] T. Taleb and A. Ksentini, “An analytical model for follow me cloud,” in Proc.

of IEEE GLOBECOM 2013, Dec. 2013. 7, 65

[19] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based service

migration procedure for follow me cloud,” in Proc. of IEEE ICC 2014, June

2014. 7, 65, 66

[20] IBM CPLEX Optimizer. [Online]. Available: http://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer/ 18, 55

[21] OPTI Toolbox. [Online]. Available: http://www.i2c2.aut.ac.nz/Wiki/OPTI/ 18

[22] I. Giurgiu, C. Castillo, A. Tantawi, and M. Steinder, “Enabling efficient place-

ment of virtual infrastructures in the cloud,” in Proceedings of the 13th Inter-

national Middleware Conference, ser. Middleware ’12, 2012, pp. 332–353. 20

[23] V. V. Vazirani, Approximation Algorithms. Springer, 2001. 20, 41, 208

[24] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis.

Cambridge University Press, 1998. 21, 133

[25] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion map-

ping in a cloud,” in Proceedings of the 30th annual ACM SIGACT-SIGOPS

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.i2c2.aut.ac.nz/Wiki/OPTI/

Bibliography 201

symposium on Principles of distributed computing, ser. PODC ’11, 2011, pp.

267–276. 24, 25, 26, 62

[26] D. Dutta, M. Kapralov, I. Post, and R. Shinde, “Embedding paths into trees:

VM placement to minimize congestion,” in Algorithms – ESA 2012, ser. Lec-

ture Notes in Computer Science, L. Epstein and P. Ferragina, Eds. Springer

Berlin Heidelberg, 2012, vol. 7501, pp. 431–442. 24, 25, 26

[27] M. Alicherry and T. V. Lakshman, “Network aware resource allocation in dis-

tributed clouds,” in Proc. of IEEE INFOCOM 2012, Mar. 2012, pp. 963–971.

25, 26

[28] J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approximation algorithm of

virtual machine placement for data latency minimization in cloud systems,” in

Proc. of IEEE INFOCOM 2014, 2014. 25, 26

[29] R. Hassin, A. Levin, and M. Sviridenko, “Approximating the minimum

quadratic assignment problems,” ACM Trans. Algorithms, vol. 6, no. 1, pp.

18:1–18:10, Dec. 2009. 26

[30] Y.-h. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast (keynote

address),” SIGMETRICS Perform. Eval. Rev., vol. 28, no. 1, pp. 1–12, June

2000. 27

[31] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation

in wireless sensor networks,” in Proc. of 22nd International Conference on

Distributed Computing Systems Workshops, 2002, pp. 575–578. 27

[32] D. Westhoff, J. Girao, and M. Acharya, “Concealed data aggregation for re-

verse multicast traffic in sensor networks: Encryption, key distribution, and

routing adaptation,” IEEE Trans. on Mobile Computing, vol. 5, no. 10, pp.

1417–1431, Oct. 2006. 27

Bibliography 202

[33] IEEE 802.1D, IEEE Standard for Local and metropolitan area networks: Me-

dia Access Control (MAC) Bridges, 2004. 27

[34] A. R. Choudhury, S. Das, N. Garg, and A. Kumar, “Rejecting jobs to minimize

load and maximum flow-time,” in Proc. of ACM-SIAM Symposium on Discrete

Algorithms (SODA), Jan. 2015. 32

[35] Y. Azar, “On-line load balancing,” Theoretical Computer Science, pp. 218–225,

1992. 32

[36] W. B. Powell, Approximate Dynamic Programming: Solving the curses of di-

mensionality. John Wiley & Sons, 2007. 37, 143

[37] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, “On-line routing of

virtual circuits with applications to load balancing and machine scheduling,” J.

ACM, vol. 44, no. 3, pp. 486–504, May 1997. 42, 214

[38] M. Bienkowski, A. Feldmann, J. Grassler, G. Schaffrath, and S. Schmid,

“The wide-area virtual service migration problem: A competitive analysis ap-

proach,” IEEE/ACM Trans. on Networking, vol. 22, no. 1, pp. 165–178, Feb.

2014. 65

[39] U. Mandal, M. Habib, S. Zhang, B. Mukherjee, and M. Tornatore, “Greening

the cloud using renewable-energy-aware service migration,” IEEE Network,

vol. 27, no. 6, pp. 36–43, Nov. 2013. 65

[40] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, “Mobility management

for femtocells in LTE-advanced: Key aspects and survey of handover decision

algorithms,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 64–

91, 2014. 65

Bibliography 203

[41] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 2009, vol. 414. 67, 80, 85, 98, 104, 218,

224, 225

[42] I. Post and Y. Ye, “The simplex method is strongly polynomial for deterministic

markov decision processes.” in Proc. of ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2013, pp. 1465–1473. 82, 194

[43] H. Qian. (2015, Apr.) Counting the floating point operations (FLOPS).

MATLAB Central File Exchange, No. 50608, Ver. 1.0. [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/50608 85

[44] S. Elaydi, An Introduction to Difference Equations, Third Edition. Springer,

2005. 95

[45] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser, “A parsimo-

nious model of mobile partitioned networks with clustering,” in Proc. of COM-

SNETS, Jan. 2009. 125, 171, 185

[46] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-

DAD data set epfl/mobility (v. 2009-02-24),” Downloaded from

http://crawdad.org/epfl/mobility/, Feb. 2009. 125, 171, 185

[47] L. Kleinrock, Queuing Systems, Volume II: Computer Applications. Hoboken,

NJ: John Wiley and Sons, 1976. 126

[48] M. Srivatsa, R. Ganti, J. Wang, and V. Kolar, “Map matching: Facts and

myths,” in Proc. of ACM SIGSPATIAL 2013, 2013, pp. 484–487. 132

[49] S. O. Krumke, Online optimization: Competitive analysis and beyond. Habil-

itationsschrift Technische Universitaet Berlin, 2001. 133

http://www.mathworks.com/matlabcentral/fileexchange/50608

Bibliography 204

[50] Y. Azar, I. R. Cohen, and D. Panigrahi, “Online covering with convex

objectives and applications,” CoRR, vol. abs/1412.3507, Dec. 2014. [Online].

Available: http://arxiv.org/abs/1412.3507 133

[51] N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, and J. Naor, “Online packing

and covering framework with convex objectives,” CoRR, vol. abs/1412.8347,

Dec. 2014. [Online]. Available: http://arxiv.org/abs/1412.8347 133

[52] G. Aceto, A. Botta, W. de Donato, and A. Pescape, “Cloud monitoring: A

survey,” Computer Networks, vol. 57, no. 9, pp. 2093 – 2115, 2013. 140

[53] K. LaCurts, J. Mogul, H. Balakrishnan, and Y. Turner, “Cicada: Introducing

predictive guarantees for cloud networks,” Jun. 2014. 140

[54] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User move-

ment in location-based social networks,” in Proc. of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, ser. KDD

’11, 2011, pp. 1082–1090. 140

[55] B. Korte and J. Vygen, Combinatorial optimization. Springer, 2002. 153, 154

[56] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004. 156, 234

[57] J. Ahrenholz. (2010) CORE download. [Online]. Available: http://downloads.

pf.itd.nrl.navy.mil/core/ 175

[58] ——, “Comparison of core network emulation platforms,” in Proc. of IEEE

MILCOM 2010, Oct.-Nov. 2010, pp. 166–171. 175

[59] N. Ivanic, B. Rivera, and B. Adamson, “Mobile ad hoc network emulation

environment,” in Proc. of IEEE MILCOM 2009, Oct. 2009. 175

http://arxiv.org/abs/1412.3507
http://arxiv.org/abs/1412.8347
http://downloads.pf.itd.nrl.navy.mil/core/
http://downloads.pf.itd.nrl.navy.mil/core/

Bibliography 205

[60] R. Ogier and P. Spagnolo. (2009, Aug.) RFC 5614, Mobile ad hoc network

(MANET) extension of OSPF using connected dominating set (CDS) flooding.

[Online]. Available: http://www.ietf.org/rfc/rfc5614.txt 178

[61] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts, “On-line

load balancing of temporary tasks,” Journal of Algorithms, vol. 22, no. 1, pp.

93–110, 1997. 193

[62] M. J. Neely, “Stochastic network optimization with application to communica-

tion and queueing systems,” Synthesis Lectures on Communication Networks,

vol. 3, no. 1, 2010. 196

[63] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, “Dynamic

service migration and workload scheduling in edge-clouds,” in Proc. of IFIP

Performance 2015, Oct. 2015. 196

[64] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for com-

binatorial network optimization,” IEEE Trans. on Information Theory, vol. 59,

no. 10, pp. 6301–6327, Oct 2013. 196

[65] M. J. Neely, “Distributed stochastic optimization via correlated scheduling,”

IEEE/ACM Trans. on Networking, 2015, to appear. 196

http://www.ietf.org/rfc/rfc5614.txt

APPENDIX A

Approximation Ratio for Cycle-free

Mapping

In the following, we focus on how well the cycle-free restriction approximates the

more general case which allows cycles, for the placement of a single linear appli-

cation graph. We first show that with the objective of load balancing, the problem

of placing a single linear application graph onto a linear physical graph when al-

lowing cycles is NP-hard, and then discuss the approximation ratio of the cycle-free

restriction.

Proposition A.1. The line-to-line placement problem while allowing cycles is NP-

hard.

Proof. The proof is similar to the proof of Proposition 3.2 in Section 3.4.1, namely

the problem can be reduced from the minimum makespan scheduling on unrelated

parallel machines (MMSUPM) problem. Consider the special case where the edge

demand is zero, then the problem is the same with the MMSUPM problem, which

deals with placing V jobs onto N machines without restriction on their ordering,

with the goal of minimizing the maximum load on each machine.

To discuss the approximation ratio of the cycle-free assignment, we separately

consider edge costs and node costs. The worst case ratio is then the maximum among

these two ratios, because we have max {r1x1, r2x2} ≤ max {r1, r2}max {x1, x2},

where r1, r2, x1, x2 ≥ 0. The variables x1 and x2 can respectively denote the true

207

optimal maximum costs at nodes and links, and the variables r1 and r2 can be their

corresponding approximation ratios. Then, max {x1, x2} is the true optimal maxi-

mum cost when considering nodes and links together, and max {r1, r2} is their joint

approximation ratio. The joint approximation ratio max {r1, r2} is tight when r1

and r2 are tight, because we can construct worst-case examples, one with zero node

demand and another with zero link demand, and there must exist one worst-case

example which has approximation ratio max {r1, r2}.

The following proposition shows that cycle-free placement is always optimal

when only the edge cost is considered.

Proposition A.2. Cycle-free placement on tree physical graphs always brings lower

or equal maximum edge cost compared with placement that allows cycles.

Proof. Suppose a placement that contains cycles produces a lower maximum edge

cost than any cycle-free placement, then there exists v and v1 (v1 > v + 1) both

placed on a particular node n, while nodes v+1, ..., v1−1 are placed on some nodes

among n+1, ..., N . In this case, placing nodes v+1, ..., v1−1 all onto node n never

increases the maximum edge cost, which shows a contradiction.

For the node cost, we first consider the case where the physical graph is a sin-

gle line. We note that in this case the cycle-free placement essentially becomes an

“ordered matching”, which matches V items into N bins, where the first bin may

contain items 1, ..., v1, the second bin may contain items v1 +1, ..., v2, and so on. We

can also see the problem as partitioning the ordered set V into N subsets, and each

subset contains consecutive elements from V .

Proposition A.3. When each application node has the same cost when placing it on

any physical node, then the cycle-free line-to-line placement brings a tight approxi-

mation ratio of 2.

208

Proof. Suppose we have V items that can be packed into N bins by an optimal

algorithm (which does not impose ordering on items), and the optimal cost at each

bin is OPT.

To show that the worst case cost ratio resulting from the ordering cannot be larger

than 2, we consider a bin packing where the size of each bin is OPT. (Note that the

bin packing problem focuses on minimizing the number of bins with given bin size,

which is slightly different from our problem.) Because an optimal solution can pack

our V items into N bins with maximum cost OPT, when we are given that the size

of each bin is OPT, we can also pack all the V items intoN bins. Hence, the optimal

solution to the related bin packing problem is N . When we have an ordering, we can

do the bin packing by the first-fit algorithm which preserves our ordering. The result

of the first-fit algorithm has been proven to be at most 2N bins [23].

Now we can combine two neighboring bins into one bin. Because we have at

most 2N bins from the first-fit algorithm, we will have at most N bins after com-

bination. Also because each bin has size OPT in the bin packing problem, the cost

after combination will be at most 2 ·OPT for each bin.

This shows that the worst-case cost for ordered items is at most 2 ·OPT.

To show that the approximation ratio of 2 is tight, we consider the following

tight example. Suppose V = 2N . Among the 2N items, N of them have cost of

(1− ε)·OPT, where ε > 1
1+N

, the remaining N have cost of ε ·OPT. Obviously, an

optimal allocation will put one (1− ε)·OPT item and one ε·OPT item into one bin,

and the resulting maximum cost at each bin is OPT.

A bad ordering could have all (1 − ε)·OPT items coming first, and all ε·OPT

items coming afterwards. In this case, if we would like the maximum cost to be

smaller than (2 − 2ε)·OPT, it would be impossible to fit all the items into N bins,

because all the (1 − ε)·OPT items will already occupy N bins, as it is impossible

to put more than one (1 − ε)·OPT item into each bin if the cost is smaller than

209

(2 − 2ε)·OPT, and also because Nε·OPT >
(

1
ε
− 1
)
ε·OPT = (1 − ε)·OPT,

which means that it is also impossible to put all ε·OPT into the last bin on top of the

existing (1− ε)·OPT item.

AsN becomes arbitrarily large and ε becomes arbitrarily small, we can conclude

that the worst-case ordered assignment has at least a cost of 2·OPT.

Corollary A.1. When the physical graph is a tree, and for each application node,

its maximum to minimum cost when placing it on any physical node is d%,v, then the

cycle-free line-to-line placement has an approximation ratio of 2V · maxv d%,v =

O(V).

Proof. This follows from the fact that OPT may choose the minimum cost for each

v while the ordered assignment may have to choose the maximum cost for some v,

and also, in the worst case, the cycle-free placement may place all application nodes

onto one physical node. The factor 2 follows from Proposition A.3.

It is not straightforward to find out whether the bound in the above corollary is

tight or not, thus we do not discuss it here.

We conclude that the cycle-free placement always brings optimal link cost, which

is advantageous because the communication bandwidth is often the more scarce re-

source in cloud environments. The approximation ratio of node costs can beO(V) in

some extreme cases. However, the cycle-free restriction is still reasonable in many

practical scenarios. Basically, in these scenarios, one cannot split the whole work-

load onto all the available servers without considering the total link resource con-

sumption. The analysis in this section is also aimed to provide some further insights

that helps to justify in what practical scenarios the proposed work is applicable, while

further study is worthwhile for some other scenarios.

APPENDIX B

Constant-Plus-Exponential Cost

Approximation to General Cost

Functions

We only focus on the migration cost function cm(x), because cm(x) and cd(y) have

the same form. For a given cost function f(x), where x ≥ 0, we would like to

approximate it with the constant-plus-exponential cost function given by cm(x) =

βc + βlµ
x. Note that although we force cm(0) = 0 by definition, we relax that

restriction here and only consider the smooth part of the cost function for simplicity.

We assume that this smoothness can be extended to x = 0, so that f(x) remains

smooth at x = 0. Under this definition, f(x) may be non-zero at x = 0.

Because cm(x) includes both a constant term and an exponential term, we cannot

obtain an exact analytical expression to minimize a commonly used error function,

such as the mean squared error. We can, however, solve for the parameters that min-

imize the error cost function numerically. To reduce the computational complexity

compared to a fully numerical solution, we propose an approximate solution in this

section.

We are given an integer w that may be chosen according to practical consid-

erations, and we solve for the parameters βc, βl, and µ according to the following

211

system of equations:

βc + βl = f(0) (B.1)

βc + βlµ
w = f(w) (B.2)

βc + βlµ
2w = f(2w) (B.3)

Subtracting (B.1) respectively from (B.2) and (B.3) and dividing the two results gives

µ2w − 1

µw − 1
=
f(2w)− f(0)

f(w)− f(0)
(B.4)

subject to µw 6= 1. We can then solve µw from (B.4) which gives

µw =
R±

√
R2 − 4(R− 1)

2
(B.5)

where R , f(2w)−f(0)
f(w)−f(0)

≥ 1. It follows that we always have R2 − 4(R − 1) ≥ 0 and

µw ≥ 0. To guarantee that µw 6= 1, we set µw = 1± ε0 if |µw − 1| < ε0, where ε0 is

a small number and the sign is the same as the sign of µw − 1. Then, we have

µ =

(
R±

√
R2 − 4(R− 1)

2

) 1
w

(B.6)

We can then obtain

βc =
f(0)µw − f(w)

µw − 1
(B.7)

βl =
f(w)− f(0)

µw − 1
(B.8)

According to (B.6), we have two possible values of µ, and correspondingly two

possible sets of values of βc and βl. To determine which is better, we compute the

sum squared error
∑2w

x=0 (f(x)− (βc + βlµ
x))2 for each parameter set, and choose

the parameter set that produces the smaller sum squared error.

212

0 5 10 15 20
9.5

10

10.5

11

11.5

12

12.5

13

13.5

x

V
al

ue
 o

f c
os

t f
un

ct
io

n

Original
Approximated

(a)

0 5 10 15 20
6

6.5

7

7.5

8

8.5

9

9.5

10

x

V
al

ue
 o

f c
os

t f
un

ct
io

n

Original
Approximated

(b)

0 5 10 15 20
0

50

100

150

200

250

300

350

400

x

V
al

ue
 o

f c
os

t f
un

ct
io

n

Original
Approximated

(c)

Figure B.1: Examples of approximating a general cost function with exponential
cost function: (a) f(x) = ln(x+ 1) + 10, (b) f(x) =

√
x+ 1 + 5, (c) f(x) = x2.

213

Some examples of approximation results are shown in Fig. B.1.

APPENDIX C

Proofs

C.1 Proof of Proposition 3.3

The proof presented here borrows ideas from [37], but is applied here to the gener-

alized case of graph mappings and arbitrary reference offline costs Jπo . For a given

Ĵ , we define p̃n,k(i) = pn,k(i)/Ĵ , d̃v→n,k(i) = dv→n,k(i)/Ĵ , q̃l(i) = ql(i)/Ĵ , and

b̃e→l(i) = be→l(i)/Ĵ . To simplify the proof structure, we first introduce some no-

tations so that the link and node costs can be considered in an identical manner,

because it is not necessary to distinguish them in the proof of this proposition. We

refer to each type of resources as an element, i.e. the type k resource at node n

is an element, the resource at link l is also an element. Then, we can define the

aggregated cost up to service i for element r as z̃r(i). The value of z̃r(i) can be

either p̃n,k(i) or q̃l(i) depending on the resource type under consideration. Simi-

larly, we define w̃r|π(i) as the incremental cost that service i brings to element r

under the mapping π. The value of w̃r|π(i) can be either
∑
∀v:π(v)=n d̃v→n,k(i) or∑

∀e=(v1,v2):(π(v1),π(v2))3l b̃e→l(i). Both z̃r(i) and w̃r|π(i) are normalized by the refer-

ence cost Ĵ .

Using the above notations, the objective function in (3.12) with (3.13a) and

(3.13b) becomes

min
πi

∑
r

(
αz̃r(i−1)+w̃r|πi (i) − αz̃r(i−1)

)
. (C.1)

Note that due to the notational equivalence, (C.1) is the same as (3.12) with (3.13a)

C.1. Proof of Proposition 3.3 215

and (3.13b).

Recall that πo denotes the reference offline mapping result, let πoi denote the

offline mapping result for nodes that correspond to the ith service, and z̃or(i) denote

the corresponding aggregated cost until service i. Define the following potential

function:

Φ(i) =
∑
r

αz̃r(i) (γ − z̃or(i)) , (C.2)

which helps us prove the proposition. Note that variables without superscript “o”

correspond to the values resulting from Algorithm 3.2 that optimizes the objective

function (C.1) for each service independently.

The change in Φ(i) after new service arrival is

Φ(i)− Φ(i− 1)

=
∑

r:∃πi(·)=r

(
αz̃r(i) − αz̃r(i−1)

)
(γ − z̃or(i− 1))−

∑
r:∃πoi (·)=r

αz̃r(i)w̃r|πoi (i) (C.3)

≤
∑

r:∃πi(·)=r

γ
(
αz̃r(i−1)+w̃r|πi (i) − αz̃r(i−1)

)
−

∑
r:∃πoi (·)=r

αz̃r(i−1)w̃r|πoi (i) (C.4)

≤
∑

r:∃πoi (·)=r

γ
(
α
z̃r(i−1)+w̃r|πo

i
(i) − αz̃r(i−1)

)
− αz̃r(i−1)w̃r|πoi (i) (C.5)

=
∑

r:∃πoi (·)=r

αz̃r(i−1)
{
γ
(
α
w̃r|πo

i
(i) − 1

)
− w̃r|πoi (i)

}
, (C.6)

where the notation πi(·) = r or πoi (·) = r means that service i has occupied some

resource from element r when respectively using the mapping from Algorithm 3.2

or the reference offline mapping.

We explain the relationships in (C.3) to (C.6) in the following. Equality (C.3)

follows from

Φ(i)− Φ(i− 1)

=
∑
r

αz̃r(i)
(
γ −

(
z̃or(i− 1) + w̃r|πoi (i)

))
−
∑
r

αz̃r(i−1) (γ − z̃or(i− 1))

C.1. Proof of Proposition 3.3 216

=
∑
r

(
αz̃r(i) − αz̃r(i−1)

)
(γ − z̃or(i− 1))−

∑
r

αz̃r(i)w̃r|πoi (i)

=
∑

r:∃πi(·)=r

(
αz̃r(i) − αz̃r(i−1)

)
(γ − z̃or(i− 1))−

∑
r:∃πoi (·)=r

αz̃r(i)w̃r|πoi (i),

where the last equality follows from the fact that αz̃r(i) − αz̃r(i−1) = 0 for all r such

that ∀πi(·) 6= r, and w̃r|πoi (i) = 0 for all r such that ∀πoi (·) 6= r. Inequality (C.4)

follows from z̃or(i− 1) ≥ 0 and z̃r(i) = z̃r(i− 1) + w̃r|πi(i). Note that the first term

in (C.4) is the same as the objective function (C.1). Because the mapping πi results

from Algorithm 3.2 which optimizes (C.1), we know that the reference mapping π0

must produce a cost αz̃r(i−1)+w̃r|πo
i

(i) − αz̃r(i−1) that is greater than or equal to the

optimum, hence following (C.5). Equality (C.6) is obvious.

Now we proof that the potential function Φ(i) does not increase with i, by prov-

ing that (C.6) is not larger than zero. For the ith request, the reference offline

mapping produces the mapping result πoi . Therefore, for all r such that ∃πoi (·) =

r, we have 0 ≤ w̃r|πoi (i) ≤ Jπo/Ĵ ≤ 1. Hence, we only need to show that

γ
(
α
w̃r|πo

i
(i) − 1

)
− w̃r|πoi (i) ≤ 0 for w̃r|πoi (i) ∈ [0, 1], which is true for α ≤ 1 + 1/γ.

From (C.3)–(C.6), it follows that Φ(i) ≤ Φ(i − 1). (We take α = 1 + 1/γ because

this results in the smallest value of β.)

Because z̃r(0) = z̃or(0) = 0, we have Φ(0) = γ(NK + L). Because Φ(i) does

not increase, α > 1, and z̃or(i) ≤ 1 due to Jπo ≤ Ĵ , we have

(γ − 1)αmaxr z̃r(i) ≤ (γ − 1)
∑
r

αz̃r(i) ≤ Φ(i) ≤ Φ(0) = γ(NK + L). (C.7)

Taking the logarithm on the left and right side of (C.7), we have

max
r
z̃r(i) ≤ logα

(
γ(NK + L)

γ − 1

)
= β, (C.8)

which proves the result because zr(i) = z̃r(i) · Ĵ .

C.2. Proofs of Proposition 4.1 and Corollary 4.1 217

C.2 Proofs of Proposition 4.1 and Corollary 4.1

C.2.1 Proof of Proposition 4.1

Suppose that we are given a service migration policy π such that the service can be

migrated to a location that is farther away from the user, i.e., ‖u−h′‖ > ‖u−h‖. We

will show that, for an arbitrary sample path of the user locations u(t), we can find a

(possibly history dependent) policy ψ that does not migrate to locations farther away

from the user in any timeslot, which performs not worse than policy π.

For an arbitrary sample path of user locations u(t), denote the timeslot t0 as the

first timeslot (starting from t = 0) in which the service is migrated to somewhere

farther away from the user when following policy π. The initial state at timeslot t0 is

denoted by s(t0) = (u(t0), h(t0)). When following π, the state shifts from s(t0) to

s′π(t0) = (u(t0), h′π(t0)), where ‖u(t0)−h′π(t0)‖ > ‖u(t0)−h(t0)‖. The subsequent

states in this case are denoted by sπ(t) = (u(t), hπ(t)) for t > t0.

Now, we define a policy ψ such that the following conditions are satisfied for the

given sample path of user locations u(t):

• The migration actions in timeslots t < t0 are the same when following either

ψ or π.

• The policy ψ specifies that there is no migration within the timeslots t ∈

[t0, tm − 1], where tm > t0 is a timeslot index that is defined later.

• The policy ψ is defined such that, at timeslot tm, the service is migrated to

h′π(tm), where h′π(tm) is the service location (after possible migration at times-

lot tm) when following π.

• For timeslots t > tm, the migration actions for policies ψ and π are the same.

For t > t0, the states when following ψ are denoted by sψ(t) = (u(t), hψ(t)).

C.2. Proofs of Proposition 4.1 and Corollary 4.1 218

The timeslot tm is defined as the first timeslot after t0 such that the following

condition is satisfied:

1. ‖u(tm) − hψ(tm)‖ > ‖u(tm) − h′π(tm)‖, i.e., the transmission cost (before

migration at timeslot tm) when following ψ is larger than the transmission

cost (after possible migration at timeslot tm) when following π.

Accordingly, within the interval [t0 + 1, tm − 1], the transmission cost when

following ψ is always less than or equal to the transmission cost when following π,

and there is no migration when following ψ. Therefore, for timeslots t ∈ [t0, tm−1],

policy π cannot bring lower cost than policy ψ.

In timeslot tm, we can always choose a migration action for ψ where the migra-

tion cost is smaller than or equal to the sum of the migration costs of π within [t0, tm].

The reason is that ψ can migrate (in timeslot tm) following the same migration path

as π within [t0, tm].

It follows that, for timeslots within [t0, tm], policy π cannot perform better than

policy ψ, and both policies have the same costs for timeslots within [0, t0 − 1] and

[tm+1,∞). The above procedure can be repeated so that all the migration actions to

a location farther away from the user can be removed without increasing the overall

cost, thus we can redefine ψ to be a policy that removes all such migrations.

We note that the policy ψ can be constructed based on policy π without prior

knowledge of the user’s future locations. For any policy π, the policy ψ is a policy

that does not migrate whenever π migrates to a location farther away from the user

(corresponding to timeslot t0). Then, it migrates to h′π(tm) when condition 1 is

satisfied (this is the timeslot tm in the above discussion).

The policy ψ is a history dependent policy, because its actions depend on the past

actions of the underlying policy π. From [41, Chapter 6], we know that history de-

pendent policies cannot outperform Markovian policies for our problem, assuming

that the action spaces of both policies are identical for every possible state. There-

C.2. Proofs of Proposition 4.1 and Corollary 4.1 219

fore, there exists a Markovian policy that does not migrate to a location farther away

from the user, which does not perform worse than π. Noting that the optimal policy

found from (4.2) and (4.3) are Markovian policies, we have proved the proposition.

C.2.2 Proof of Corollary 4.1

The proof follows the same procedure as the proof of Proposition 4.1. For any given

policy π that migrates to locations other than the user location, we show that there

exists a policy ψ that does not perform such migration, which performs not worse

than the original policy π. The difference is that t0 is defined as the first timeslot

such that u(t0) 6= h′π(t0), and tm is defined as the first timeslot after t0 such that

u(tm) = h′π(tm). Due to the strict inequality relationship of the cost functions given

in the corollary, and because 0 < γ < 1, we can conclude that π is not optimal.

C.3. Proof of Proposition 4.5 220

C.3 Proof of Proposition 4.5

Recall that among the neighbors (i′, j′) of a cell (i, j) in the 2-D offset-based MDP

{e(t)}, when i > 0, we have two (or, correspondingly, one) cells with i′ = i − 1,

and two (or, correspondingly, three) cells with i′ = i+ 1. To “even out” the different

number of neighboring cells, we define a new (modified) MDP {g(t)} for the 2-D

offset-based model, where the states are connected as in the original 2-D MDP, but

the transition probabilities are different, as shown in Fig. C.1.

In the modified MDP {g(t)}, the transition probabilities starting from state (0, 0)

to each of its neighboring cells have the same value r. For all the other states (i, j) 6=

(0, 0), they are defined as follows:

• The transition probability to each of its neighbors with the same ring index i

is r.

• If state (i, j) has two (correspondingly, one) neighbors in the lower ring i− 1,

then the transition probability to each of its neighbors in the lower ring is 1.5
2
r

(correspondingly, 1.5r).

• if state (i, j) has two (correspondingly, three) neighbors in the higher ring i+1,

then the transition probability to each of its neighbors in the higher ring is 2.5
2
r

(correspondingly, 2.5
3
r).

We denote the discounted sum cost from the original MDP {e(t)} by V (i, j),

and denote that from the modified MDP {g(t)} by U(i, j), where (i, j) stands for

the initial state in the discounted sum cost definition.

C.3. Proof of Proposition 4.5 221

(3 1)(3,1)
(3 2)(3,2)

(2,0)(2,0)
r rr

(2 11)
r

(2,11) r r (2 1)r r (2,1)rr
rr

rr(1 0)
rr(1,0)

(1 1)r (1,1)r rr
r

()
r

(0,0)(0,0)

(a)

(3 1)(3,1)
(3 2)(3,2)

(2,0)(2,0)
52 r5.2 5.2r2

(2 11) r2
2

52(2,11) r51
r252r5.2

(2 1)r5.1 r5.2r3 (2,1)r3
3

52 r5.2 51r3 r51
5.13

(1 0) rr5.1 2(1,0) r2
2

2

(1 1)r5.1 (1,1)r r5.1 r
r

()
r

(0,0)(0,0)

(b)

Figure C.1: Illustration of original and modified 2-D MDPs, only some exemplar
states and transition probabilities are shown: (a) original, (b) modified.

C.3. Proof of Proposition 4.5 222

Part I – Upper bound on the difference between V (i, j) and U(i, j)

for a given policy π

Assume we have the same policy π for the original and modified MDPs. Then, the

balance equation of V (i, j) is

V (i, j) = Ca(i, j) + γ

(1− 6r)V (a(i, j)) + r
∑

(i′,j′)∈N (a(i,j))

V (i′, j′)

 (C.9)

where a(i, j) is the new state after possible migration at state (i, j), and N (a(i, j))

is the set of states that are neighbors of state a(i, j).

For U(i, j), we have

U(i, j) = Ca(i, j) + γ

(
(1− 6r)U(a(i, j))

+
∑

(i′,j′)∈N (a(i,j))

Pg′(t)=a(i,j),g(t+1)=(i′,j′)U(i′, j′)

)
(C.10)

where Pg′(t)=a(i,j),g(t+1)=(i′,j′) is the transition probability of the modified MDP

{g(t)} as specified earlier.

In the following, let ia(i,j) denote the ring index of a(i, j). We define sets

N−(a(i, j)) =
{

(i′, j′) ∈ N (a(i, j)) : i′ = ia(i,j) − 1
}

N+(a(i, j)) =
{

(i′, j′) ∈ N (a(i, j)) : i′ = ia(i,j) + 1
}

to represent the neighboring states of a(i, j) that are respectively in the lower and

higher rings. We use |·| to denote the number of elements in a set.

Assume |U(i, j)− V (i, j)| ≤ ε for all i and j, and the value of ε is unknown

for now. We subtract (C.9) from (C.10), and then take the absolute value, yielding

(C.11), (C.12), and (C.13) which are explained below, where the set N2 (i, j) is the

C.3. Proof of Proposition 4.5 223

|U(i, j)− V (i, j)|

= γ
∣∣∣ (1− 6r) (U(a(i, j))− V (a(i, j)))

+
∑

(i′,j′)∈N (a(i,j))

Pg′(t)=a(i,j),g(t+1)=(i′,j′) (U(i′, j′)− V (i′, j′))

± 0.5λia(i,j)r

(∑
(i′,j′)∈N+(a(i,j)) V (i′, j′)

|N+ (a(i, j))|
−
∑

(i′,j′)∈N−(a(i,j)) V (i′, j′)

|N− (a(i, j))|

)∣∣∣
(C.11)

≤ γε+ 0.5γr

∣∣∣∣∣
∑

(i′,j′)∈N+(a(i,j)) V (i′, j′)

|N+ (a(i, j))|
−
∑

(i′,j′)∈N−(a(i,j)) V (i′, j′)

|N− (a(i, j))|

∣∣∣∣∣ (C.12)

≤ γε+ 0.5γr max
i,j,j′:(i+1,j)∈N2(i−1,j′)

|(V (i+ 1, j)− V (i− 1, j′))| (C.13)

set of states that are two-hop neighbors of state (i, j), the variable λia(i,j) = 0 when

ia(i,j) = 0, and λia(i,j) = 1 when ia(i,j) > 0.

The first two terms of (C.11) subtract the discounted sum cost of the original

MDP {e(t)} from that of the modified MDP {g(t)}, by assuming that both chains

have the same transition probabilities specified by the modified MDP. The difference

in their transition proabilities is captured by the last term of (C.11). There is no

difference in the transition probabilities when ia(i,j) = 0, thus λia(i,j) = 0 when

ia(i,j) = 0.

In the following, we consider ia(i,j) > 0 and further explain the last term of

(C.11). We first note that there is difference in the transition probabilities only when

moving to the lower or higher ring:

• The sum probability of moving to the lower ring in {g(t)} is by 0.5r smaller

(or, correspondingly, greater) than that in {e(t)}.

• The sum probability of moving to the higher ring in {g(t)} is by 0.5r greater

(or, correspondingly, smaller) than that in {e(t)}.

Therefore, the transition probablity difference for each neighboring state in the lower

C.3. Proof of Proposition 4.5 224

(or higher) ring is±0.5r divided by the number of neighbors in the lower (or higher)

ring. Also note that the probablity difference for lower and higher rings have oppo-

site signs. This explains the last term of (C.11), which captures the difference in the

transition probabilities and its impact on the discounted sum costs.

The inequality in (C.12) is from the triangle inequality. We note that the sub-

traction in the last term of (C.11) only occurs on V (i′, j′) values that are two-hop

neighbors, so we have the inequality in (C.13) by replacing the value with the maxi-

mum.

From (C.13), we can obtain a balance equation for the upper bound of

|U(i, j)− V (i, j)|, which is

ε=γε+ 0.5γr max
i,j,j′:(i+1,j)∈N2(i−1,j′)

|(V (i+1, j)−V (i−1, j′))| (C.14)

Because 0 < γ < 1, the value of V (i, j) converges after a number of iterations

according to (C.9) [41, Chapter 6], so |(V (i+ 1, j)− V (i− 1, j))| also converges,

and the value of ε can be solved by

εV =
γrmaxi,j,j′:(i+1,j)∈N2(i−1,j′) |(V (i+1, j)−V (i−1, j′))|

2(1− γ)
(C.15)

Note that the above argument also applies when interchanging V and U , which

means that an alternative upper bound of the cost is

εU =
γrmaxi,j,j′:(i+1,j)∈N2(i−1,j′) |(U(i+1, j)−U(i−1, j′))|

2(1− γ)
(C.16)

The upper bound can also be expressed as ε = min {εV , εU}, but either εV or εU

may have the smaller value.

C.3. Proof of Proposition 4.5 225

Part II – Optimal policy for the modified 2-D MDP {g(t)} is equiv-

alent to the optimal policy for the distance-based MDP {d(t)}

We note that the optimal policy of an MDP can be found from value iteration [41,

Chapter 6]. For the modified MDP {g(t)}, we initialize with a never migrate policy,

which gives the initial value function U0(i, j) = cd (i), satisfying U0(i, j) = U0(i, j′)

for all i and j 6= j′.

Suppose Un(i, j) = Un(i, j′) for all i and j 6= j′. In each iteration, we use the

following equation to obtain the new value function and the corresponding actions

for each i and j:

Un+1(i, j) = min
a

{
Ca(i, j)

+ γ
∑
i′

∑
j′

Pg′(t)=a(i,j),g(t+1)=(i′,j′)Un(i′, j′)

}
(C.17)

From the hexagon model in Fig. 4.9, we can see that for ring indices i and i′,

where i′ < i, we can always reach from state (i, j) to a state in ring i′ with i − i′

hops, regardless of the index j. In the (n + 1)th iteration, if it is optimal to migrate

from state (i, j) to a state with ring index i′, then the migration destination must be

i− i′ hops away from origin state, because Un(i′, j) = Un(i′, j′) for all i′ and j 6= j′,

it cannot be beneficial to migrate to somewhere farther away.

Further, if it is optimal to migrate at a state (i, j) to a state in ring i′, it must

be optimal to migrate at states (i, j) for all j to a state (which may not be the same

state) in ring i′, bringing the same cost, i.e. Un+1(i, j) = Un+1(i, j′) for j 6= j′. This

is due to the symmetry of cost functions (in the sense that Un(i, j) = Un(i, j′) for

all i and j 6= j′) and symmetry of transition probabilities (in the sense that the sum

probability of reaching ring i − 1 from any state in ring i is the same, and the sum

probability of reaching ring i+1 from any state in ring i is also the same). Similarly,

C.3. Proof of Proposition 4.5 226

if it is optimal not to migrate at a state (i, j), then it is optimal not to migrate at states

(i, j) for all j, which also brings Un+1(i, j) = Un+1(i, j′) for any j 6= j′.

Because the value iteration converges to the optimal policy and its corresponding

cost as n → ∞, for the optimal policy of the modified MDP {g(t)}, we have the

same discounted sum cost for states in the same ring, i.e. U∗(i, j) = U∗(i, j′) for all

i and j 6= j′. Meanwhile, for a given i, the optimal actions a∗(i, j) and a∗(i, j′) for

any j 6= j′ have the same ring index ia∗(i,j).

Since the optimal actions a∗(i, j) only depend on the ring index i and the ring

index of a∗(i, j) does not change with j, the optimal policy for {g(t)} can be directly

mapped to a policy for the distance-based MDP {d(t)}. A policy for {d(t)} can also

be mapped to a policy for {g(t)} by considering the shortest path between different

states in {g(t)}, as discussed in Section 4.4.3.2. This implies that there is a one-to-

one mapping between the optimal policy for {g(t)} and a policy for {d(t)}, because

the optimal policy for {g(t)} also only migrates along the shortest path between

states.

We now show that the policy for {d(t)} obtained from the optimal policy for

{g(t)} is optimal for {d(t)}. To find the optimal policy for {d(t)}, we can perform

value iteration according to the following update equation:

Un+1(i) = min
a

{
Ca(i)

+ γ
∑
i′

(∑
j′

Pg(t)=a(i),g(t+1)=(i′,j′)

)
Un(i′)

}
(C.18)

The difference between (C.17) and (C.18) is that (C.18) does not distinguish the

actions and value functions with different j indices. Recall that for the modified 2-D

MDP {g(t)}, we have Un(i, j) = Un(i, j′) for all n, i and j 6= j′, so the index j can

be natually removed from the value functions. Further, if it is optimal to migrate at

state (i, j) to a state in ring i′, it must be optimal to migrate at states (i, j) for all j to

C.3. Proof of Proposition 4.5 227

a state (which may not be the same state) in ring i′. The migration cost for different

j are the same because they all follow the shortest path from state (i, j) to ring i′. If

it is optimal not to migrate at state (i, j), then it is optimal not to migrate at states

(i, j) for all j. Therefore, we can also remove the j index associated with the actions,

without affecting the value function. It follows that the optimal policy for {g(t)} is

equivalent to the optimal policy for {d(t)}, both bringing the same value functions

(discounted sum costs).

Part III – Error bound for distance-based approximation

By now, we have shown the upper bound on the discounted sum cost difference

between the original and modified 2-D MDPs {e(t)} and {g(t)}, when both MDPs

use the same policy. We have also shown that the optimal policy for the modified

2-D MDP {g(t)} is equivalent to the optimal policy for the distance-based MDP

{d(t)}. Note that the true optimal cost is obtained by solving for the optimal policy

for the original 2-D MDP {e(t)}, and the approximate optimal cost is obtained by

applying the optimal policy for {d(t)} to {e(t)}. In the following, we consider the

upper bound on the difference between the true and approximate optimal discounted

sum costs.

We start with a (true) optimal policy π∗true for {e(t)}, denote the discounted sum

costs from this policy as Vπ∗true
(i, j). When using the same policy on {g(t)}, the

difference between the costs Uπ∗true
(i, j) and Vπ∗true

(i, j) satisfies the upper bound given

in (C.15), i.e.

Uπ∗true
(i, j)− Vπ∗true

(i, j) ≤ εVπ∗true
(C.19)

Since Vπ∗true
(i, j) are the optimal costs, we have

max
i,j,j′:(i+1,j)∈N2(i−1,j′)

∣∣(Vπ∗true
(i+1, j)−Vπ∗true

(i−1, j′)
)∣∣

C.3. Proof of Proposition 4.5 228

≤ max
x
{cm (x+ 2)− cm (x)} (C.20)

because, otherwise, there exists at least one pair of states (i+ 1, j) and (i− 1, j′) for

which it is beneficial to migrate from state (i+1, j) to state (i−1, j′), according to a

2-D extension of (4.29). The cost after performing such migration is upper bounded

by (C.20), which contradicts with the fact that π∗true is optimal.

Define

εc =
γrmaxx {cm (x+ 2)− cm (x)}

2(1− γ)
(C.21)

From (C.15), (C.19) and (C.20), we have

Uπ∗true
(i, j)− Vπ∗true

(i, j) ≤ εc (C.22)

According to the equivalence of {g(t)} and {d(t)}, we know that the optimal

policy π∗appr of {d(t)} is also optimal for {g(t)}. Hence, we have

Uπ∗appr
(i, j) ≤ Uπ∗true

(i, j) (C.23)

because the cost from the optimal policy cannot be higher than the cost from any

other policy.

When using the policy π∗appr on {e(t)}, we get costs Vπ∗appr
(i, j). From (C.16), and

because Uπ∗appr
(i, j) is the optimal cost for {g(t)}, we have

Vπ∗appr
(i, j)− Uπ∗appr

(i, j) ≤ εUπ∗appr
≤ εc (C.24)

From (C.22), (C.23), and (C.24), we get

Vπ∗appr
(i, j)− Vπ∗true

(i, j) ≤ 2εc (C.25)

C.3. Proof of Proposition 4.5 229

which completes the proof.

C.4. Proof of Proposition 5.2 230

C.4 Proof of Proposition 5.2

We first introduce a few lemmas, with results used later in the proof.

Lemma C.1. For any instance j and configuration sequence λ, we have

∂D̃

∂xjλ
(x) = ∇y,zD̃ (y, z) · (ajλ,bjλ) (C.26)

Proof.

∂D̃

∂xjλ
(x) =

t0+T−1∑
t=t0

[
N∑
n=1

∂D̃

∂yn(t)
(x) · ∂yn(t)

∂xjλ
(x) +

N∑
n=1

N∑
h=1

∂D̃

∂znh(t)
(x) · ∂znh(t)

∂xjλ
(x)

]

=

t0+T−1∑
t=t0

[
N∑
n=1

∂D̃

∂yn(t)
(x) · ajλn(t)+

N∑
n=1

N∑
h=1

∂D̃

∂znh(t)
(x) · bjλnh(t)

]

= ∇y,zD̃ (y, z) · (ajλ,bjλ)

where we recall that yn(t) and znh(t) are functions of xjλ for all j and λ, thus they

are also functions of vector x.

Lemma C.2. For any instance j and configuration sequence λ, we have

∇xD̃ (x) · x = ∇y,zD̃ (y, z) · (y, z) (C.27)

Proof.

∇xD̃ (x) · x

=
M∑
j=1

∑
λ∈Λ

∂D̃

∂xjλ
(x) · xjλ

C.4. Proof of Proposition 5.2 231

=
M∑
j=1

∑
λ∈Λ

∇y,zD̃ (y, z) · (ajλ,bjλ) · xjλ

= ∇y,zD̃ (y, z) ·

(
M∑
j=1

∑
λ∈Λ

(ajλ,bjλ) · xjλ

)

= ∇y,zD̃ (y, z) · (y, z)

where the second step follows from Lemma C.1, the last step follows from the defi-

nition of vectors y, z, ajλ,bjλ.

We introduce some additional notations that are used in the proof below. Recall

that the values of vectors x, y, and z may vary over time due to service arrivals

and departures. Let x
(j)
j , y

(j)
j , and z

(j)
j respectively denote the values of x, y, and

z immediately after instance j is placed; and let x
(j)
j−1, y

(j)
j−1, and z

(j)
j−1 respectively

denote the values of x, y, and z immediately before instance j is placed. We note

that the values of x, y, and z may change after placing each instance. Therefore,

the notions of “before”, “after”, and “time” (used below) here correspond to the

sequence of service instance placement, instead of the actual physical time.

We then introduce vectors that only consider the placement up to the jth service

instance, which are necessary because the proof below uses an iterative approach.

Let xj , yj , and zj respectively denote the values of x, y, and z at any time after

placing instance j (where instance j can be either still running in the system or

already departed) while ignoring the placement of any subsequent instances j′ > j

(if any). This means, in vector xj , we set (xj)iλ , xiλ for any i ≤ j and λ,

and set (xj)iλ , 0 for any i > j and λ, although the value of xiλ at the current

time of interest may be non-zero for some i > j and λ. Similarly, in vectors yj

and zj , we only consider the resource consumptions up to instance j, i.e., (yj)nt ,∑j
i=1

∑
λ∈Λ aiλn(t)xiλ and (zj)nht ,

∑j
i=1

∑
λ∈Λ biλnh(t)xiλ for any n, h, and t.

We assume that the last service instance that has arrived before the current time

C.4. Proof of Proposition 5.2 232

of interest has index M , thus x = xM , y = yM , and z = zM .

Because an instance will never come back after it has departed (even if an in-

stance of the same type comes back, it will be given a new index), we have yj−1 ≤

y
(j)
j−1 and zj−1 ≤ z

(j)
j−1, where the inequalities are defined element-wise for the vector.

Define vj , D̃
(
y

(j)
j , z

(j)
j

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
to denote the increase in the sum

cost D̃(y, z) (or equivalently, D̃(x)) at the time when placing service j. Note that

after this placement, the value of D̃ (yj, zj) − D̃ (yj−1, zj−1) may vary over time,

because some services i ≤ j may leave the system, but the value of vj is only taken

when service j is placed upon its arrival.

Lemma C.3. When Assumption 5.1 is satisfied, for any M , we have

D̃ (xM) ≤
M∑
j=1

vj (C.28)

Proof. Assume that service j takes configuration λ0 after its placement (and before it

possibly unpredictably departs), then y
(j)
j −y

(j)
j−1 = ajλ0 and z

(j)
j −z

(j)
j−1 = bjλ0 . For

any time after placing instance j we define ∆yj , yj − yj−1 and ∆zj , zj − zj−1.

We always have ∆yj = ajλ0 , ∆zj = bjλ0 , if instance j has not yet departed from

the system, and ∆yj = ∆zj = 0 if j has already departed from the system.

Noting that D̃ (yj, zj) is convex non-decreasing (from Lemma 5.1), we have

D̃ (yj, zj)− D̃ (yj−1, zj−1)

= D̃ (yj−1 + ∆yj, zj−1 + ∆zj)− D̃ (yj−1, zj−1)

≤ D̃
(
y

(j)
j−1 + ∆yj, z

(j)
j−1 + ∆zj

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
(C.29)

≤ D̃
(
y

(j)
j−1 + ajλ0 , z

(j)
j−1 + bjλ0

)
− D̃

(
y0
j−1, z

0
j−1

)
(C.30)

= D̃
(
y

(j)
j , z

(j)
j

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
= vj

C.4. Proof of Proposition 5.2 233

where inequality (C.29) is because yj−1 ≤ y
(j)
j−1, zj−1 ≤ z

(j)
j−1 (see discussion above)

and due to the convex non-decreasing property of D̃ (yj, zj); inequality (C.30) is

because ∆yj ≤ ajλ0 , ∆zj ≤ bjλ0 and also due to the non-decreasing property of

D̃ (yj, zj).

We now note that D̃ (x0) = 0, where x0 = 0 and 0 is defined as a vector with all

zeros, thus y0 = z0 = 0. We have

M∑
j=1

vj ≥
M∑
j=1

[
D̃ (yj, zj)− D̃ (yj−1, zj−1)

]
= D̃ (xM)− D̃ (x0) = D̃ (xM)

Lemma C.4. When Assumption 5.1 is satisfied, for any j and λ, we have

vj ≤ φ
∂D̃

∂xjλ
(xM) (C.31)

where φ is a constant satisfying (5.12).

Proof. Assume that service j takes configuration λ0 after its placement (and before

it possibly unpredictably departs). Because we perform a greedy assignment in Al-

gorithm 5.3, we have

vj = D̃
(
y

(j)
j , z

(j)
j

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
= D̃

(
y

(j)
j−1 + ajλ0 , z

(j)
j−1 + bjλ0

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
≤ D̃

(
y

(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)

for any λ ∈ Λi.

C.4. Proof of Proposition 5.2 234

Then, we have

D̃
(
y

(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
− D̃

(
y

(j)
j−1, z

(j)
j−1

)
≤ ∇y,zD̃

(
y

(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
· (ajλ,bjλ) (C.32)

≤ ∇y,zD̃ (ymax + ajλ, zmax + bjλ) · (ajλ,bjλ) (C.33)

≤ φ∇y,zD̃ (yM , zM) · (ajλ,bjλ) (C.34)

= φ
∂D̃

∂xjλ
(xM) (C.35)

where “·” denotes the dot-product. The above relationship is explained as follows.

Inequality (C.32) follows from the first-order conditions of convex functions [56,

Section 3.1.3]. The definition of ymax and zmax in Proposition 5.2 gives (C.33). The

definition of φ in (5.12) gives (C.34). Equality (C.35) follows from Lemma C.1.

This completes the proof.

Using the above lemmas, we now proof Proposition 5.2.

Proof. (Proposition 5.2) Due to the convexity of D̃(x), from the first-order condi-

tions of convex functions [56, Section 3.1.3], we have

D̃(φψx∗M)− D̃(xM)

≥ ∇xD̃ (xM) · (φψx∗M − xM) (C.36)

= φψ∇xD̃ (xM) · x∗M −∇xD̃ (xM) xM (C.37)

=
M∑
i=1

∑
λ∈Λ

φψx∗iλ
∂D̃

∂xiλ
(xM)−∇xD̃ (xM) · xM (C.38)

= ψ

(
M∑
i=1

∑
λ∈Λ

x∗iλφ
∂D̃

∂xiλ
(xM)− ∇xD̃ (xM) · xM

ψ

)
(C.39)

where x∗iλ is the (i,λ)th element of vector x∗M . From Lemma C.4, we have

C.4. Proof of Proposition 5.2 235

Eq. (C.39) ≥ ψ

(
M∑
i=1

∑
λ∈Λ

x∗iλvi −
∇xD̃ (xM) · xM

ψ

)
(C.40)

= ψ

(
M∑
i=1

vi
∑
λ∈Λ

x∗iλ −
∇xD̃ (xM) · xM

ψ

)
(C.41)

From the constraint
∑

λ∈Λ x
∗
iλ = 1 and the definition of ψ, we get

Eq. (C.41) = ψ

(
M∑
i=1

vi −
∇xD̃ (xM) · xM

ψ

)
(C.42)

≥ ψ

(
M∑
i=1

vi − D̃(xM)

)
(C.43)

≥ 0 (C.44)

where the last equality follows from Lemma C.3. This gives (5.10).

Equation (5.11) follows from the fact that yn,j(t) and znh,j(t) are both linear in

xiλ.

The last equality in (5.13) follows from Lemma C.2 and the fact that D̃ (x) =

D̃ (y, z) as well as x = xM , y = yM , and z = zM .

C.5. Proof of Proposition 5.4 236

C.5 Proof of Proposition 5.4

Lemma C.5. For polynomial functions Ξ1(y) and Ξ2(y) in the general form:

Ξ1(y) ,
Ω∑
ρ=0

ω
(ρ)
1 yρ

Ξ2(y) ,
Ω∑
ρ=0

ω
(ρ)
2 yρ

where the constants ω(ρ)
1 ≥ 0 and ω(ρ)

2 ≥ 0 for 0 ≤ ρ < Ω, while ω(Ω)
1 > 0 and

ω
(Ω)
2 > 0, we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
=
ω

(Ω)
1

ω
(Ω)
2

Proof. When Ω = 0, we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
=
ω

(0)
1

ω
(0)
2

When Ω > 0, we note that limy→+∞ Ξ1(y) = +∞ and limy→+∞ Ξ2(y) = +∞,

because ω(Ω)
1 > 0 and ω(Ω)

2 > 0. We apply the L’Hospital’s rule and get

lim
y→+∞

Ξ1(y)

Ξ2(y)
= lim

y→+∞

dΞ1(y)
dy

dΞ2(y)
dy

= lim
y→+∞

∑Ω
ρ=1 ρω

(ρ)
1 yρ−1∑Ω

ρ=1 ρω
(ρ)
2 yρ−1

(C.45)

Suppose we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
= lim

y→+∞

∑Ω
ρ=k

(∏k−1
m=0(ρ−m)

)
ω

(ρ)
1 yρ−k∑Ω

ρ=k

(∏k−1
m=0(ρ−m)

)
ω

(ρ)
2 yρ−k

(C.46)

which equals to (C.45) for k = 1. For 1 ≤ k < Ω, we note that Ω−k > 0, hence the

numerator and denominator in the right hand-side (RHS) of (C.46) still respectively

C.5. Proof of Proposition 5.4 237

approach +∞ when y → +∞ (because ω(Ω)
1 > 0 and ω(Ω)

2 > 0). Let Ψ(k) denote

the RHS (C.46), we can reapply the L’Hospital’s rule on Ψ(k), yielding

Ψ(k) = lim
y→+∞

∑Ω
ρ=k+1

(∏(k+1)−1
m=0 (ρ−m)

)
ω

(ρ)
1 yρ−(k+1)∑Ω

ρ=k+1

(∏(k+1)−1
m=0 (ρ−m)

)
ω

(ρ)
2 yρ−(k+1)

= Ψ(k + 1)

which proofs that (C.46) holds for 1 ≤ k ≤ Ω. Therefore,

lim
y→+∞

Ξ1(y)

Ξ2(y)
= Ψ(Ω) =

ρ!ω
(Ω)
1

ρ!ω
(Ω)
2

=
ω

(Ω)
1

ω
(Ω)
2

Lemma C.6. For variables 0 ≤ y ≤ y′, 0 ≤ yn ≤ y′n, 0 ≤ yh ≤ y′h, 0 ≤ znh ≤ z′nh,

we always have

dun,t
dy

(y) ≤ dun,t
dy

(y′) (C.47)

∂wnh,t
∂Υ

(yn, yh, znh) ≤
∂wnh,t
∂Υ

(y′n, y
′
h, z
′
nh) (C.48)

where Υ stands for either yn, yh, or znh.

Proof. We note that
dun,t
dy

(y) =
∑
ρ

ργ
(ρ)
n,ty

ρ−1

from which (C.47) follows directly because γ(ρ)
n,t ≥ 0. We then note that

∂wnh,t
∂yn

(yn, yh, znh) =
∑
ρ1

∑
ρ2

∑
ρ3

ρ1κ
(ρ1,ρ2,ρ3)
nh,t yρ1−1

n yρ2h z
ρ3
nh

from which (C.48) follows for Υ = yn because κ(ρ1,ρ2,ρ3)
nh,t ≥ 0. Similarly, (C.48) also

follows for Υ = yh and Υ = znh.

C.5. Proof of Proposition 5.4 238

Lemma C.7. Let Ω denote the highest order of the polynomial cost functions. Specif-

ically, Ω , max{ρ; ρ1 + ρ2 + ρ3}, subject to γ(ρ)
n,t > 0 and κ(ρ1,ρ2,ρ3)

nh,t > 0. Assume

that the cost functions are defined as in (5.16) and (5.17), then for any constants

δ > 0, B ≥ 0, there exist sufficiently large values of y, yn, yh, znh, such that

dun,t
dy

(y +B)
dun,t
dy

(y)
≤ 1 + δ (C.49)

dun,t
dy

(y) · y
un,t(y)

≤ Ω + δ (C.50)

∂wnh,t
∂Υ

(yn +B, yh +B, znh +B)
∂wnh,t
∂Υ

(yn, yh, znh)
≤ 1 + δ (C.51)

∂wnh,t
∂Υ

(yn, yh, znh) ·Υ
wn,t(yn, yh, znh)

≤ Ω + δ (C.52)

for any n, h, t, where Υ stands for either yn, yh, or znh.

Proof. Let Ω′ denote the maximum value of ρ such that γ(ρ)
n,t > 0, we always have

Ω′ ≤ Ω. We note that

dun,t
dy

(y +B)
dun,t
dy

(y)
=

∑Ω′

ρ=1 ργ
(ρ)
n,t (y +B)ρ−1∑Ω′

ρ=1 ργ
(ρ)
n,ty

ρ−1
(C.53)

dun,t
dy

(y) · y
un,t(y)

=

∑Ω′

ρ=1 ργ
(ρ)
n,ty

ρ∑Ω′

ρ=1 γ
(ρ)
n,ty

ρ
(C.54)

According to Lemma C.5, we have

lim
y→+∞

dun,t
dy

(y +B)
dun,t
dy

(y)
=

Ω′γ
(Ω′)
n,t

Ω′γ
(Ω′)
n,t

= 1 (C.55)

lim
y→+∞

dun,t
dy

(y) · y
un,t(y)

=
Ω′γ

(Ω′)
n,t

γ
(Ω′)
n,t

= Ω′ (C.56)

where we note that after expanding the numerator in the RHS of (C.53), the constant

B does not appear in the coefficient of yΩ′−1.

C.5. Proof of Proposition 5.4 239

Now, define a variable q > 0, and we let yn = ζ1q, yh = ζ2q, znh = ζ3q, where

ζ1, ζ2, ζ3 > 0 are arbitrary constants. We also define ρ , ρ1+ρ2+ρ3. Using ζ1, ζ2, ζ3,

and q, we can represent any value of (yn, yh, znh) > 0. With this definition, we have

wnh,t (q) , wnh,t (ζ1q, ζ2q, ζ3q)

=
∑
ρ1

∑
ρ2

∑
ρ3

κ
(ρ1,ρ2,ρ3)
nh,t ζρ11 ζ

ρ2
2 ζ

ρ3
3 q

ρ1+ρ2+ρ3

=
Ω′′∑
ρ=1

(κ′)
(ρ)
nh,tq

ρ (C.57)

where the constant

(κ′)
(ρ)
nh,t ,

∑
{(ρ1,ρ2,ρ3):ρ1+ρ2+ρ3=ρ}

κ
(ρ1,ρ2,ρ3)
nh,t ζρ11 ζ

ρ2
2 ζ

ρ3
3

and Ω′′ is defined as the maximum value of ρ such that (κ′)
(ρ)
nh,t > 0. We always

have Ω′′ ≤ Ω. Note that (C.57) is in the same form as (5.16). Following the same

procedure as for obtaining (C.55) and (C.56), we get

lim
q→+∞

dwnh,t
dq

(q +B′)
dwnh,t
dq

(q)
=

Ω′′γ
(Ω′′)
n,t

Ω′′γ
(Ω′′)
n,t

= 1 (C.58)

lim
q→+∞

dwnh,t
dq

(q) · q
wn,t(q)

=
Ω′′γ

(Ω′′)
n,t

γ
(Ω′′)
n,t

= Ω′′ (C.59)

where B′ , B
min{ζ1;ζ2;ζ3} .

According to the definition of limits, for any δ > 0, there exist sufficiently large

values of y and q (thus yn, yh, znh), such that

dun,t
dy

(y +B)
dun,t
dy

(y)
≤ 1 + δ (C.60)

dun,t
dy

(y) · y
un,t(y)

≤ Ω′ + δ (C.61)

C.5. Proof of Proposition 5.4 240

dwnh,t
dq

(q +B′)
dwnh,t
dq

(q)
≤ 1 + δ (C.62)

dwnh,t
dq

(q) · q
wn,t(q)

≤ Ω′′ + δ (C.63)

for any n, h, t.

Because
dwnh,t
dq

(q +B′)
dwnh,t
dq

(q)
=

dwnh,t
d(ζq)

(q +B′)

dwnh,t
d(ζq)

(q)

dwnh,t
dq

(q) · q =
dwnh,t
d(ζq)

(q) · ζq

for any ζ > 0, we can also express the bounds (C.62) and (C.63) in terms of

yn, yh, znh, yielding

∂wnh,t
∂Υ

(yn + ζ1B
′, yh + ζ2B

′, znh + ζ3B
′)

∂wnh,t
∂Υ

(yn, yh, znh)
≤ 1 + δ (C.64)

∂wnh,t
∂Υ

(yn, yh, znh) ·Υ
wn,t(yn, yh, znh)

≤ Ω′′ + δ (C.65)

where Υ stands for either yn, yh, or znh. According to the definition of B′, we have

B ≤ ζ1B
′, B ≤ ζ2B

′, B ≤ ζ3B
′. From Lemma C.6, we have

∂wnh,t
∂Υ

(yn +B, yh +B, znh +B)

≤ ∂wnh,t
∂Υ

(yn + ζ1B
′, yh + ζ2B

′, znh + ζ3B
′) (C.66)

Combining (C.66) with (C.64) and noting that Ω′ ≤ Ω and Ω′′ ≤ Ω, together

with (C.60), (C.61), and (C.65), we get (C.49)–(C.52).

Lemma C.8. For arbitrary values ϑ1,k ≥ 0 and ϑ2,k ≥ 0 for all k = 1, 2, ..., K,

where ϑ1,k and ϑ2,k are either both zero or both non-zero and there exists k such that

C.5. Proof of Proposition 5.4 241

ϑ1,k and ϑ2,k are non-zero, if the following bound is satisfied:

max
{k∈{1,...,K}:ϑ1,k 6=0,ϑ2,k 6=0}

ϑ1,k

ϑ2,k

≤ Θ

then we have ∑K
k=1 ωkϑ1,k∑K
k=1 ωkϑ2,k

≤ Θ

for any ωk ≥ 0.

Proof. Because ϑ1,k ≤ Θϑ2,k for all k, we have

K∑
k=1

ωkϑ1,k ≤
K∑
k=1

ωkΘϑ2,k

yielding the result.

Lemma C.9. When Assumption 5.2 is satisfied and the window size T is a constant,

there exists a constant B ≥ 0 such that

(ymax + aiλ, zmax + biλ)− (y, z) ≤ Be (C.67)

for any i and any λ ∈ Λi, where e , [1, ..., 1] is a vector of all ones that has the

same dimension as (y, z).

Proof. We note that

(ymax + aiλ, zmax + biλ)− (y, z)

≤ (ymax + amaxey, zmax + bmaxez)− (y, z) (C.68)

≤ (amax (BdT + 1) ey, bmax (BdT + 1) ez) (C.69)

≤ max {amax (BdT + 1) ; bmax (BdT + 1)} · e (C.70)

where ey , [1, ..., 1] and ez , [1, ..., 1] are vectors of all ones that respectively have

C.5. Proof of Proposition 5.4 242

the same dimensions as y and z. Inequality (C.68) follows from the boundedness

assumption in Assumption 5.2. Inequality (C.69) follows by noting that the gap

between (ymax, zmax) and (y, z) is because of instances unpredictably leaving the

system before their maximum lifetime, and that there are at most T slots, at most Bd

instances unpredictably leave the system in each slot (according to Assumption 5.2).

Inequality (C.70) is obvious (note that the maximum is taken element-wise).

By setting B = max {amax (BdT + 1) ; bmax (BdT + 1)}, we prove the result.

We now proof Proposition 5.4.

Proof. (Proposition 5.4) We note that D̃ (y, z) sums up un,t(yn) and

wnh,t (yn, yh, znh) over t, n, h, as defined in (5.7).

The numerator in the RHS of (5.12) can be expanded into a sum containing terms

of either
dun,t
dy

((ymax + aiλ)nt)

or
∂wnh,t
∂Υ

((ymax + aiλ)nt , (ymax + aiλ)ht , (zmax + biλ)nht)

where Υ stands for either yn(t), yh(t), or znh(t), with either aiλn(t) or biλnh(t) as

weights. Because Assumption 5.2 is satisfied, according to (C.67) in Lemma C.9,

there exists a constant B ≥ 0 such that

(ymax + aiλ)nt ≤ yn(t) +B

(zmax + biλ)nht ≤ znh(t) +B

C.5. Proof of Proposition 5.4 243

for all n, h, t. From Lemma C.6, we have

dun,t
dy

(yn(t) +B) ≥ dun,t
dy

((ymax + aiλ)nt)

and

∂wnh,t
∂Υ

(yn(t) +B, yh(t) +B, znh(t) +B)

≥ ∂wnh,t
∂Υ

((ymax + aiλ)nt , (ymax + aiλ)ht , (zmax + biλ)nht)

Therefore, if

φ ≥ ∇y,zD̃ ((y, z) +Be) · (aiλ,biλ)

∇y,zD̃ (y, z) · (aiλ,biλ)
(C.71)

then (5.12) is always satisfied. Similar to the above, the numerator in the RHS of

(C.71) can be expanded into a sum containing terms of either dun,t
dy

(yn(t) +B) and

∂wnh,t
∂Υ

(yn(t) +B, yh(t) +B, znh(t) +B) with either aiλn(t) or biλnh(t) as weights.

Again, the denominator in the RHS of (5.12) (or equivalently, (C.71))

can be expanded into a sum containing terms of either dun,t
dy

(y(t)) or

∂wnh,t
∂Υ

(yn(t), yh(t), znh(t)), with either aiλn(t) or biλnh(t) as weights.

For any given i,λ, the terms dun,t
dy

(yn(t) + B) and dun,t
dy

(yn(t)) have the

same weight aiλn(t), and ∂wnh,t
∂Υ

(yn(t) + B, yh(t) + B, znh(t) + B) and

∂wnh,t
∂Υ

(yn(t), yh(t), znh(t)) have the same weight biλnh(t). According to Lemmas

C.7 and C.8, for any δ > 0, there exist sufficiently large values of y and z, such that

RHS of (C.71) ≤ 1 + δ

Following a similar reasoning, we know that, for any δ > 0, there exist sufficiently

large values of y and z, such that

RHS of (5.13) ≤ Ω + δ

C.5. Proof of Proposition 5.4 244

where we recall that Ω denotes the highest order of the polynomial cost functions,

i.e., Ω , max{ρ; ρ1 + ρ2 + ρ3}, subject to γ(ρ)
n,t > 0 and κ(ρ1,ρ2,ρ3)

nh,t > 0.

We assume sufficiently large y, z in the following, in which case we can set

φ = 1 + δ and ψ = Ω + δ while satisfying (C.71) (thus (5.12)) and (5.13).

We then note that from (5.16), (5.17), and the definition of Ω, we have

D̃(φψx∗) ≤ (φψ)ΩD̃(x∗)

= ((1 + δ)(Ω + δ))ΩD̃(x∗)

=
(
ΩΩ + δ′

)
D̃(x∗)

where δ′ , δΩ + δ + δ2 > 0 is an arbitrary constant (because δ is an arbitrary

constant). The first inequality is because of φ, ψ ≥ 1 and D̃(φψx∗) is a polynomial

of φψx∗ with maximum order of Ω, where we note that y and z are both linear in x.

We then have
D̃(x)

D̃(x∗)
≤ D̃(φψx∗)

D̃(x∗)
= ΩΩ + δ′ (C.72)

Until now, we have shown that (C.72) holds for sufficiently large y and z. Ac-

cording to Assumption 5.2, the number of instances that unpredictably leave the

system in each slot is upper bounded by a constant Bd. It follows that y and z in-

crease with M when M is larger than a certain threshold. Therefore, there exists a

sufficiently large M , so that we have a sufficiently large y and z that satisfies (C.72).

Hence, the competitive ratio upper bound can be expressed as

Γ , max
I(M)

Γ(I(M)) ≤ ΩΩ + δ′ (C.73)

for sufficiently large M .

C.5. Proof of Proposition 5.4 245

According to the definition of the big-O notation, we can also write

Γ = O(1) (C.74)

because Ω and δ′ are both constants in M .

C.5. Proof of Proposition 5.4 246

	Abstract
	Acknowledgments
	Related Publications
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Mathematical Notations
	Introduction
	Overview
	Initial Service Placement
	Real-Time Service Migration

	Motivation
	Summary of Contributions
	Organization of the Thesis

	Background of Dynamic Service Placement
	Definitions
	A Mixed-Integer Linear Program (MILP) Approach to Offline Service Placement
	Additional Definitions
	MILP Formulation
	Example Mapping Result

	Approximation Algorithms

	Online Placement of Application Graphs
	Introduction
	Related Work
	Our Approach
	Motivations and Main Results

	Problem Formulation
	Definitions
	Objective Function

	Basic Assignment Unit: Single Linear Application Graph Placement
	Problem Formulation
	Decomposing the Objective Function
	Optimal Algorithm
	Example
	Extensions

	Online Placement Algorithms for Tree Application Graphs
	Hardness Result
	When All Junction Node Placements Are Given
	When at Least One Junction Node Placement Is Not Given

	Numerical Evaluation
	Discussion
	Summary

	An MDP-Based Approach to Dynamic Service Migration
	Introduction
	Related Work
	Main Results

	Problem Formulation
	Control Decisions and Costs
	Performance Objective
	Characteristics of Optimal Policy
	Generic Notations

	Constant Cost Model under 1-D Mobility
	Definitions
	Optimal Threshold Policy
	Simplifying the Cost Calculation
	Algorithm for Finding the Optimal Thresholds
	Simulation Results

	Constant-Plus-Exponential Cost Model under 2-D Mobility
	Simplifying the Search Space
	Optimal Policy for Distance-Based MDP
	Approximate Solution for 2-D Mobility Model
	Application to Real-World Scenarios

	Discussion
	Summary

	Dynamic Service Placement with Predicted Future Costs
	Introduction
	Related Work
	Main Contributions

	Problem Formulation
	Definitions
	Actual and Predicted Costs
	Our Goal

	Offline Service Placement with Given Look-Ahead Window Size
	Procedure
	Equivalence to Shortest-Path Problem
	Algorithm

	Complexity Reduction and Online Service Placement
	Procedure
	Performance Analysis

	Optimal Look-Ahead Window Size
	Upper Bound on Cost Difference
	Characteristics of the Problem in (5.26)
	Finding the Optimal Solution

	Simulation Results
	Synthetic Arrivals and Departures
	Real-World Traces

	Summary

	Emulation-Based Study
	Introduction
	System Architecture
	Network Connection and User Mobility
	Service Model

	Packet Exchange and Placement Control
	Control Messages
	Packet Exchange and Control Procedure
	Service Placement Decisions

	Emulation Scenario and Results
	Summary

	Conclusions and Future Work
	Contributions and Conclusions
	Application Graph Placement
	MDP-Based Approach to Dynamic Service Migration
	Dynamic Service Placement with Predicted Future Costs
	Emulation-Based Study

	Future Work

	Bibliography
	Approximation Ratio for Cycle-free Mapping
	Constant-Plus-Exponential Cost Approximation to General Cost Functions
	Proofs
	Proof of Proposition 3.3
	Proofs of Proposition 4.1 and Corollary 4.1
	Proof of Proposition 4.1
	Proof of Corollary 4.1

	Proof of Proposition 4.5
	Proof of Proposition 5.2
	Proof of Proposition 5.4

