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Abstract—Many modern applications generate a significant
amount of data in dispersed geographical areas. To analyze
and make use of the data, data fusion and machine learning
techniques are usually applied, which has the potential to greatly
enhance the amount of information extracted from the data.
These algorithms traditionally run in data center environments
where all the data are available at a central location. It is
challenging to run them in distributed coalition environments,
where it is impractical to send all the raw data to a single place
due to bandwidth and security constraints. This problem has
gained notable attention recently. In this paper, we provide an
overview of available techniques and recent results of performing
data fusion and machine learning in a distributed coalition envi-
ronment, without sharing the raw data among local processing
nodes. We discuss techniques for distributed model training,
scoring, and outline some applications where these techniques
are applicable and beneficial.

I. INTRODUCTION

Future military applications will largely benefit from agile
analytics in tactical operating environments. Machine learning
has been proposed for a myriad of applications. There is strong
potential of machine learning techniques for use in military
coalition environments to gain situation understanding through
sensing in the operational environment, learning optimal
configurations of networks and systems, characterizing and
predicting adversarial entities [1]. Further, these techniques
can be used to provide robustness against adversarial actions
attempting to disrupt operations and even learning processes
in military environments.

Military operational environments may provide challenges
to the learning process, specifically due to resource constraints
and strict requirements. In addition to the adversarial presence,
these approaches will have to address various complexities
of the data, including attempts to poison training data. The
data may be sparse, which is distinct from other situations
that have sufficient training data. Machine learning-enabled
systems may have to operate in cases of limitations in the
availability of data. Also, the data may be heterogeneous, as
the data may come from a variety of different sources (e.g.,
images, video, text), requiring analysts to fuse the data in
intelligent ways. Further, the sources of information may not
produce the same amount of data, so distributed processors
will likely learn at different rates.

In this paper, we consider a system shown in Fig. 1, where
multiple coalition members have sensors carried by human or
vehicles deployed in the field. These sensors may collect and
store data. Analytics code may be located in either the same
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Fig. 1. System architecture.

or different physical entities to process the data using machine
learning techniques. We present an overview of techniques of
performing machine learning in a distributed manner that does
not require all local data to be transmitted to a central location.
Such distributed machine learning techniques have the benefits
of reducing the communication bandwidth consumption and
reducing the risk of unwillingly disclosing sensitive infor-
mation to other entities. Distributed machine learning is also
able to make use of the computation and storage capability of
multiple nodes, which can improve the performance compared
to the centralized setting in resource-scarce environments [2],
such as in emerging systems of mobile edge computing [3],
[4] and Internet of Things [5], [6].

Machine learning applications generally include two phases.
The first phase is to train a model from training data, so that
the model captures essential characteristics of the data. The
second phase is to apply new data (often collected in real time)
on the trained model, to make predictions from the data. This
phase is also called scoring. We separately discuss these two
phases in Sections II and III. Then, in Section IV, we discuss
reinforcement learning with multiple agents, which can be
seen as an extension of distributed machine learning to “real”
artificial intelligence applications. Finally, in Section V, we
outline some application scenarios where distributed machine
learning and multi-agent reinforcement learning can be useful.

II. DISTRIBUTED MODEL TRAINING

We first explain the training of generic machine learning
models, then summarize the basic procedure of distributed
training.



A. Loss Functions
Machine learning models are trained using training data.

For each data sample x with target output y, we define the
loss function as l(w, x, y), where w is the weight (parameter)
of the model and w, x, and y can all be vectors.

We note that machine learning can be classified into super-
vised and unsupervised applications. In supervised machine
learning applications, the goal is to make predictions from the
input data. Here, the training data specifies the model input
as well as the target model output, such as the class label of
an image. The goal of model training is to adjust the model
parameters so that the input data samples are mapped to their
desired output values. After training, the model can be used to
estimate the output value based on input data. Unsupervised
machine learning does not have a desired output value in its
training dataset. Here, the models are often trained to provide
some form of a summary of the training data, and they can
be used for applications such as outlier detection and source
separation. The target output is only defined for supervised
models; for unsupervised models, the value of y is undefined
and can be ignored.

The loss function captures how well the model with weight
w fits the training data sample (x, y). For example [7], the loss
function of a soft support vector machine (Soft-SVM) can be
written as

l(w, x, y) = λ‖w‖2 +max{0, 1− y(w · x)}. (1)

For loss function, the logistic regression is

l(w, x, y) = log(1 + exp(−y(w · x))). (2)

Both Soft-SVM and logistic regression with loss functions
defined above are binary classifiers, where y ∈ {+1,−1} is
a scalar variable representing the target output label of the
classifier, and w · x denotes the dot product of vectors w and
x. These and other binary classifiers can be extended to multi-
class classifiers using one-versus-one or one-versus-all voting
mechanisms. The loss functions of unsupervised models do
not include the target output label y. For example, the loss
function of K-means can be defined as

l(w, x) = min
k
‖x− w(k)‖2 (3)

where the weight vector w = [w(1), w(2), ..., w(k), ..., w(K)]
T

and w(k) is the k-th center of the K-means model.
We define the training dataset as set D, where each element

in D is a tuple of (x, y) representing the data sample. The
goal of machine learning is to find the optimal model weight
w∗ that minimizes the sum of losses of all training data
samples. Formally, we define the overall (global) loss function
for model weight w as

L(w) =
1

|D|
∑

(x,y)∈D

l(w, x, y) (4)

where |D| denotes the cardinality of the set D, and we would
like to find

w∗ = argmin
w
L(w). (5)

B. Gradient Descent

1) Deterministic Gradient Descent: The solution to (5) can
be found using gradient descent on the model weight w. At
the t-th step, the value of the model weight w(t) can be found
from

w(t) = w(t− 1)− η∇L(w(t− 1)) (6)

where η is the step size of gradient descent. At initialization,
the model is initialized with weight equal to w(0).

When L(w) conforms to some convexity properties, it can
be shown that the gradient descent procedure in (6) converges
to the true optimal weight w∗ after a sufficient number of
iterations [8].

2) Stochastic Gradient Descent: In practice, the training
dataset D is often very large. Hence, it is usually very time-
consuming to evaluate the loss function and its gradient on
the entire training data set as in (4) and (6). To resolve this
problem, stochastic gradient descent is often used for training
on large datasets [9].

In stochastic gradient descent, the gradient is computed on
the loss function defined on a random subset of D. We denote
this random subset as D̃, which includes data samples that are
randomly and uniformly sampled from the original dataset D.
In every new stochastic gradient descent step, a new D̃ is
obtained. The size of D̃, i.e.,

∣∣D̃∣∣, is a fixed constant, which
is referred to as the mini-batch size of stochastic gradient
descent.

We can then define the loss function on the random subset
D̃ as

L̃(w) =
1∣∣D̃∣∣ ∑

(x,y)∈D̃

l(w, x, y) (7)

where L̃(w) is a random function of w.

Theorem 1. When the samples in D̃ are uniformly drawn
(without replacement) from D, we have

E
(
L̃(w)

)
= L(w) (8)

E
(
∇L̃(w)

)
= ∇L(w) (9)

where E(·) denotes the expectation.

Proof. It is easy to see that for any (x, y) ∈ D,

Pr
{
(x, y) ∈ D̃

}
=

∣∣D̃∣∣
|D|

.
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Fig. 2. Distributed deterministic gradient descent.

We have

E
(
L̃(w)

)
= E

 1∣∣D̃∣∣ ∑
(x,y)∈D̃

l(w, x, y)


=

1∣∣D̃∣∣ ∑
(x,y)∈D

Pr
{
(x, y) ∈ D̃

}
· l(w, x, y)

=
1

|D|
∑

(x,y)∈D

l(w, x, y)

= L(w)

and

E
(
∇L̃(w)

)
= ∇E

(
L̃(w)

)
= ∇L(w)

due to the linearity of the expectation and gradient operators.

The stochastic gradient descent iteration is given by:

w(t) = w(t− 1)− η∇L̃(w(t− 1)) (10)

where a new sample of L̃(w(t−1)) is obtained for every new
step t. From Theorem 1, it is easy to see that when w(t− 1)
is given, the conditional expectation of w(t) is

E (w(t)|w(t− 1)) = w(t− 1)− η∇L(w(t− 1)) (11)

where the right hand side is the same as (6). The stochastic
gradient descent mechanism has been shown to converge under
certain conditions [10].

C. Distributed Gradient Descent

In the distributed setting, assume there are N different
nodes. Each node n has a local training dataset Dn. The model
training procedure is based on gradient descent and can be
performed in a distributed manner without sending the training
data to a central location. As shown in Fig. 2, distributed
gradient descent includes individual gradient descent steps at

local nodes, and the synchronization of model weights (after
one or multiple local iterations) among all local nodes through
a synchronization node. We define D = ∪Nn=1Dn as the union
of all local datasets, and assume that Dn∩Dn′ = ∅ for n 6= n′.
The data distribution can be arbitrary, and we do not assume
any specific distribution of the data. We also define

Ln(wn) =
1

|Dn|
∑

(x,y)∈Dn

l(wn, x, y) (12)

as the local loss function of node n defined on its local dataset
Dn, where wn is the local model weight. The distributed
gradient descent mechanism includes a local computation
phase and a synchronization phase.

1) Local Computation: The local computation phase at
node n performs gradient descent on the loss function defined
on the local dataset Dn, and updates the local model weight
wn:

wn(t) = wn(t− 1)− η∇Ln(wn(t− 1)). (13)

The expression in (13) is for distributed deterministic gradient
descent.

For distributed stochastic gradient descent, we define D̃ =
∪Nn=1D̃n, where D̃n is a sampled subset of the local dataset
Dn. The stochastic gradient descent iteration can be obtained
by replacing Ln(·) in (13) with L̃n(·), which is the local loss
function defined on a sampled dataset D̃n, yielding

wn(t) = wn(t− 1)− η∇L̃n(wn(t− 1)). (14)

The local gradient descent in (13) or (14) is performed for
τ steps, where τ ≥ 1 is an integer.

2) Synchronization: In the synchronization phase, a
weighted average of the local model weights at all nodes is
computed, through the assistance of the synchronization node
(see Fig. 2). Then, the local weights are updated with the
weighted averaged (global) weight. The weighted average is
computed according to

w(t) =

∑N
n=1 |Dn|wn(t)

|D|
(15)



where |D| =
∑N

n=1 |Dn| as defined above. Then, the value of
w(t) is assigned back to each node so that the local weights
{wn(t) : ∀n} are updated. The new value of wn(t) is then
used for the next local iteration.

With the above convention, we assume that synchronization
is performed at the end of step t, if there have been τ local
iterations since the last synchronization. When the number
of local iterations τ is larger than one, the weights are not
synchronized in all steps. See Fig. 2 for an illustration of the
complete procedure.

3) Rationale of This Approach: The reason behind the
above procedure is that, when τ = 1, i.e., when synchro-
nization is performed after every local iteration, distributed
gradient descent provides the same mathematical progression
as centralized gradient descent. This is shown in the below
theorem and corollary.

Theorem 2. When wn(t − 1) = w(t − 1) for all n, after
performing local deterministic gradient descent according to
(13) and computing w(t) according to (15), we have (6).

Proof.

w(t) =

∑N
n=1 |Dn|wn(t)

|D|
(from (15))

=

∑N
n=1 |Dn| (wn(t− 1)− η∇Ln(wn(t− 1)))

|D|
(from (13))

=

∑N
n=1 |Dn| (w(t− 1)− η∇Ln(w(t− 1)))

|D|
(assumption that wn(t− 1) = w(t− 1))

= w(t− 1)− η∇

(∑N
n=1 |Dn|Ln(w(t− 1))

|D|

)
(linearity of gradient)

= w(t− 1)− η∇

(∑N
n=1

∑
(x,y)∈Dn

l(w(t− 1), x, y)

|D|

)
(definition of Ln(·) in (12))

= w(t− 1)− η∇

(∑
(x,y)∈D l(w(t− 1), x, y)

|D|

)
(D = ∪Nn=1Dn and Dn ∩ Dn′ = ∅ for n 6= n′)

= w(t− 1)− η∇L(w(t− 1))
(definition of L(·) in (4))

For distributed stochastic gradient descent, we enforce that
|D̃n|
|Dn| = |D̃|

|D| for all n. This means that the percentages of
random samples at all nodes must be the same. Then, using a
similar proof as above, we can get the following result.

Corollary 1. When wn(t − 1) = w(t − 1) and |D̃n|
|Dn| =

|D̃|
|D|

for all n, after performing local stochastic gradient descent
according to (14) and computing w(t) according to (15), we
have (10).

A main difference between distributed and centralized
stochastic gradient descent is that, in distributed stochastic
gradient descent, the data samples in D̃n is drawn at each
node independently, from its local dataset Dn. Using a similar
proof as that for Theorem 1, we can show the unbiasedness of
the local loss L̃n(w) and its gradient ∇L̃n(w) at each node
n. For the global loss L̃(w) and its gradient ∇L̃(w), we also
have the unbiasedness result shown below.

Corollary 2. When the samples in D̃n are uniformly drawn
(without replacement) from Dn at each node n, then (8) and
(9) hold if |D̃n|

|Dn| =
|D̃|
|D| for all n.

Proof. We know that for any (x, y) ∈ Dn,

Pr
{
(x, y) ∈ D̃n

}
=

∣∣D̃n

∣∣
|Dn|

=
|D̃|
|D|

.

We have

E
(
L̃(w)

)
= E

 1∣∣D̃∣∣ ∑
(x,y)∈∪N

n=1D̃n

l(w, x, y)


= E

 1∣∣D̃∣∣
N∑

n=1

∑
(x,y)∈D̃n

l(w, x, y)


(Dn ∩ Dn′ = ∅ for n 6= n′)

=
1∣∣D̃∣∣

N∑
n=1

E

 ∑
(x,y)∈D̃n

l(w, x, y)


=

1∣∣D̃∣∣
N∑

n=1

∑
(x,y)∈Dn

Pr
{
(x, y) ∈ D̃n

}
· l(w, x, y)

=
1∣∣D̃∣∣

N∑
n=1

∑
(x,y)∈Dn

|D̃|
|D|
· l(w, x, y)

=
1

|D|
∑

(x,y)∈D

l(w, x, y)

(D = ∪Nn=1Dn and Dn ∩ Dn′ = ∅ for n 6= n′)
= L(w)

The rest is the same as the proof of Theorem 1.

We note that only when τ = 1, Theorem 2 and Corollary 1
hold for all t. When τ > 1, they only hold for those steps t
where synchronization is performed at the end of the previous
step t − 1, because in all the other steps, the condition of
wn(t − 1) = w(t − 1) may not hold. We also note that the
unbiasedness in Corollary 2 is only stated for identical model
weights at all nodes (see (8) and (9)), which is only the case
after synchronization and before the next local computation
step.

In general, distributed and centralized gradient descents
are not equivalent when there are multiple steps of local
iteration between synchronization, i.e., when τ > 1. This
is because starting from the second step of local iteration



after synchronization, the local gradients at different nodes
are computed at different model weights (obtained from the
first step of local iteration), thus the average of these gradients
may not match with any gradient of the global loss function.

The divergence of the local gradient from the global gradient
after τ > 1 steps of local iteration depends on the diversity of
data distribution at different local nodes, as discussed in [2].
In the extreme case where all nodes have the same (identical)
dataset, the local gradient is always equal to the global gradient
and τ can be made arbitrarily large. Using a large value of
τ has the benefit of saving the communication bandwidth
(used for sharing model weights in the synchronization phase)
between nodes, but it may negatively impact the learning
depending on how different the datasets at different nodes are.

When the value of τ is bounded, it can be shown that un-
der some convexity assumptions, distributed gradient descent
converges to the optimal loss function value as the number
of iterations goes to infinity [2], [11]–[14]. However, different
amounts of communication and computation resources may
be needed to reach the same convergence error with different
values of τ . It is important that τ is optimized so that the
resource consumption is minimized for a target learning error.
A control mechanism that adapts τ according to the commu-
nication and computation time in each round was proposed
in [2], where it is shown that in general, one should choose
a smaller value of τ if the datasets among local nodes are
more diverse, and vice versa. Other methods to reduce the
communication overhead without impacting the learning error
too much also exist. For example, [11] proposed a method that
sends the model weights to other nodes only when the change
in the local model weight exceeds a threshold.

III. DISTRIBUTED DATA SCORING

The data scoring using (already trained) machine learning
models can also be performed in a distributed manner. Here,
we note that a full scoring pipeline usually includes multiple
stages. For example, a pipeline for face/object recognition
from images can include image pre-processing, feature ex-
traction, and classification. Each of these modules may run
on a separate node to achieve the most efficient use of
communication and computation resources [15]. Similarly,
deep neural networks include multiple layers with different
amounts of computations and different input/output data sizes.
It can be beneficial to run the first few layers of neural network
computation locally at the edge, and run the other layers at
the remote cloud [16], [17].

As the convolutional layer computations are usually less
intensive than computations in the fully connected layers, it
is often feasible to run the convolutional layers at the edge.
Meanwhile, the data size after a few convolutional layers is
usually smaller than the size of the original image. Thus,
computing the first few layers locally can save the commu-
nication bandwidth, compared to sending the raw data (such
as images) to the remote cloud directly. As such, joint local
and remote computation can balance the workload and reduce
the processing time needed for data scoring. Sending raw data

directly to the remote cloud for processing may also pose a risk
of privacy leakage, whereas it is generally harder to precisely
extract the raw data from the data that has been processed
by several convolutional layers. Therefore, performing some
amount of computation at the local edge node may also
prevent privacy leakage. Obviously, the most secure way of
data scoring is to run the entire model on the local edge node.
However, edge nodes usually have limited computation and
storage capacities and are incapable of running the entirety of
a complex machine learning model, such as a deep learning
model.

In the general case, a machine learning model can be
partitioned and run on more than two (i.e., beyond local vs.
remote) nodes. The partitioning of a model onto different
nodes is usually dependent on the availability of different types
of resources, such as CPU cycles, communication bandwidth,
memory size, storage (disk) capacity, and battery life. One
can find the way of model partitioning either in a heuristic
manner, or more rigorously, using an optimization algorithm.
The partition strategy and optimization algorithm can take
into account specific aspects of machine learning models,
such as in [16]–[19], or alternatively, use abstract computation
models with annotated resource demands and apply solutions
for generic service placement problems [15], [20]–[25].

It is worth noting that in addition to using partitioned models
for efficient data scoring, a model can also be trained or
fine-tuned after it has been partitioned onto multiple physical
nodes, as discussed in [16], [17]. In a large-scale edge-
based distributed learning environment, one can envision that
model partition and distributed gradient descent (discussed in
Section II) can be jointly used for model training.

IV. MULTI-AGENT REINFORCEMENT LEARNING

Reinforcement learning is an area of machine learning
which allows a (software) agent to automatically determine
the best action to take in order to maximize some notion of
cumulative reward in a specific environment. Reinforcement
learning is often useful to build systems that learn to perform
complex sequential decision tasks. The agents learn how to
achieve successful strategies, which lead to the highest long-
term rewards, by interacting with its environment through
trial and error. Reinforcement learning is situated between
supervised and unsupervised learning. In contrast to supervised
and unsupervised learning which both have data on which
to learn, reinforcement learning makes its own data through
experience.

Multi-agent reinforcement learning is referred to multiple
agents interacting in the same environment. Multi-agent sys-
tems are useful to model many complex problems, such as ur-
ban or air traffic control, multi-robot coordination, distributed
sensing, resource management [26]. Multi-agent reinforcement
learning is useful to model scenarios where control is dis-
tributed among different entities. For example, autonomous
driving requires multi-agent settings as the control is dis-
tributed among each vehicle’s host.



A. Fundamentals of Reinforcement Learning

A common way to model reinforcement learning problems
is using a Markov decision process, which can be described
with a tuple (S,A, T,R), where:

• S is the state space
• A is the action space
• T (s, a, s′) is the transition dynamics, describing the prob-

ability of transitioning from state s to s′ after taking
action a in state s

• R(s, a, s′) is the reward received when action a is chosen
in state s resulting in a transition in state s′.

The problem of solving a Markov decision process is to
find a policy (often denoted π) mapping states to actions,
which maximizes the accumulated reward. When the transition
dynamics T and rewards R are known, the optimal policy can
be found using dynamic programming. In the case where T
and R are not known, reinforcement learning can be used to
learn a near-optimal mapping from states to actions [27].

In reinforcement learning problems, the agent does not
know the environment dynamics (i.e., T and R) and needs
to learn the optimal policy, which maximizes its long-term
expected reward, by interacting with the environment. The
agent interacts with the environment by perceiving its states,
taking actions and observing the effect of those actions.
Feedback (in the form of rewards) allows the agent to adjust
its policy: actions that yield to a positive effect will have a
higher chance of being selected in the future.

Two popular classes of reinforcement learning techniques
are policy gradient and Q-learning. Policy gradient methods
parameterize policies and optimize the policy space using
gradient descent. The gradient is estimated by observing the
trajectories of executions obtained by following the current
policy. The actions that empirically lead to better returns
are reinforced [28]. Q-learning parametrizes an action-value
functions, Q(s, a)1, and the policy is generated directly from
this action-value function. The idea of Q-learning is that
if we have a good approximation of Q(s, a) for all state
and action pairs, we can obtain the optimal policy π∗ by
directly selecting the action that maximizes the action-value
function, i.e., π∗(s) = argmaxaQ(s, a). Q learning, unlike
policy gradient, updates the Q values without making any
assumptions about the actual policy being followed. More
details can be found in [29].

For both classes of techniques, the agent has to balance the
exploitation/exploration trade-off when picking actions. The
agent can either choose to exploit actions that have yielded
high reward in the past, or choose to gather more information
(continue to explore) in order to achieve potentially better
results in the future. The best long-term strategy may sacrifice
in the short term.

The Markov decision process framework assumes a single
agent is taking actions in the environment. When multiple

1Q(s, a) often denoted Qπ(s, a) is the expected total reward from state s
and action a under policy π: Qπ(s, a) = E[

∑∞
t=0 γ

trt|s, a, π]

agents interact simultaneously with environment, the model
needs to be extended, as discussed in the next subsection.

B. Multi-Agent Setting

Multiple agents learning simultaneously in an environment
gives rise to highly dynamic and non-deterministic environ-
ments: each agent has some effect on the environment and so
the values of an action depend also on what other agents are
doing. From the point of view of each agent, the environment
is no longer stationary, i.e., state transitions and rewards are
affected by the actions of all the agents. As a result, rein-
forcement techniques used in single-agent systems (described
in IV-A) cannot be applied as they are designed to solve
reinforcement learning problems in a stationary environment.
Stochastic games are an example of extension of Markov
decision processes to multi-agent domain [30].

In multi-agent problems, defining the learning goal can be
challenging. Maximization of individual rewards might not
lead to the best overall solution. Two different approaches
to multi-agent learning can be distinguished depending on
whether agents are self-interested and make individual choices
(independent learning) or they are teams of cooperative agents
(joint-action learning) [31].
• Independent reinforcement learners mutually ignore each

other, and perceive interaction with other agents as noise.
The advantage of this approach is that single-agent
learning algorithms can straightforwardly be applied to
a multi-agent setting. However, the stochasticity of the
environment means that convergence guarantees from the
single-agent setting are lost.

• Joint action learners share a joint return by learning in
the space of joint actions, rather than in their individual
action space only. Consequently, learners explicitly take
the presence of other agents into account. Some examples
of joint action learners are minimax-Q [30], and Nash-Q
[32].

• Gradient Ascent (or Descent): These methods, based
on gradient ascent algorithms, are situated in between
independent learning and joint-action learning but are
worth mentioning separately as we presented gradient
descent techniques in Section II-B. Gradient ascent (de-
scent) methods can be adapted for multi-agent learning
by adapting the agents’ policies according to the gradient
of their individual expected rewards in order to find their
local optimum. Some examples of gradient ascent algo-
rithms are infenitesimal gradient ascent [33], generalized
infinitesimal gradient ascent [34] and the more recent
weighted policy learning [35].

V. APPLICATIONS

A. Video-Analytics

Distributed machine learning can be used for the training
of machine learning models (e.g., deep neural networks) to
perform video analytics. For example, in order to increase
the security of cities, distributed sensors can capture a huge
amount of surveillance videos. Each sensor may capture



different videos which vary depending on the location/angle
of the sensors. In order to extract useful information from
all sensors (all locations), videos captured from distributed
sensors need to be processed and analyzed. Using some form
of distributed machine learning has the benefit to enable
sensors to collaboratively learn a shared model, built with a
rich amount of data, while keeping the videos stored locally.

When using resource constrained systems for video ana-
lytics, one needs to consider the model training in networks
with poor connectivity and devices with limited resources.
Here, learning may need to be offloaded to devices with more
resources [18], [19]. In some cases, the videos/data may not
be shareable, thus systems must rely on distributed machine
learning [2]. In this case, the devices must be prudent in
filtering out unnecessary data to process. An example of this is
the case of multiple cameras of the same view and determining
which sources to process and which are considered redundant.

B. Resource Management in Distributed Infrastructure

Large-scale distributed systems2 are becoming increasingly
complicated and highly dynamic, which makes them challeng-
ing to model, predict, and control. Availability of resources
(e.g., CPU, memory, storage) at each node may change
spontaneously over time, which makes resource management
tasks extremely complex. In a cloud computing environment
for example, multiple users share cloud resources and the
resources need to be re-allocated dynamically and on demand,
which make the prediction and management of resources on
virtual machines challenging [36].

As infrastructures become increasingly complex, distributed
machine learning methods can be applied to solve various
problems related to resource management. Distributed ma-
chine learning techniques can be used to build an intelligent
framework that collects a vast amount of real-time data arising
from different nodes across the infrastructure, captures the
complex relationship among infrastructure objects (e.g., CPU,
network, storage), and extract actionable insights from these
distributed data.

Reinforcement learning techniques are also becoming pop-
ular for resource management in large computing infrastruc-
tures. For example, in [37], multi-agent reinforcement learning
is applied to optimize resource allocation in large-scale cluster
networks. The learning is distributed to each cluster and each
cluster learns only using its local information, without access
to the global reward. The empirical results obtained in [37]
underline the suitability of multi-agent learning for resource
allocation in a large distributed system.

C. Resource Monitoring and Representation in Coalition En-
vironments

Although communication, computation and storage re-
sources in coalition infrastructures can be shared through

2A large-scale distributed system is defined as a collection of loosely
coupled processors interconnected by a communication network.

communication networks among partners, the resources usu-
ally belong to individual partners. Despite the coalition rela-
tionships, partners may not prefer to reveal details of their
infrastructures and conditions, including network topology,
resource usage and performance measures, to other partners.
(Similar situation also happens in commercial infrastructures
of multiple service providers.) In these cases, traditional
resource-allocation methods may not apply without detailed
knowledge of infrastructures and resources. On the other
hand, to facilitate resource sharing, a coalition partner may
use machine-learning techniques to monitor and represent
the structure and condition of his own infrastructure by the
underlying models. In turn, a partner shares the models and
associated parameters with other partners so that the latter
can decide how to make use of others resources. For example,
[38] proposes a method to model the relationship between
network performance and usage of communication resources
as an arbitrary function, which is approximated by the first
and second order terms, and measurements are used to es-
timate the associated coefficients. One can apply machine-
learning techniques to extend the representation capability by
using an underlying model more sophisticated than a single-
valued function. Furthermore, the model parameters can be
determined properly by the online measurements. Knowing
the underlying models and parameters for the infrastructure
owned by each partner enables all partners to share their
resources efficiently. Issues for future investigation include
appropriate definition of underlying models and the associated
parameter estimations for infrastructure monitor and usage,
tradeoffs between model complexity and system performance,
and information leaking for the chosen models from partner
to partner.
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