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RED/LED: An Asymptotically Optimal and
Scalable Online Algorithm for Service Caching

at the Edge
Tao Zhao, I-Hong Hou, Shiqiang Wang, and Kevin Chan

Abstract—Edge servers, which are small servers located close
to mobile users, have the potential to greatly reduce delay and
backhaul traffic of mobile Internet applications by moving cloud
services to the edge of the network. Due to limited capacity of
edge servers and dynamic request arrival, proper service caching
at the edge is essential to guarantee good performance. This
paper proposes a tractable online algorithm called retrospective
download with least-requested deletion (RED/LED) that caches
services dynamically without any assumptions on the arrival
patterns of mobile applications. We evaluate the competitive
ratio of our policy, which quantifies the worst-case performance
in comparison to an optimal offline policy. We prove that the
competitive ratio of our policy is linear with the capacity of the
edge server. We also show that no deterministic online policy can
achieve a competitive ratio that is asymptotically better than ours.
Moreover, we prove that our policy is scalable, in the sense that
it only needs doubled capacity to achieve a constant competitive
ratio. The utility of our online policy is further evaluated on real-
world traces. These trace-based simulations demonstrate that our
policy has better, or similar, performance compared to many
intelligent offline policies.

Index Terms—Competitive ratio, edge computing, online algo-
rithms, optimal scheduling, service caching.

I. INTRODUCTION

MANY emerging mobile applications rely on cloud com-
puting technology to greatly expand the capability of

resource-constrained mobile devices. In a typical scenario, a
mobile device sends a request, such as a picture containing
text in a foreign language, to a remote cloud, which is
often hosted by a remote data center. The remote cloud then
generates a response, such as translations of the text, using
its massive computational power and storage. However, the
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long distance between mobile devices and remote clouds can
result in significant delay and severe burden on the backhaul
connection, which can limit the development of real-time and
data-intensive applications. The concept of edge computing,
also known as cloudlets, fog computing, etc., has been pro-
posed to address this issue [2]–[4]. In edge computing, small
edge servers are deployed close to mobile users, such as at the
locations of cellular base stations or WiFi access points. These
edge servers can host a small number of popular services,
and provide timely response to local user requests directly
without communicating with remote clouds. Edge servers are
not necessarily real “servers”. They can be, for example, home
WiFi routers in smart home environment, as suggested in [5].

Edge servers have limited computational power and storage
compared to remote clouds. Thus, they can only “cache” a
small number of services, out of all the available services
hosted by the remote cloud [6], [7]. In this paper, we say
that a service is cached at the edge server when the entire
set of code and data required for service execution has been
downloaded from the remote cloud to the edge server. The
edge server can fully execute a cached service on its own,
without interacting with the remote cloud. Since the arrivals of
service requests from mobile devices can be highly dynamic,
proper service caching at the edge is essential to guarantee
good performance, and it is challenging to find the optimal
caching policy that determines which services to cache at the
edge server.

A. Motivation
While there have been studies on optimal service caching

at the edge, most of them assume either that the edge servers
have reasonably good predictions about future requests [8], [9],
or that the arrivals of requests follow a pre-specified stochas-
tic process [10]–[14]. These studies then use predictions or
stochastic models to determine the services that the edge
servers should cache to achieve the optimal average perfor-
mance. However, newly emerging services can be challenging
to predict or model in advance. Besides, as suggested by a real-
world trace of requests at the cloud [15], the request arrival
patterns can change frequently over time, which are difficult
to timely predict or model as a known stochastic process. In
addition, predictions are generally imperfect. Algorithms that
rely on predictions or stochastic models can result in poor
performance for these systems. Further, many mission-critical
systems require “worst-case” performance guarantees, instead
of “average” performance guarantees.
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In this paper, we study online algorithms that determine
which services to cache at the edge dynamically without
making any assumptions on the arrival patterns of requests.
We focus on deterministic policies since they have predictable
system behavior and are generally more robust in practice. We
consider an edge server that can cache only a limited number
of services. When a request arrives but its service is not cached
at the edge server, the edge server has two options: It can either
forward the request to the remote cloud for processing, or it
can download and cache the service so that it can directly serve
the requests for this service in the future. Both options have a
cost, which can reflect the delay and the network bandwidth
usage. We assume the cost of downloading a service is larger
than the cost of forwarding a request. This is motivated by the
fact that forwarding a request to a remote cloud for processing
has a response time that is usually within a second, as shown
by the experimental results presented in [16]. Downloading a
service, which entails both downloading necessary files and
setting up a virtual machine or container, takes at least several
seconds according to recent experimental studies [17]–[19].

We aim to design online algorithms that result in a small
total cost, including the cost of forwarding requests and
downloading services, for any sequence of request arrivals. As
online algorithms have no knowledge about future arrivals, we
evaluate the performance of an online policy by its competitive
ratio, defined as the largest possible ratio between the cost
of the online policy and the minimum (optimal) offline cost,
under any sequence of arrivals. While this problem may
seem to bear some similarities with the classic data caching
problem, we note that the option of forwarding a request,
and the significant difference between the costs of forwarding
a request and downloading a service, make the problem of
service caching fundamentally different from the problem of
data caching. In fact, as we will demonstrate in Section IX,
the Belady’s algorithm, a well-known optimal offline policy
for data caching, performs poorly for service caching.

B. Main Contribution

We first focus on a homogeneous system where all services
require the same amount of computational power and storage,
and they have the same forward cost as well as the same
download cost.1 Using an observation of the optimal offline
policy, we propose an online policy, retrospective download
with least-requested deletion (RED/LED), for service caching
at the edge, which is easy to implement in practice. We prove
that the competitive ratio of our RED/LED policy only grows
linearly with the capacity of the edge server. We further prove
that no deterministic online policy can achieve a competitive
ratio that is sublinear with the capacity of the edge server.
Therefore, our RED/LED policy indeed achieves the optimal
asymptotic performance. Moreover, we prove that our policy is
scalable, in the sense that if the capacity of the edge server is
doubled for RED/LED, it can achieve a constant competitive
ratio with regard to the optimal offline batch-download policy.

We then address several practical issues of RED/LED.
We demonstrate that it can be implemented as an algorithm

1The download cost is different from the forward cost.

with linear time complexity. We also propose an extension of
RED/LED for heterogeneous systems where different services
may be associated with different costs and require different
amounts of edge-server resources.

We evaluate the performance of our RED/LED policy using
real-world traces of service request arrivals. We compare
our policy against a randomized online policy, the optimal
offline batch-download policy, and three other offline policies
that correspond to solutions based on dynamic programming,
stochastic optimization, and data caching respectively. We note
that the time complexity of the optimal offline algorithm is
very high, and all the offline policies have complete knowledge
of all future arrivals. Each of the offline policies achieves the
optimal performance under some specific scenarios. Simula-
tion results show that our policy achieves better, or at least
similar, performance compared to all these policies in both
homogeneous and heterogeneous systems.

The rest of the paper is organized as follows. Section II
reviews related studies. Section III formally describes the ser-
vice caching problem. Section IV introduces our online policy
based on a property of the optimal offline policy. Section V
derives the competitive ratio of our policy. Section VI proves
that no deterministic online policy can be asymptotically better
than ours. Section VII shows the scalability of our policy.
Section VIII addresses practical issues including heteroge-
neous systems and low complexity implementation. Section
IX compares our policy against several others through trace-
based simulations. Finally, Section X concludes the paper.

II. RELATED WORK

The dramatic increase in network traffic, particularly due
to the proliferation of mobile devices and Internet of Things
(IoT), has made it critical to move some computing and
storage jobs from remote data centers to the edge of the
network. There have been a number of architecture proposals
of edge computing in the literature [2]–[4], [7], [20]–[22]. The
utility of edge computing has been demonstrated by various
prototypes [5], [23], [24]. Comprehensive surveys on this new
paradigm have been published recently [25], [26].

To address the challenge of managing limited resources of
edge servers, some studies rely on an accurate prediction of
future requests. Tadrous et al. [8] have considered systems
where one can predict the popularity of services, so that
edge servers can proactively download and replicate popular
services during off-peak hours. Llorca et al. [9] have studied
the content placement problem and proposed an optimal offline
policy. Wang et al. [21] have proposed an online algorithm
with polynomial time complexity to minimize the long-term
average cost. Yang et al. [27] have studied the joint optimiza-
tion of service placement and load dispatching. Unlike these
existing studies, in this paper we investigate online policies
which assume no knowledge about future requests.

Besides, there are many studies that employ stochastic
optimization for service caching at the edge. Amble et al.
[10] have considered a system where request arrivals follow
an independent and identically distributed (i.i.d.) stochastic
process with unknown distribution, and proposed a stochastic
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control policy that maximizes the capacity region of the
system. Borst et al. [12] have proposed an algorithm for a static
system where the popularity of services does not change over
time. On the other hand, Wang et al. [13] and Urgaonkar et al.
[14] have considered dynamic systems where request arrivals
are modeled as a Markov process, and proposed solutions that
achieve the optimal long-term average performance. Qiu et
al. [11] have employed Lyapunov optimization to maximize
the performance of edge servers. However, these solutions
based on stochastic optimization cannot provide “worst-case”
performance guarantees with regard to an optimal offline
policy. Our work, on the other hand, addresses such issues.

The problem of service caching at the edge bears some
similarities with the classic data caching problem in computer
architecture. In the data caching problem, requests for data
arrive sequentially, and a “miss” occurs when the data is not
stored in the cache. The requested data is then downloaded,
and a policy needs to decide which data to delete to minimize
the total number of misses. When one has complete knowledge
of all future requests, the Belady’s algorithm [28] achieves
the optimal performance. As for online policies without any
knowledge of future requests, Sleator and Tarjan [29] have
established a least recently used (LRU) policy that is optimal
among all deterministic policies. They have also showed that
LRU has a constant competitive ratio if its cache capacity is a
constant factor of that of the optimal offline policy. Achlioptas
et al. [30] have studied the competitive ratios of randomized
policies. Bansal et al. have investigated the weighted case
where the download costs vary for different data [31]. Despite
the similarities, there are notable differences between the data
caching problem and the service caching problem. In the data
caching problem, one cache miss implies one download with
some cost, and forwarding is disallowed. However, in the
service caching problem, forwarding is permitted and incurs a
smaller cost than downloading, and a policy needs to decide
whether to download a service in addition to which service to
delete.

III. SYSTEM MODEL

We consider an edge-cloud system as illustrated in Fig. 1.
An edge server and a back-end cloud are connected through a
backhaul connection. The edge server and the back-end cloud
jointly host a set S of services, numbered as S1, S2, . . . . The
services in the system include face detection, video streaming,
translation, smart home services and so on [5], [17]. The back-
end cloud has massive capacity, and can host all services. On
the other hand, the edge server has limited capacity and can
only cache K services. Without loss of generality, we assume
that, when the system starts, the edge server caches services
S1, S2, . . . , SK .

Requests for services arrive at the edge server sequentially.
Requests from different mobile devices can arrive at and be
processed by the edge server either on a first-come-first-served
basis, or based on some other scheduling mechanism using
queues/buffers. We use rn ∈ S to denote the service requested
by the n-th request. If rn is cached by the edge server when
the request arrives, then the edge server can serve the request

ڮଶݎଵݎ ଵܵڭ Forward ݎ: cost = 1
Download ܵ: cost = ܵܯ ॺ = { ଵܵ, ܵଶ, ڮ }

Fig. 1. An illustration of the edge-cloud system. The back-end cloud can
host all services S, while the edge server can only cache a subset of size K.
Requests can incur different costs depending on which services are cached at
the edge.

immediately without causing any significant cost. On the other
hand, if rn is not cached by the edge server, then the edge
server has two choices: First, it can forward this request to
the back-end cloud for processing. This will cause some delay
as well as some traffic on the backhaul connection. We say
that forwarding a request to the back-end cloud incurs a cost
of one unit. Second, the edge server can instead download
and replicate the whole service rn and serve the request.
Downloading a service can cause much higher delay and more
traffic. Therefore, we say that each service download incurs a
cost of M units, with M ≥ 1. In practice, we can choose M
as the ratio of the average delay of downloading to the average
delay of forwarding. On the other hand, since the edge server
caches the service rn after the download, it can then serve
subsequent requests for rn without incurring any costs. The
edge server can only cache K services. Therefore, when it
downloads a service, it also needs to delete a service from its
storage.

We aim to minimize the total cost of the system by
intelligently reconfiguring the set of services cached by the
edge server. Intuitively, if we know that a service will have
a lot of requests in the near future, we should download this
service so that all these requests only incur M units of cost.
Otherwise, we should simply forward all these requests to the
back-end cloud without downloading the service, and pay one
unit of cost for each request. In practice, however, we may not
have accurate prediction for future requests. In such cases, we
need to rely on online policies that assume no information
about future requests.

Let OPT be the optimal offline policy that minimizes the
total cost of the system, which has full information about all
future request arrivals. Let η be an online policy that makes its
decision solely based on past events. For a given sequence of
request arrivals, r1, r2, . . . , let COPT be the total cost of OPT,
and Cη be the total cost of η. Note that the total costs, COPT
and Cη , are functions of the sequence r1, r2, . . . , but we omit
the sequence to simplify the notation. There may be multiple
offline policies that achieve the minimum cost. In this case,
we let OPT be one that makes the most downloads among
them. We evaluate the performance of an online policy η by
its competitive ratio, which is the largest possible value of
Cη/COPT, over all possible sequences of request arrivals.

Definition 1 (Competitive Ratio): An online policy η is said
to be β-competitive, or have a competitive ratio of β, if Cη ≤
βCOPT, for every possible sequence of request arrivals.

An online policy with a low competitive ratio has similar
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Time

ଵ ଶ ଵ ଶ
After the ݊-th arrival,OPT ݊ = { ଵܵ, ܵଶ}

ଶ ଷ ଶ ଷ
Fig. 2. An example illustrating operations of OPT and RED/LED. The
first n arrivals are S1, S2, . . . , S1, S2, and the next 4M arrivals are
S2, S3, . . . , S2, S3.

performance with the optimal offline policy. Therefore, we
aim to develop an online policy with a low competitive ratio,
as well as a lower bound of competitive ratios for all online
policies.

For brevity, we say that a policy caches a service if, under
the said policy, the edge server caches the service. To facilitate
the analysis, let ζ(n) ⊂ S denote the subset of services cached
by a policy ζ, online or offline, after the n-th arrival, for a
given sequence of request arrivals, r1, r2, . . . . Again, note that
ζ(n) is a function of the sequence of arrivals. For a service Si,
we use xi(n) := 1{rn = Si} to indicate whether or not the n-
th request is for this service. For brevity, let [n,m] denote the
inclusive time interval between the n-th and the m-th arrival.2

Therefore,
∑m
l=n xi(l) is the number of requests for Si during

[n,m].
Before proceeding to the next section, we note that the

system model in this section is a homogeneous one: All
services have the same cost of forwarding requests, and the
same cost of downloading. Moreover, all services require the
same amount of edge-server resources. While our analytical
results mainly focus on the homogeneous system, we will
show that our policy can be easily extended to heterogeneous
systems in Section VIII, and it works very well in evaluation
in Section IX.

IV. THE RED/LED ONLINE POLICY

In this section, we first establish a basic property of OPT,
and then use it to develop our online policy RED/LED.

A. A Basic Property of OPT

Theorem 1: Suppose we are given a sequence r1, r2, . . . ,
and OPT(n), which is the subset of services cached by OPT
after the n-th arrival. If there exists an integer m > n, a service
Si /∈ OPT(n), and another service Sj ∈ OPT(n) such that:

m∑
l=n+1

xi(l) ≥
m∑

l=n+1

xj(l) + 2M, (1)

then OPT downloads at least one service during [n+ 1,m].
Before proving Theorem 1, we first use Fig. 2 for illus-

tration. Suppose the first n arrivals are S1, S2, . . . , S1, S2,
and the edge server can cache two services. After the n-
th arrival, OPT caches S1 and S2. Between the (n + 1)-th
arrival and the (n + 4M)-th arrivals, we have 2M requests
for S3 and no requests for S1, that is,

∑n+4M
l=n+1 x1(l) = 0,

2Throughout this paper, [n,m] = {n, n+1, . . . ,m}. Time refers to indices
of request arrivals, which are not necessarily physical time.

and
∑n+4M
l=n+1 x3(l) = 2M . Theorem 1 then states that OPT

downloads at least one service during [n+ 1, n+ 4M ]. Note
that Theorem 1 does not specify which service to download,
and which service to delete from the edge server.

Proof of Theorem 1: We now prove Theorem 1 by
contradiction. Suppose OPT does not download any service,
and therefore does not delete any service, during [n + 1,m].
That is, OPT(l) = OPT(n), for all n+ 1 ≤ l ≤ m.

We construct a different policy ξ as follows: ξ caches the
same subset of services as OPT before the n-th arrival and
after the (m + 1)-th arrival, that is, ξ(l) = OPT(l), for all
l ≤ n, and all l ≥ m+ 1. After the n-th arrival, ξ downloads
Si and deletes Sj so that ξ(n+ 1) = OPT(n) \ {Sj} ∪ {Si}.
After the m-th arrival, ξ downloads Sj and deletes Si, and then
follows the same decisions that OPT makes so that ξ(m+1) =
OPT(m+ 1).

We now compare the costs of ξ and OPT. Since ξ and OPT
are the same before the n-th arrival and after the m-th arrival,
they incur the same amount of costs in these two durations.
Between the n-th arrival and the m-th arrival, ξ downloads
two services and OPT downloads none. Therefore, ξ needs to
pay 2M units of cost. Meanwhile, ξ needs to pay one unit
cost for each request for Sj , and there are

∑m
l=n+1 xj(l) of

them, while OPT needs to pay one unit cost for each of the∑m
l=n+1 xi(l) requests for Si. The two policies incur the same

amount of costs for all other requests. In summary, we have:

Cξ = COPT + 2M +

m∑
l=n+1

xj(l)−
m∑

l=n+1

xi(l) ≤ COPT,

where the last inequality follows by (1). Therefore, ξ also min-
imizes the total cost. Moreover, ξ makes two more downloads
than OPT. Recall that OPT is defined as the policy that makes
the most downloads among all policies with minimum cost.
The existence of ξ therefore contradicts with assumptions of
OPT.

B. The RED/ LED Online Policy
We now introduce our online policy. The policy needs to

consist of two parts: deciding whether to download a service,
and, when a download occurs, deciding which service to delete
from the edge server. We propose the retrospective download
with least-requested deletion (RED/LED) policy that uses a
retrospective download (RED) policy for the first part, and
a least-requested deletion (LED) policy for the second part.
We use RL(n) to denote the subset of services cached by
RED/LED after the n-th request arrival.

RED is used to determine whether to download a service,
and is formally defined as follows:

Definition 2 (RED): When a request rn = Si /∈ RL(n− 1)
arrives, RED downloads and replicates Si at the edge server
if there exists an integer τ and a service Sj such that for all
n− τ ≤ l ≤ n− 1, Sj ∈ RL(l) and Si /∈ RL(l), and

n∑
l=n−τ

xi(l) ≥
n∑

l=n−τ

xj(l) + 2M. (2)

The intuition of RED comes from Theorem 1. Suppose
Sj ∈ OPT(n − τ), Si /∈ OPT(n − τ), and (2) holds. Then
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ଵ ଶ ଵ ଶ
1st frame 

begins

RED/LED

downloads ܵଷ
ଶ ଷ ଶ ଷ

2nd frame 

begins

ܯߩʹ requests 

for ܵଷʹሺͳ − ܯሻߩ
requests for ܵଷ

Fig. 3. An example for dividing the costs into frames.

Theorem 1 states that OPT downloads at least one service
between the (n− τ)-th arrival and the n-th arrival. RED then
downloads Si when, in retrospect, it finds OPT would have
already downloaded a service.

When RED decides to download a service, we need to
choose a service to delete from the edge server. We propose
a least-requested deletion (LED) policy as follows:

Definition 3 (LED): Suppose the edge server decides to
download a service at the n-th arrival. For each service Si
currently cached by the edge server, let τi be the smallest
integer such that there are at least 2M requests for Si in the
past τi arrivals, that is,

∑n
l=n−τi xi(l) ≥ 2M . LED deletes

the service with the largest τi.
A service with larger τi needs to go further back in time to

find at least 2M requests. LED therefore deletes the service
that is least requested starting from n− τi.

RED/LED uses RED to decide whether to download a
service, and LED to decide which service to delete. We
use Fig. 2 to illustrate the operation of RED/LED. Suppose
RL(n) = {S1, S2}, that is, RED/LED caches S1 and S2

after the n-th arrival. At the (n + 4M)-th arrival, we find
that

∑n+4M
l=n+1 x3(l) = 2M ≥

∑n+4M
l=n+1 x1(l) + 2M , and RED

decides to download S3 at the (n+4M)-th arrival. Meanwhile,
during [n+1, n+4M ], there are 2M requests for S2 and none
for S1. We then have τ1 > τ2, and LED decides to delete S1

to accommodate S3.

V. THE COMPETITIVE RATIO OF RED/LED

This section establishes the competitive ratio of RED/LED
by proving the following theorem:

Theorem 2: RED/LED is 10K-competitive, where K is the
number of services that can be cached by the edge server.

A. Overview of the Proof

We will compare the performance of RED/LED and OPT.
Given OPT and the arrival sequence, we can divide the arrival
sequence into frames, [t1 + 1, t2], [t2 + 1, t3], . . . , so that OPT
downloads services only at the beginning of frames, i.e., after
the t1-th, t2-th, . . . , arrivals. Before the first download under
OPT, there must be no download under RED/LED due to its
retrospective nature. Therefore, RED/LED and OPT behave
the same during [1, t1], and below we will focus on the
performance in frames [t1 + 1, t2], [t2 + 1, t3], . . . .

We will define the costs of OPT and RED/LED in each
frame. We define the cost of OPT in a frame as the sum
of the download cost at the beginning of the frame and all
the costs of forwarding requests to the back-end cloud during

the frame. On the other hand, it can be challenging to define
the cost of RED/LED in each frame properly. Consider the
example in Fig. 3. RED/LED downloads S3, and incurs M
units of download cost, shortly after the second frame begins.
The decision to download S3 actually involves many requests
in the first frame. It is then unreasonable to count all the M
units of download cost against the second frame. Instead, we
separate the M units of download cost as follows: Suppose
there are only 2ρM , where ρ < 1, requests for S3 in the
second frame when RED/LED downloads it, we say that the
download is a partial download of fraction ρ, and only incurs
ρM units of cost. At the same time, another partial download
of fraction (1 − ρ) occurs at the end of the first frame, and
incurs (1−ρ)M units of cost. This separation does not change
the total cost of RED/LED. To further simplify the notation
in the next subsection, we say that, at the end of a frame,
all services not cached by RED/LED have a partial download,
possibly with fraction 0. The cost of RED/LED in a frame will
then consist of all the download costs, including those from
partial downloads, and all the costs of forwarding requests to
the back-end cloud, in this frame.

Below, we will calculate the costs of OPT and RED/LED in
each frame, and prove Theorem 2 by showing that RED/LED
incurs at most 10K times as much cost as OPT in each frame.

B. Costs in a Frame

Without loss of generality, we calculate the costs in a frame
[tg+1, tg+1]. We use COPT(g) and CRL(g) to denote the costs
of OPT and RED/LED in this frame, respectively.3

We first consider a service Si ∈ OPT(tg + 1). In the frame,
let Ei ∈ Z be the number of times RED/LED downloads Si,
and Di ∈ Z be the number of times RED/LED deletes Si.4

Note we have Di ≥ Ei − 1, as a service needs to be deleted
first in order to be downloaded again. Let fi,z be the number
of requests for Si that RED/LED forwards to the back-end
cloud within the z-th interval of Si not being cached at the
edge server, i.e., after the previous deletion and before the next
download of Si, in this frame. Fig. 4 illustrates an example of
the downloads and deletions of Si in a frame, as well as the
definition of fi,z . Si then incurs at most

EiM +
∑
z

fi,z (3)

units of cost under RED/LED.
On the other hand, we have the following lemma for OPT:
Lemma 1: Suppose there exist integers n < m and a service

Si such that for all n ≤ l ≤ m, OPT(l) = OPT(n), Si ∈
OPT(l), and Si /∈ RL(l), then the number of requests that
OPT forwards to the back-end cloud during [n,m] is at least∑m
l=n xi(l)− 4M .

Proof: See Appendix A.
By Lemma 1, if fi,z > 4M for some i, z, then during the

time of these fi,z requests for Si, OPT forwards at least fi,z−

3There can be partial downloads of services under RED/LED during [1, t1].
In this case, CRL ≤ 1.5COPT during [1, t1] and the proof is a special case of
the latter proof.

4Ei includes partial downloads and each partial download counts as one.
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Time ݂,ଵ requests for ܵ

1st download of ܵ
(possibly a partial one)

1st deletion 

of ܵ
ܵ א RLሺ݊ሻ

݂,ଶ ≥  requests	ܯʹ

for ܵ

2nd download 

of ܵ
ܵ א RLሺ݊ሻ

݂,ா requests for ܵ

Last deletion 

of ܵ Last download of ܵ
(possibly a partial one) 

Beginning of the frame End of the frame

݂,ாିଵ ≥ ܯʹ requests 

for ܵ

ሺܧ−ͳሻth

download of ܵ
ܵ ב RLሺ݊ሻ ܵ ב RLሺ݊ሻ ܵ ב RLሺ݊ሻ ܵ ב RLሺ݊ሻ

ሺܧ−ʹሻth

deletion of ܵ

Fig. 4. An example of the downloads and deletions of Si in a frame.

4M requests to the back-end cloud, and incurs at least fi,z −
4M units of cost. Apply this argument for all z, and we have
COPT(g) ≥

∑
z(fi,z − 4M)+ +M , where x+ := max{0, x}.

The last term M is the download cost at the beginning of the
frame. Let SOPT := {i ∈ Z | Si ∈ OPT(tg + 1)} denote the
set of indices of services that are cached by OPT in the g-th
frame. We now have the first bound on COPT(g):

COPT(g) ≥ max
i∈SOPT

Ei∑
z=1

(fi,z − 4M)+ +M

≥ max
i∈SOPT

(
Ei∑
z=1

fi,z − 4MEi

)
+M =: B1. (4)

Next, we consider the deletions of Si. We have the following
lemma for OPT.

Lemma 2: Suppose RED/LED deletes a service Si at the
n-th arrival and at the m-th arrival, n < m, and for all n ≤
l ≤ m, OPT(l) = OPT(m), then OPT forwards at least 2M
requests to the back-end cloud during [n,m].

Proof: See Appendix B.
By Lemma 2, for every z > 1, OPT forwards at least 2M

requests between the (z− 1)-th deletion and the z-th deletion
of Si. This gives us the second bound on COPT(g):

COPT(g) ≥ max
i∈SOPT

2M(Di − 1) +M

≥ max
i∈SOPT

2MEi − 3M =: B2. (5)

Finally, we consider a service Sj /∈ OPT(tg + 1). Let
S{OPT := {j ∈ Z | Sj ∈ S \ OPT(tg + 1)} denote the set
of indices of services that are not cached by OPT in the g-
th frame. Suppose there are Aj requests for Sj in this frame.
OPT needs to forward all these requests to the back-end cloud,
for all Sj /∈ OPT(tg + 1), which gives us the third bound on
COPT(g):

COPT(g) ≥
∑
j∈S{

OPT

Aj +M =: B3. (6)

On the other hand, RED/LED might either forward or
download for each request for Sj . With the concept of partial
download, each request for Sj incurs a download cost of at
most M

2M = 0.5 in proportion, since at least 2M requests for
Sj in retrospect are needed for RED to make one download
of Sj . Besides, one request incurs at most one unit of forward
cost. Hence, Aj requests for Sj incur at most

(1 + 0.5)Aj = 1.5Aj (7)

units of cost.
Combining (3) and (7) gives us a bound on CRL(g):

CRL(g) ≤
∑
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑
j∈S{

OPT

1.5Aj (8)

We are now ready to prove Theorem 2.
Proof of Theorem 2:

CRL(g) ≤
∑
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑
j∈S{

OPT

1.5Aj

≤ K

max
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑
j∈S{

OPT

1.5Aj


≤ K

max
i∈SOPT

(
EiM +

∑
z

fi,z

)
+
∑
j∈S{

OPT

6.5Aj


= K(B1 + 2.5B2 + 6.5B3) ≤ 10KCOPT(g),

for every frame.

VI. LOWER BOUND OF THE COMPETITIVE RATIO

In this section, we prove that the competitive ratio of any
deterministic online policy is at least K. Since the compet-
itive ratio of RED/LED is 10K = Θ(K), this implies that
RED/LED is asymptotically optimal among all deterministic
online policies with respect to K, i.e. RED/LED performs at
most a constant factor worse than the best deterministic online
policy for large K.

Theorem 3: The competitive ratio of any deterministic
online policy is at least K.

Proof: Given a deterministic online policy η, we con-
struct a sequence of arrivals as follows: When the system
starts, the first N1 arrivals are all requests for a service
Z1 /∈ {S1, S2, . . . , SK}. Recall that the edge server caches
services {S1, S2, . . . , SK} when the system starts. Therefore,
the service Z1 is not initially cached by the edge server. If
η never downloads Z1, then we choose N1 to be arbitrarily
large, and the system ends after N1 arrivals of Z1. In this case,
OPT can download Z1 at the first arrival, and only incurs a
cost of M , while η incurs a cost of N1. The competitive ratio
of η is then N1

M , which can be made arbitrarily large. From
now on, we can assume that η downloads Z1 after a finite
number of requests for Z1, and choose the value of N1 so that
η downloads Z1, and deletes a service, after N1 arrivals of Z1.
Let Z2 ∈ {S1, S2, . . . , SK} be the service that η deletes.
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Fig. 5. An example for the proof of Theorem 3.

We construct the remaining of the sequence of arrivals
iteratively: For all k = 2, 3, . . . ,K, there are Nk requests
for service Zk after the first

∑k−1
l=1 Nl arrivals. If η never

downloads Zk, we can make the competitive ratio arbitrarily
large by choosing Nk to be arbitrarily large. Therefore, we
can assume that η downloads Zk after a finite number of
requests for Zk, and choose Nk to be that number. Let
Zk+1 ∈ {S1, S2, . . . , SK , Z1} be the service that η deletes
when it downloads Zk. The system ends after the last NK
requests for ZK . Fig. 5 illustrates such a sequence.

By the construction of our sequence, η makes K down-
loads and therefore incurs a cost of at least KM . On the
other hand, there are at most K different services among
{S1, S2, . . . , SK , Z1} that have any requests in this sequence.
Therefore, at least one service in {S1, S2, . . . , SK} does not
have any requests. Let Z∗ be that service. An offline policy
can then download Z1 and delete Z∗ when the system starts.
This only incurs a cost of M , as all subsequent requests are
directly served by the edge server. Therefore, the competitive
ratio is at least KM

M = K.

VII. SCALABILITY OF RED/LED

Theorem 3 describes a rather pessimistic result: the compet-
itive ratio of any deterministic online policy at best increases
with the capacity of the edge server. In this section, we
consider improving the scalability of online policies by provi-
sioning additional capacity to the edge server. We show that,
by doubling the capacity of the edge server, our RED/LED
policy achieves a constant relative cost in comparison with the
optimal offline batch-download policy, which will be defined
below.

A. Definitions

Definition 4 (Batch-download policy): A policy is said to be
a batch-download policy if, whenever it makes a download,
it downloads K services to the edge server, and incurs a
download cost of KM .

Definition 5 (OPTb): A policy is an optimal offline batch-
download policy and denoted by OPTb, if it minimizes the
total cost of the system under any sequence of request arrivals,
with full knowledge of the request sequence, among all batch-
download policies.

Obviously, OPTb cannot be better than OPT. However, it is
indeed OPT in the special case where K = 1. Moreover, as
we will show in Section VII-C, there exists a polynomial time
algorithm for finding OPTb, and our trace-based simulations
in Section IX suggest that OPTb has similar performance as
OPT in realistic settings.

We now introduce another definition of competitive ratio
that takes into account the possibility of increasing the capacity
of the edge server for online policies. For fair comparison
under different capacities, we assume when the system starts,
both edge servers cache “pseudo” services that have no request
arrivals.

Definition 6: An online policy η is said to be (α, β)-OPTb-
competitive, if Cη ≤ βCOPTb for every possible sequence of
request arrivals, where Cη and COPTb is the total cost of η and
OPTb respectively, and the capacity of the edge server under
η is α times of that under OPTb.

B. Competitive Ratio of RED/ LED With Additional Capacity

Theorem 4: RED/LED is (2, 10)-OPTb-competitive.
Throughout this section below, we assume RED/LED oper-

ates on an edge server with capacity 2K, while OPTb operates
on an edge server with capacity K.

Similar to Section V, we shall divide the arrival sequence
into frames so that OPTb downloads services only at the
beginning of frames. We can assume the first frame always
starts before any request arrival, since otherwise it does not
increase the cost of OPTb by moving its first download to the
very beginning.5 Then we compare the costs of RED/LED
and OPTb in each frame. In the g-th frame, first consider a
service Si that is cached by OPTb. Recall that

∑m
l=n xi(l)

is the number of requests for Si during [n,m]. We have the
following lemma for OPTb.

Lemma 3: Suppose there exist integers n < m such that for
all n ≤ l ≤ m, OPTb(l) = OPTb(n), and Si ∈ OPTb(l), but
Si /∈ RL(l), then the number of requests that OPTb forwards
to the back-end cloud during [n,m] is at least

K

(
m∑
l=n

xi(l)− 4M

)
. (9)

Proof: See Appendix C.
Recall that Ei (resp. Di) is the number of times RED/LED

downloads (resp. deletes) Si in the frame, and fi,z is the
number of requests for Si that RED/LED forwards to the back-
end cloud within the z-th interval of Si not being cached at
the edge server in this frame. By Lemma 3, OPTb forwards at
least K(fi,z − 4M) requests to the back-end cloud. Summing
up for all z, we have the first bound on the cost of OPTb in
this frame, COPTb(g), as follows:

COPTb(g) ≥ max
i∈SOPTb

Ei∑
z=1

[K(fi,z − 4M)]+ +KM

≥ max
i∈SOPTb

(
Ei∑
z=1

Kfi,z − 4KMEi

)
+KM =: B′1,

(10)

where SOPTb := {i ∈ Z | Si ∈ OPTb(tg + 1)} is the set of
indices of services that are cached by OPTb in the g-th frame.
Note that B′1 has a factor of K compared with B1 in (4).

5If there is no download under OPTb, then CRL ≤ 1.5COPTb, and the proof
is a special case of the later proof.
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Next, consider the deletions of Si under RED/LED. We
have the following lemma:

Lemma 4: Suppose RED/LED deletes a service Si at the
n-th arrival and at the m-th arrival, n < m, and for all n ≤
l ≤ m, OPTb(l) = OPTb(m), then OPTb forwards at least
2KM requests to the back-end cloud during [n,m].

Proof: See Appendix D.
By Lemma 4, between each two consecutive deletions of

Si, OPTb needs to forward at least 2KM requests. Therefore,
we obtain the second bound on COPTb(g) as follows:

COPTb(g) ≥ max
i∈SOPTb

2KM(Di − 1) +KM

≥ max
i∈SOPTb

2KMEi − 3KM =: B′2. (11)

Again, note the factor of K in B′2 due to the fact that
RED/LED with double capacity can cache K more services
than OPTb.

Finally, we consider a service Sj /∈ OPTb(tg + 1). Let
S{OPTb := {j ∈ Z | Sj ∈ S \ OPTb(tg + 1)} denote the set
of indices of services that are not cached by OPTb in the g-
th frame. Recall Aj is the number of requests for Sj in this
frame. OPTb needs to forward all these requests to the back-
end cloud, for all Sj /∈ OPTb, which gives us the third bound
on COPTb(g):

COPTb(g) ≥
∑

j∈S{
OPTb

Aj +KM =: B′3.

On the other hand, RED/LED downloads Sj at most Aj
2M

times. Sj then at most incurs 1.5Aj units of cost. Adding the
costs of downloading and forwarding for all Si, we have a
bound on the cost of RED/LED in the frame, CRL(g):

CRL(g) ≤
∑

i∈SOPTb

(
EiM +

∑
z

fi,z

)
+

∑
j∈S{

OPTb

1.5Aj (12)

We are now ready to prove Theorem 4.
Proof of Theorem 4:

CRL(g) ≤
∑

i∈SOPTb

(
EiM +

∑
z

fi,z

)
+

∑
j∈S{

OPTb

1.5Aj

≤ K

[
max
i∈SOPTb

(
EiM +

∑
z

fi,z

)]
+

∑
j∈S{

OPTb

1.5Aj

≤ K

[
max
i∈SOPTb

(
EiM +

∑
z

fi,z

)]
+

∑
j∈S{

OPTb

6.5Aj

= B′1 + 2.5B′2 + 6.5B′3 ≤ 10COPTb(g),

for every frame.
Theorem 4 demonstrates that RED/LED is indeed scalable,

in the sense that it only needs doubled capacity to achieve a
constant competitive ratio.

C. Implementation of OPTb

OPTb allows polynomial time implementation by dynamic
programming. Note that once we know when OPTb makes
the downloads, each download cost is a constant KM , and

OPTb will download the top K popular services between two
consecutive downloads to minimize the forward cost, which
is then equal to the number of requests from those non-top-K
services. Specifically, let C(m) be the minimum total cost with
batch download for a sequence of m requests. We set C(0) =
0. Suppose the last download occurs after the n-th arrival,
then the total cost C(m) is C(m) = C(n) +KM + f(n,m),
where f(n,m) is the number of requests from the non-top-
K services during [n + 1,m]. If there is no download at all,
then C(m) =

∑m
l=1 1{rl /∈ {S1, . . . , SK}} is the number

of requests whose services are not cached in the beginning.
Therefore, the dynamic programming recursion is:

C(m) = min

{
min0≤n<m C(n) +KM + f(n,m),∑m
l=1 1{rl /∈ {S1, . . . , SK}}.

For a sequence of N requests, it is easy to check the time
complexity is at most O(N2(N + |S| log |S|)), where |S| is
the total number of services in the system.

VIII. PRACTICAL ISSUES

A. Extensions to Heterogeneous Systems

Our analysis so far has assumed that all services are
homogeneous. In practice, however, some services are very
sensitive to delays, while others are not. Different services also
require different amounts of edge-server resources and incur
different download costs. We now discuss how to address these
heterogeneous features.

We model the heterogeneous features as follows: Forward-
ing a request for Si to the back-end cloud incurs a cost of
Fi, and downloading the service Si to the edge server incurs
a cost of Mi, with Mi ≥ Fi > 0. Each service Si requires
Wi > 0 units of edge-server resources, and the edge server
only has K units of resources. Therefore, if the edge server
caches a subset T of services, we then have

∑
i:Si∈TWi ≤ K.

Our previous analysis corresponds to the special case where
Fi ≡ 1, Mi ≡M , and Wi ≡ 1.

We have the following theorem for OPT in heterogeneous
systems:

Theorem 5: Suppose we are given a sequence r1, r2, . . . ,
and OPT(n), which is the subset of services cached by OPT
after the n-th arrival. If there exists an integer m > n, a
service Si /∈ OPT(n), and another service Sj ∈ OPT(n) with
Wj ≥Wi such that:

m∑
l=n+1

Fixi(l) ≥
m∑

l=n+1

Fjxj(l) +Mi +Mj , (13)

then OPT downloads at least one service during [n+ 1,m].
Proof: The proof is virtually the same as that of Theo-

rem 1.
With the intuition provided by Theorem 5, we can modify

RED and LED as follows:
Definition 7: When a request rn = Si /∈ RL(n− 1) arrives,

RED downloads and replicates Si at the edge server if there
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exists an integer τ and a service Sj such that for all n− τ ≤
l ≤ n− 1, Sj ∈ RL(l) and Si /∈ RL(l), and

n∑
l=n−τ

Fixi(l) ≥
n∑

l=n−τ

Fjxj(l) +Mi +Mj . (14)

Definition 8: Suppose the edge server decides to download
a service at the n-th arrival. For each service Si currently
cached by the edge server, let τi be the smallest integer such
that

∑n
l=n−τi Fixi(l) ≥ 2Mi. LED sorts all cached services in

descending order of τi, and deletes services in this order until
there are enough resources to accommodate the new service.

B. Implementation and Complexity

This subsection discusses the implementation and complex-
ity of RED/LED. We focus on the homogeneous system to
simplify the notation. However, it is straightforward to extend
the implementation for heterogeneous systems.

We first discuss the implementation of the retrospective
download (RED) policy. For all Si ∈ RL(n − 1) and Sj /∈
RL(n− 1), let Sτ := {τ ∈ Z+ | Si ∈ RL(l), Sj /∈ RL(l),∀l ∈
[n− τ, n− 1]}, and define

bij(n) :=

[
max
τ∈Sτ

n∑
l=n−τ

xj(l)−
n∑

l=n−τ

xi(l)

]+
.

By the definition of RED, a service Sj will be downloaded at
the n-th arrival if bij(n) ≥ 2M , for some Si ∈ RL(n − 1).
Finding the value of bij(n) can be transformed into the well-
known maximum subarray problem as follows: Construct a
sequence of integers {an} such that an = 1 if xj(n) = 1,
an = −1 if xi(n) = 1, and an = 0, otherwise. We then have

bij(n) =

[
max
τ∈Sτ

n∑
l=n−τ

al

]+
,

which can be computed easily as follows: If service Si is
downloaded at the n-th arrival, set bij(n) = 0, for all j.
Otherwise, bij(n) = [bij(n− 1) + xj(n)− xi(n)]+.

Next, we discuss the implementation of LED. When
RED/LED decides to download a service, LED needs to
compute τi for all services Si cached by RED/LED, where
τi is chosen so that there are 2M requests for Si in the last
τi requests. In order to obtain τi, each service can maintain
the arrival times of its last 2M requests, which can be easily
done by using a queue of size 2M to store the arrival times
of past requests.

It is straightforward to extend the above discussions for het-
erogeneous systems. The complete pseudocode of RED/LED
for heterogeneous systems is shown in Algorithm 1. It is easy
to check that the time complexity of RED/LED is O(|S|) per
request for homogeneous systems and O(K|S|) per request
for heterogeneous systems, where |S| is the total number of
services in the system. The space complexity is O(|S|2). Even
when the number of unique services is as large as 104, the
memory footprint of RED/LED is only about 400 MB, which
is easily manageable for edge servers.

Algorithm 1 RED/LED for Heterogeneous Systems
1: bij ← 0, ∀i, j
2: n← 0
3: Initialize a queue, qi, with d 2Mi

Fi
e elements of 0, ∀i

4: while a new request arrives do
5: Suppose the request is for service i∗

6: n← n+ 1
7: Push n into qi∗ , and pop out an element
8: if i∗ ∈ RL(n− 1) then
9: Serve this request at the edge server

10: for j /∈ RL(n− 1) do
11: bi∗j ← (bi∗j − Fi∗)

+

12: else
13: c← False // whether to cache i∗

14: for j ∈ RL(n− 1) do
15: bji∗ ← bji∗ + Fi∗

16: if bji∗ ≥Mj +Mi∗ and Wi∗ ≤ K then
17: c← True
18: if c then
19: τj ← n− (head of qj), ∀j ∈ RL(n− 1)
20: repeat
21: Delete j in descending order of τj
22: until there are enough resources for i∗

23: Download i∗

24: bi∗j ← 0, ∀j
25: for j that has just been deleted do
26: bij ← 0, ∀i
27: else
28: Forward this request to the back-end cloud

IX. TRACE-BASED SIMULATIONS

In this section, we compare the performance of RED/LED
against OPTb, three other offline policies, and one online
policy, all using real-world data traces.

A. Overview of the Trace

We use a data set from a Google cluster [15] to obtain
the sequences of service requests.6 This data set registers
more than three million request arrivals over seven hours,
and the average inter-arrival time is about 7 ms. Each request
has a “ParentID” that identifies its service. In this data set,
there are 9,218 unique services. The most popular service has
208,306 requests, while 5,150 services each only have one
request. In all the simulations, we partition the data set into
ten non-overlapping parts, and run policies on these ten parts
individually. We then report the average performance of these
ten parts.

B. Baseline Policies

In addition to RED/LED and OPTb, we also implement
three different offline policies and one online policy. The three
offline policies are derived from optimal solutions based on
data caching, stochastic optimization, and dynamic program-
ming, respectively. We describe the implementations of these
policies for both homogeneous systems and heterogeneous
systems.

Belady Modified. Belady’s algorithm is known to be the
optimal offline solution to the data caching problem in com-
puter architecture. It minimizes cache misses by swapping in

6We are not aware of a public data set from deployed edge servers yet.
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a new item and deleting the item which will be used in the
furthest future. To adopt it in the service caching scenario, we
make a small modification: Instead of always downloading
a service that is not cached by the edge server, we forward
the request when the next occurrence of the requested service
is further in the future than those of existing edge services.7

With this modification, our version of Belady’s algorithm takes
advantage of the possibility of forwarding without download-
ing. Belady Modified then achieves the optimal performance
in the special case where M = 1 for homogeneous systems.
For heterogeneous systems, Belady Modified keeps deleting
services whose next request is furthest in the future until it
has enough resources to accommodate the new service.

Offline Static. In homogeneous systems, Offline Static com-
putes the frequency of all service requests and simply chooses
the top K popular services to cache at the edge server.
In heterogeneous systems, Offline Static caches a subset of
services so that their total resource usage is no more than
K, and the sum of their frequencies is maximized, which
is a knapsack problem. When the arrivals of requests follow
an i.i.d. stochastic process, most online policies that employ
stochastic optimization will converge to Offline Static.

Offline Iterative. Given the complete trace, it is possible
to compute the optimal solution, OPT, using dynamic pro-
gramming. However, even for the homogeneous system, the
complexity of dynamic programming is at least O(

(|S|
K

)
) per

request. Even when K is as small as 5, our implementation
finds that dynamic programming cannot be completed within
a reasonable amount of time. Therefore, we instead implement
the following iterative policy for homogeneous systems: Since
the edge server can cache K services, we say that the edge
server has K slots, numbered as L1, L2, . . . , LK , and each of
them can cache one service. Offline Iterative algorithm finds
the edge service at each of the K slots iteratively. First, it
uses dynamic programming to find services cached in L1 so
as to minimize the total cost assuming the capacity is one.
Given the solutions for L1, L2 . . . , Lk, the policy then uses
dynamic programming to find the services cached in Lk+1

so that the total cost is minimized assuming the capacity is
k + 1, and L1, . . . , Lk are given. This policy achieves the
optimal performance when K = 1. We only test this policy
for homogeneous systems since it cannot be easily extended
for heterogeneous systems.

Online Randomized. We consider an online baseline pol-
icy in addition to the above offline policies. Intuitively, a
reasonable policy should download more often when the
download cost is small. When a request whose service is
not an edge service arrives, Online Randomized downloads
the new service with probability 1

M , or with probability Fi
Mi

in heterogeneous systems. To accommodate the new service,
Online Randomized keeps deleting edge services uniformly at
random until there are enough resources available. As Online
Randomized is a randomized policy, we report its average
performance over 10 i.i.d. simulation runs on each part of
the data set.8

7We say a service is an edge service if it is cached by the edge server.
8The average performance over more runs remains the same.
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Fig. 6. Cost comparison with different download costs M .

C. Performance Evaluations for Homogeneous Systems

We implement all the above policies and run the algorithms
with different K and M for homogeneous systems. For each
pair of K and M , we calculate the total costs over 103 requests
and over 104 requests. The costs, normalized by the number of
requests, are compared in Fig. 6 and Fig. 7. Due to excessive
running time, OPTb is skipped for the case of 104 requests.9

Fig. 6 compares the costs of the above algorithms while
fixing K = 5. RED/LED performs very well when compared
with other policies. In most settings, OPTb and Offline It-
erative are slightly better than RED/LED, but the difference
is very limited. We note that OPTb and Offline Iterative
are very intelligent policies that require the knowledge of
all future arrivals and have very high complexity. The result
that our policy, being an online policy with low complexity,
is only slightly worse than Offline Iterative suggests that it
works well in practice. Also note that RED/LED has much
better “real-world” performance than that the theoretical result
guarantees since the competitive ratio is based on a worst-
case analysis. Belady Modified achieves better performance
than RED/LED when M = 1, as it is indeed the optimal
policy, OPT, in such special case. However, as M becomes
larger, it quickly becomes much worse than RED/LED. This
highlights the difference of the service caching problem from
the data caching problem. Offline Static can be better than
RED/LED when we only evaluate it over 103 requests, but
has worse performance than RED/LED when we evaluate it
over 104 requests. With more requests, the system witnesses
more variations, and therefore Offline Static becomes worse.
Finally, Online Randomized performs poorly in all settings.

9Over seven hours are required for a single sequence in our simulation.
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Fig. 7. Cost comparison with different K.

Fig. 7 shows the costs with different K with M = 5. Similar
to Fig. 6, OPTb and Offline Iterative are only slightly better
than RED/LED in all settings. Note that OPTb and Offline
Iterative both minimize the total cost when K = 1. This result
therefore shows that our RED/LED is close to OPT. Offline
Static performs worse than our policy when we evaluate it over
104 requests. Both Belady Modified and Online Randomized
are worse than RED/LED under all settings. Fig. 7a also
exhibits the good performance of RED/LED with double
capacity if we compare, for instance, the cost of RED/LED
when K = 10 and the cost of OPTb when K = 5.

In addition, we also note that OPTb and Offline Iterative
have very similar performance in all settings. This suggests
that OPTb may be close to optimal in real-world scenarios.

D. Performance Evaluations for Heterogeneous Systems

We further evaluate the performance for heterogeneous
systems. To create heterogeneity, we assign different forward
costs Fi = 1, 2, 3, download costs Mi = 5, 10, 15, and
resource requirements Wi = 1, 2, 3 to different services by
their IDs. We again run the algorithms over 103 requests and
over 104 requests, and calculate their total costs.

The normalized costs of different policies with different
edge-server capacities K are shown in Fig. 8. We can see
that RED/LED achieves the minimum cost among all poli-
cies under most settings. Although we only establish the
competitiveness of RED/LED for homogeneous systems, this
result suggests that RED/LED remains a desirable solution
even in heterogeneous systems. Note that generally the curves
are not smooth since K takes discrete values, and the non-

5 10 15
K

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
os

tP
er

R
eq

ue
st

Heterogeneous System

Randomized
Belady Mod
Static
RED/LED

(a) Total cost over 103 requests

5 10 15
K

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
os

tP
er

R
eq

ue
st

Heterogeneous System

Randomized
Belady Mod
Static
RED/LED

(b) Total cost over 104 requests

Fig. 8. Cost comparison in heterogeneous systems.

monotonicity is due to specific request sequences, heterogene-
ity of costs and resource requirements, and download policies.

X. CONCLUSIONS

This paper studies online algorithms for dynamic service
caching at the edge. We introduce a model that captures
the limited capacity of edge servers, the unknown arrival
patterns of requests, and the operational costs of edge servers,
including the cost of forwarding requests to the back-end cloud
and the cost of downloading new services. We propose an
online policy, RED/LED, that has a small total cost under
any arbitrary sequence of arrivals. We evaluate the competitive
ratio of RED/LED, and prove that it is at most 10K, where K
is the capacity of the edge server. Moreover, we prove that the
competitive ratio of any deterministic online policy is at least
Θ(K), and therefore RED/LED is asymptotically optimal with
respect to K. In addition, we show that our policy is (2, 10)-
OPTb-competitive and thus scalable. Furthermore, RED/LED
can be easily extended to heterogeneous systems and maintains
a low time complexity. The performance of RED/LED is
further evaluated through simulations using traces from real-
world data centers. Simulation results demonstrate that our
RED/LED achieves better, or similar, performance compared
to many intelligent policies in all scenarios.

There are several important directions for future research:
First, RED/LED is only asymptotically optimal for homoge-
neous systems. It is of interest to study the optimal online
algorithm for heterogeneous systems. Second, RED/LED is
only proved to be asymptotically optimal among deterministic
online policies, and it remains an open question whether
RED/LED is still optimal when randomized policies are taken
into account. Third, the scalability result of RED/LED is
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established by comparing it against OPTb, which is a more
constrained policy than the optimal offline policy, OPT. Study-
ing the scalability of online algorithms when compared against
OPT can be important future work.
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APPENDIX A
PROOF OF LEMMA 1

This section provides a proof for Lemma 1. By assumptions
of the lemma, OPT(l) 6= RL(l), for all n ≤ l ≤ m. Therefore,
there must exist some service that is in RL(l) but not in
OPT(l). OPT needs to forward requests for these services to
the back-end cloud. We will count the number of requests for
these services.

Since the edge server can cache K services, we say that the
edge server has K slots, numbered as Lk for k = 1, 2, . . . ,K.
We use Lk[r] to denote the r-th service cached at slot Lk
during [n,m]. We use dk[r] to denote the time after which
Lk[r] is deleted and Lk[r+ 1] is downloaded. We set dk[0] =
n−1, for all k. If Lk[r] is the last service cached at Lk before
the m-th arrival, we set dk[r] = m. To simplify the notation,
let δk[r] := dk[r−1]+1. Therefore, the service Lk[r] is cached
at Lk during [δk[r], dk[r]] for all r.

Lemma 5: Suppose Lk[r] = Sj , then
∑dk[r]
l=δk[r]

xj(l) ≥∑dk[r]
l=δk[r]

xi(l)− 2M .
Proof: We prove this by contradiction. By the assumption

of Lemma 1, Si /∈ RL(l), for all δk[r] ≤ l ≤ dk[r]. If∑dk[r]
l=δk[r]

xj <
∑dk[r]
l=δk[r]

xi−2M , then RED/LED would have
downloaded Si before the dk[r]-th arrival.

We classify all services that are in RL(l) but not in OPT(l),
for all l ∈ [n,m], into two types:

Definition 9: Suppose Lk[r] = Sj /∈ OPT(n), then we say
that Sj is of type I if

∑dk[r]
l=n xj(l) ≥

∑dk[r]
l=n xi(l)− 4M , and

say that Sj is of type II if there exists some τ ≥ n such that∑dk[r]
l=τ xj(l) ≥

∑dk[r]
l=δk[r]

xi(l).
By this definition, OPT needs to forward at least∑dk[r]
l=n xi(l) − 4M requests for Lk[r] if it is of type I, and

at least
∑dk[r]
l=δk[r]

xi(l) requests for Lk[r] if it is of type II. It
is possible for a service to be of both type I and type II. We
first prove that a service Lk[r] /∈ OPT(n) is of either type I
or type II.

Lemma 6: Suppose Lk[r] = Sj /∈ OPT(n), then Sj is of
either type I or type II.
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Fig. 9. An example for the proof of Lemma 1.

Proof: If r = 1, then δk[r] = n, and we have∑dk[r]
l=n xj(l) ≥

∑dk[r]
l=n xi(l) − 2M >

∑dk[r]
l=n xi(l) − 4M by

Lemma 5. In this case, Sj is of type I.
Next, we consider the case r > 1. Sj is downloaded by

RED/LED after the (dk[r − 1])-th arrival. By the design of
RED/LED, there exists a service Sj∗ and τ such that Sj∗ ∈
RL(l), for all τ ≤ l ≤ dk[r − 1], and

dk[r−1]∑
l=τ

xj(l) ≥
dk[r−1]∑
l=τ

xj∗(l) + 2M. (15)

If τ ≥ n, then we have
dk[r]∑
l=τ

xj(l) =

dk[r−1]∑
l=τ

xj(l) +

dk[r]∑
l=δk[r]

xj(l)

≥
dk[r−1]∑
l=τ

xj∗(l) + 2M +

dk[r]∑
l=δk[r]

xi(l)− 2M

≥
dk[r]∑
l=δk[r]

xi(l),

and Sj is of type II. On the other hand, if τ < n, then we
have

n−1∑
l=τ

xj(l) <

n−1∑
l=τ

xj∗(l) + 2M, (16)

or Sj would have been downloaded earlier. Combining (15)
and (16) yields

∑dk[r−1]
l=n xj(l) ≥

∑dk[r−1]
l=n xj∗(l). Therefore,

dk[r]∑
l=n

xj(l) =

dk[r−1]∑
l=n

xj(l) +

dk[r]∑
l=δk[r]

xj(l)

≥
dk[r−1]∑
l=n

xj∗(l) +

dk[r]∑
l=δk[r]

xi(l)− 2M

≥
dk[r]∑
l=δk[r]

xi(l)− 4M,

and Sj is of type I.
We are now ready to prove Lemma 1.

Proof of Lemma 1: Let Lk1 [r1] be the type I service with
the largest dk[r]. Since OPT(l) 6= RL(l),∀l ∈ [dk1 [r1]+1,m],
we can find a set of type II services {Lk2 [r2], Lk3 [r3] . . . } such
that the union of [dkj [rj−1]+1, dkj [rj ]] covers [dk1 [r1]+1,m].
Fig. 9 illustrates an example of finding Lk1 [r1], Lk2 [r2], . . . .

By the definition of type II service, the total number of
requests that OPT needs to forward for these services is at
least

∑m
l=dk1 [r1]+1 xi(l). Also, OPT needs to forward at least∑dk1 [r1]

l=n xi(l)− 4M requests for Lk1 [r1]. Therefore, in total,
OPT needs to forward at least

∑m
l=n xi(l)− 4M requests.

APPENDIX B
PROOF OF LEMMA 2

Proof of Lemma 2: By the first condition of RED, there
are at least 2M requests for Si during [n,m]. Otherwise, Si
cannot be downloaded during [n,m], and therefore cannot be
deleted at the m-th arrival.

When Si is to be deleted at the m-th arrival, it must have the
largest τi among all services currently cached by RED/LED,
where τi is defined in Def. 3. Since there are at least 2M
requests for Si during [n,m], all services in RL(m) have at
least 2M requests during [n,m].

First, consider the case RL(m − 1) 6= OPT(m − 1). There
must exist a service Sj such that Sj ∈ RL(m− 1), but Sj /∈
OPT(m−1). OPT needs to forward all requests for Sj during
[n,m], and there are at least 2M of them.

Next, consider the case RL(m − 1) = OPT(m − 1). At
the m-th arrival, RED/LED deletes Si in order to download
another service Sj /∈ RL(m−1) = OPT(m−1). By the design
of RED/LED, there exists τ and a service Si∗ ∈ RL(m − 1)
such that the conditions in Def. 2 are satisfied. In particular,∑m
l=m−τ xj(l) ≥

∑m
l=m−τ xi∗(l) + 2M . If m− τ ≥ n, then

there are at least 2M requests for Sj during [n,m], and OPT
needs to forward all of them. On the other hand, consider the
case m− τ < n. Since RED/LED does not download Sj until
the m-th arrival, we have

∑n−1
l=m−τ xj(l) <

∑n−1
l=m−τ xi∗(l) +

2M , and therefore
∑m
l=n xj(l) ≥

∑m
l=n xi∗(l) ≥ 2M . OPT

still needs to forward at least 2M requests.

APPENDIX C
PROOF OF LEMMA 3

Note that Lemma 5 still holds. For RED/LED with double
capacity, there are at least K services that are in RL(l) but
not in OPTb(l) for any n ≤ l ≤ m. These services are either
of type I or type II:

Definition 10: Suppose Lk[r] = Sj /∈ OPTb(n), then we
say that Sj is of type I if

∑dk[r]
l=n xj(l) ≥

∑dk[r]
l=n xi(l)− 4M ,

and say that Sj is of type II if there exists some τ ≥ n such
that

∑dk[r]
l=τ xj(l) ≥

∑dk[r]
l=δk[r]

xi(l).
Lemma 7: Suppose Lk[r] = Sj /∈ OPTb(n), then Sj is of

either type I or type II.
Proof: The proof is virtually the same as the proof of

Lemma 6.
We are now ready to prove Lemma 3.

Proof of Lemma 3: Recall that we can find K services
that are not cached by OPTb but by RED/LED after each
arrival during [n,m], and they are either of type I or type II.
Since the exact location of a service in the 2K slots does not
affect the policy, we can think of the K services as packed
in the first K rows out of the 2K slots during [n,m], and
assume the unchanged services between consecutive arrivals
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stay in their row. Because there will be at most one download
after each request arrival, the sets of K services differ at most
by one element between any consecutive arrivals. If a service
in these K rows is deleted, we relabel the service so that it
appears to be a new service afterwards. Note that the relabeling
does not change the decision or the cost of RED/LED and
OPTb.

For each of the K rows, we can count the number of
requests that OPTb needs to forward for the services in the row
in a similar fashion as in the proof of Lemma 1. Let Lk1 [r1]
be the type I service with the largest dk[r]. The rest services
in this row are of type II. By the definition of type II service,
the total number of requests that OPTb needs to forward for
these services is at least

∑m
l=dk1 [r1]+1 xi(l). Besides, OPTb

needs to forward at least
∑dk1 [r1]

l=n xi(l) − 4M requests for
Lk1 [r1]. Therefore, in total, OPTb needs to forward at least∑m
l=n xi(l)− 4M requests. Note the result holds for extreme

cases with only type I services or only type II services in one
row.

With service relabeling, the services in each row will not
appear in any other row, and thus there is no duplicate in
summing up the cost of all K rows. Therefore, in total, OPTb
needs to forward at least K(

∑m
l=n xi(l)− 4M) requests.

APPENDIX D
PROOF OF LEMMA 4

Proof of Lemma 4: By the first condition of RED
as in Def. 2, there are at least 2M requests for Si during
[n,m]. Otherwise, Si cannot be downloaded during [n,m],
and therefore cannot be deleted at the m-th arrival.

When Si is to be deleted at the m-th arrival, it must have the
largest τi among all services currently cached by RED/LED,
where τi is defined in Def. 3. Since there are at least 2M
requests for Si during [n,m], all services remaining in RL(m)
have at least 2M requests during [n,m].

Now consider RL(m − 1). There must exist at least K
services Sj1 , Sj2 , . . . , SjK such that Sjk ∈ RL(m − 1), but
Sjk /∈ OPTb(m− 1), for all k = 1, 2, . . . ,K. OPTb needs to
forward all requests for these K services during [n,m], and
there are at least 2KM of them.
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