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Abstract—In this paper, we consider user location privacy in
mobile edge clouds (MECs). MECs are small clouds deployed
at the network edge to offer cloud services close to mobile
users, and many solutions have been proposed to maximize
service locality by migrating services to follow their users.
Co-location of a user and his service, however, implies that a
cyber eavesdropper observing service migrations between MECs
can localize the user up to one MEC coverage area, which
can be fairly small (e.g., a femtocell). We consider using chaff
services to defend against such an eavesdropper, with focus
on strategies to control the chaffs. Assuming the eavesdropper
performs maximum likelihood (ML) detection, we consider both
heuristic strategies that mimic the user’s mobility and optimized
strategies designed to minimize the detection or tracking
accuracy. We show that a single chaff controlled by the optimal
strategy can drive the eavesdropper’s tracking accuracy to zero
when the user’s mobility is sufficiently random. The efficacy of
our solutions is verified through extensive simulations.

Index Terms—Mobile edge cloud, location privacy, chaff ser-
vice.

I. INTRODUCTION

While improvement in the coverage of wireless communi-

cations brings tons of useful applications to the fingertips of
mobile users, this trend also imposes a significant threat on

user location privacy. Location privacy refers to safeguarding

a mobile user’s location from unintended use. While legitimate
use of user location can enable various location-based services

(LBS), malicious use of this information can cause harmful
consequences such as stalking, blackmailing, and fraud [1].

Existing efforts in protecting user location privacy mostly

focus on protecting the information released through the direct

channel, i.e., location information intentionally revealed by the
user. Since the direct channel is controlled by the user, e.g., by

configuring how to share his location with an LBS provider,
the user can obfuscate his location in the spatial/temporal

domain to make sure that his location cannot be distinguished

from the locations of many other users [1], [2].
The more challenging problem, however, is how to prevent

unintentional release of location information through side

channels. For example, one side channel is the user’s wireless
transmission activity, which can be monitored by a wireless

eavesdropper to track the user. There have been solutions

proposed to protect this side channel, e.g., by introducing
intermittent radio silence and reducing the transmission power

[3], [4]. In this work, we investigate a new side channel not

studied before, which arises in a novel application context of
mobile edge clouds (MECs) [5].

MECs, as illustrated in Fig. 1, are small clouds that offer

a limited set of cloud services from the edge of the mobile
network (e.g., base stations). Since its introduction, MEC has

�

�

���

���

�

�����	
��
�����	
��
	
���
�

�
	����

����

�

��
��

����������	��
��

���
	�����	��
��

������	��
��

Fig. 1. Providing services to mobile users via MECs.

attracted tremendous interest from both research communities
and industry leaders as a promising approach to improve cloud

performance for mobile users [6], [7]. From the perspective of

location privacy, however, this technology opens a new side
channel, referred to as the cyber side channel.

Specifically, to deliver the promised performance, MECs

need to migrate services1 (e.g., by migrating virtual machines

(VMs) encapsulating the services [8]) to follow the mobile
users [9], [10], [5], [11], especially for delay-sensitive services

(e.g., augmented reality) [8]. Thus, a “cyber eavesdropper”,

who can observe service migrations among MECs, can track
physical movements of the user. Such a cyber eavesdropper

can be a hacker that has gained access to the MECs, or an

untrusted MEC provider interested in tracking users of certain
services. Cyber eavesdropping is a realistic concern in MECs

because of the openness of the MEC ecosystem [6], which

increases the risk of introducing both unsecured systems
and untrusted providers. Note that as shown in Fig. 1, we

distinguish between the network provider, the MEC provider,

and the service provider, where the network provider and
the service provider are trusted, but the MEC provider

can be untrusted. Although the spatial resolution of cyber
eavesdropping is limited to the coverage of one MEC (e.g.,

a femtocell), its harm can be severe, as it can be performed

without any physical sensing devices, thus potentially at a
much lower cost and a much larger scale.

While cyber eavesdropping and wireless eavesdropping are

conceptually similar, the defense mechanisms can be quite

different. Specifically, the existing defense mechanisms for
wireless eavesdropping [3], [4] are intrusive in that they

modify the user’s transmissions. While it is possible to defend

against cyber eavesdropping by not letting services follow their
users, such a mechanism will cause significantly degraded

Quality of Service (QoS) [8]. Instead, we consider a non-

intrusive mechanism using chaffs. Chaffs are legitimate ser-

1Here “service” refers to an instance of a given type of service (e.g., a VM
instance running the service), which is independently generated/migrated for
each user as assumed in existing solutions [8], [9], [10], [5], [11].



vices launched by the user (or by the network provider on

behalf of the user) together with the real service to confuse
the eavesdropper about which service the user is actually

using. For example, they can be implemented by sending fake
service requests and handoff signals to user-specified MECs;

see Section II-B for details.

To confuse the eavesdropper, the chaffs must be indistin-

guishable from the real service, e.g., by being independent
instances of the same type of service. It is, however, insuf-

ficient to only make the chaffs indistinguishable in content.

For example, a chaff that never migrates can be easily dis-
tinguished from a real service that migrates with the mobile

user, and a chaff that randomly migrates among MECs can be
easily distinguished from a real service that exhibits temporal

correlation in its locations. For a chaff to effectively confuse

the eavesdropper, its mobility pattern, i.e., where it is launched
and whether/where it is migrated, has to resemble the mobility

pattern of the real service. Meanwhile, a chaff that always

follows the real service (which follows the user) offers no
protection for the user’s location privacy. Therefore, the chal-

lenge is in controlling the mobility of the chaffs to maximally

resemble the real service while minimally co-locating with the

real service. To address this challenge, we study the following

closely related questions: (i) How will an eavesdropper track

a user in the presence of chaffs? (ii) How should the user
control the chaffs to defend against the eavesdropper?

A. Related Work

Most existing work on location privacy refers to protecting
the direct channel, where the user intentionally releases his

location to access LBS [1]. Most existing solutions, e.g., [2]

and references therein, use spatial/temporal cloaking to satisfy
a given anonymity requirement (e.g., k-anonymity). The basic

idea is to let a trusted server “cloak” a user by replacing the

exact user locations by bounding boxes containing sufficiently
many other users. While such a strategy can protect the direct

channel, it does not protect side channels such as the cyber
side channel considered here.

Besides the direct channel, side channels can also release

location information. An important side channel in wireless

networks is the transmission activity, which can be monitored
by a wireless eavesdropper to track the user. To defend

against wireless eavesdropping, mechanisms are proposed to

protect senders/receivers using anonymous routing protocols,
frequently changing pseudonyms, silent periods, and reduced

transmission power [3], [4]. The above mechanisms are intru-

sive in that they modify the user’s behavior. In contrast, we

study another side channel arising in MECs due to correlated

user mobility and service mobility, and propose a non-intrusive

defense mechanism using chaffs.

The idea of using chaffs to protect user security/privacy

has been explored in other contexts, such as using chaff

traffic to protect real traffic [12], using chaff data to protect
real data [13], and using chaff applications to protect real

applications [14]. However, we are the first to study the use
of chaff services to protect user location privacy. Besides

the novel application context, our problem also requires new

methodology. Specifically, as a real service needs to migrate
dynamically to follow a mobile user, its mobility pattern (in

addition to its content) can be used to identify the service. To

effectively protect the user, the chaff services have to resemble
the real service in both content and mobility pattern.

Another line of related work is service migrations in MECs.

Service migrations in MECs are primarily driven by the need

to keep the service close to a mobile user as the user moves,
while considering both migration cost and communication

cost. Modeling the user’s mobility as a Markov chain (MC),

several solutions based on Markov Decision Processes (MDPs)

have been proposed to minimize the total cost under 1-D [15],

[16] or 2-D mobility models [5], [10]. Here we consider the

worst case (in terms of location privacy) that the real service
always follows the user, and focus on protecting the user’s

location privacy using chaffs. We leave the study of privacy-

aware service migration to future work.

B. Summary of Contributions

We consider the problem of protecting user location privacy

in the context of MECs using chaffs. Our contributions are:
1) We model the eavesdropper as a maximum likelihood

(ML) detector that aims at detecting the user’s trajectory based

on multiple observed trajectories.
2) We propose a suite of increasingly sophisticated chaff

control strategies for the user: (i) an impersonating (IM) strat-
egy that mimics the user’s mobility, (ii) an ML strategy that

maximizes the likelihood of the chaff’s trajectory to mislead
the detector, (iii) an optimal (OPT) strategy that minimizes

the eavesdropper’s tracking accuracy based on the user’s

trajectory. We show that all the strategies can be computed
in polynomial time.

3) We analyze the performance of the proposed chaff control
strategies. Our analysis shows that while the eavesdropper’s

tracking accuracy is always non-zero under the IM or ML

strategy, it may decay to zero under the OPT strategy, where
we characterize the condition and the decay rate.

4) We evaluate the proposed strategies via extensive sim-
ulations. Our evaluations show that beside the chaff control

strategy, the user’s mobility model also has a significant
impact on the tracking accuracy. Nevertheless, our strategies,

especially OPT, can significantly reduce the tracking accuracy

even for users with highly skewed mobility.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III specifies the model for

the eavesdropper. Section IV presents chaff control strategies
for the user, whose effectiveness is analyzed in Section V.

Section VI evaluates the performance through simulations.

Then Section VII concludes the paper. All the proofs are

provided in our technical report2 [17].

II. PROBLEM FORMULATION

A. Network Model

Given a network field deployed with multiple MECs, we
quantize the space into cells such that each cell corresponds

to the coverage area of one MEC. Let L denote the set of

cells, which also specifies the set of possible user locations
from the perspective of a cyber eavesdropper; let L := |L|.

2The OPT strategy is referred to as the optimal offline (OO) strategy in
[17].



Suppose that there is a user of interest running a delay-

sensitive service (e.g., augmented reality or virtual desktop)
that must be co-located with the user. We consider delay-

sensitive service as it has been identified as one of the most
promising applications in future wireless networks [18], while

establishing the worst case for location privacy. We leave

the study of more flexible services to future work. Note that
although our analysis focuses on the single-user scenario,

our solution can be independently applied to protect multiple

users in a multi-user scenario, where our results provide
performance lower bounds as other coexisting users (and their

chaffs) offer additional protection.

B. Eavesdropper and Chaffs

We consider a cyber eavesdropper that observes the trajec-
tories of services as they migrate among the MECs. Such an

eavesdropper can be a hacker inside the MEC system, or an

untrusted MEC provider that operates the MECs. Under the
assumption of delay-sensitive services as in Section II-A, the

eavesdropper can track the user by detecting the trajectory of

his service.
To prevent detection, the user generates N − 1 (N > 1)

additional trajectories using chaff services. Each chaff service

is an independent instance of the same service that the user
is accessing, thus indistinguishable from the real service in

content. The chaff services will consume MEC resources, and

the cost incurred by these services is the responsibility of the
user. In this regard, the parameter N captures the user’s budget

for running chaff services. With assistance of the network

provider, the user can make a chaff service follow an arbitrary
trajectory by sending fake service requests and handoff signals

to the corresponding MECs (which cause the chaff service to

be instantiated or migrated). Since for a cyber eavesdropper,
tracking a user is equivalent to tracking his service, we simply

refer to the user’s service as “the user” and the chaff services

as “the chaffs”.

C. Mobility Model

Assume that the user follows a discrete-time ergodic Marko-

vian chain (MC) as in [15], [16], [5], with transition matrix
P = (P (xt|xt−1))xt,xt−1∈L. Let π := (π(x))x∈L denote his

steady-state distribution. Assume that π(x) > 0 for all x ∈ L.

Mobility of the chaffs (i.e., migration of chaff services) is
controlled by the user and will be studied later.

For each u = 1, . . . , N , let xu,t ∈ L denote the location

of the u-th service in time slot t, and xu := (xu,t)
T
t=1 the

trajectory over T slots. Here u = 1 corresponds to the user,
u = 2, . . . , N correspond to the chaffs, and T ≥ 1 represents

the duration of the user’s service.

D. Location Privacy in the Presence of Chaffs

Our goal is to understand the efficacy of protecting user
location privacy using chaffs. We achieve this by studying two

closely-related problems:
(i) From the eavesdropper’s perspective: Given N trajecto-

ries generated by a user and N − 1 chaffs, which trajectory

belongs to the user?
(ii) From the user’s perspective: Given N − 1 chaffs,

what trajectories should the chaffs follow to cause the worst
performance for the eavesdropper?

We measure the eavesdropper’s performance by his tracking

accuracy, defined as the time-average probability of correctly
tracking the user, i.e., if the eavesdropper believes that the u-

th trajectory belongs to the user, then his tracking accuracy

equals 1
T

∑T

t=1 Pr{xu,t = x1,t}. Note that this is different

from the detection accuracy, as u = 1 is sufficient but not

necessary for xu,t = x1,t.

III. EAVESDROPPER’S STRATEGY

Given multiple trajectories xu := (xu,t)
T
t=1 (u = 1, . . . , N ),

the eavesdropper wants to determine which trajectory belongs

to the user of interest. We assume that the eavesdropper knows
the user’s mobility model, i.e., the transition matrix P . For

example, the eavesdropper can obtain this information by

profiling how typical users move in the network field.

Intuitively, the eavesdropper should pick the trajectory that
best matches the user’s mobility model. Mathematically, this is

the trajectory that has the maximum likelihood (ML) among all

the trajectories. Under the assumption that all the trajectories
have equal prior probability of belonging to the user, the ML

trajectory has the maximum posterior probability of belonging

to the user. Under the Makovian user mobility model in
Section II-C, the ML detector is given by ([N ] := {1, . . . , N})

uML=argmax
u∈[N ]

p(xu)=argmax
u∈[N ]

π(xu,1)

T
∏

t=2

P (xu,t|xu,t−1). (1)

The optimization in (1) can be easily solved in O(NT ) time.

IV. USER’S STRATEGY

The problem faced by the user is that given N − 1 chaffs,

how to control the mobility of the chaffs, i.e., how to generate

the trajectories xu (u = 2, . . . , N ), to maximally confuse
the eavesdropper. Depending on the precise definition of

“confusion”, we have the following chaff control strategies.

A. Impersonating Strategy

If the eavesdropper’s strategy is unknown, a safe choice

for the user is to make the chaffs appear similar to himself, a

strategy referred to as the impersonating (IM) strategy. Under
Markovian user mobility, this strategy makes each chaff follow

a trajectory generated independently from the same transition

matrix P as followed by the user, which naturally mimics the
user’s mobility. Under this strategy, all the N trajectories are

statistically identical, and therefore any detector, including
the ML detector (1), can only make a random guess.

B. Maximum Likelihood Strategy

1) The Strategy: If the user knows that the eavesdropper

uses the ML detector (1), then he can design trajectories for the
chaffs to intentionally mislead the detector. A chaff’s trajectory

can mislead the ML detector only if its likelihood (based on the
user’s mobility model) is no smaller than the likelihood of the

user’s trajectory. Since the detector is deterministic, it suffices

to use a single chaff as at most one chaff (the one with the ML
trajectory) will have effect even if multiple chaffs are used.
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Fig. 2. Auxiliary graph for computing the ML trajectory.

This idea inspires a strategy referred to as the maximum

likelihood (ML) strategy. Letting LT denote all possible tra-

jectories of length T , this strategy controls the chaff to follow

a trajectory x2 that achieves the following optimization:

x2 = argmax
x∈LT

p(x) = argmax
x∈LT

π(x1)
T
∏

t=2

P (xt|xt−1). (2)

2) The Algorithm: While the space of all possible trajecto-
ries (LT ) is too large to explore exhaustively, the optimization

problem in (2) has a physical interpretation that allows a

more efficient solution. We will show that problem (2) can
be converted to a shortest-path problem as follows.

The key is to rewrite the optimization (2) as

x2 = argmin
x∈LT

− log π(x1) +

T
∑

t=2

(− logP (xt|xt−1)). (3)

Let Lt (t = 1, . . . , T ) be a set of vertices representing all
possible chaff locations at time t (|Lt| = |L|). As illustrated

in Fig. 2, we construct a graph G = (V,E), with vertices V =
{x0}∪{xT+1}∪

⋃T

t=1 Lt denoting possible chaff locations at

different times (x0 and xT+1 are virtual locations) and edges

E = ({x0}×L1)∪(LT×{xT+1})∪
⋃T

t=2(Lt−1×Lt) denoting

possible movements. We assign each edge a cost3:

1) edge (x0, x) for each x ∈ L1 has cost − logπ(x);
2) edge (x, x′) for each x ∈ Lt−1 and x′ ∈ Lt (t =

2, . . . , T ) has cost − logP (x′|x);
3) edge (x, xT+1) for each x ∈ LT has zero cost.

Each possible trajectory x = (xt)
T
t=1 corresponds to a path

(x0, x1, . . . , xT , xT+1) from x0 to xT+1 in G, and the cost of

this path, given by the sum of its edge costs, equals the value
of the objective function (3) at x. Thus the solution to (3) is

essentially the path from x0 to xT+1 that has the minimum

cost, which can be computed by Dijkstra’s algorithm4 at

complexity O(TL2). Note that this trajectory only depends

on the user’s mobility model and can thus be computed
beforehand.

Remark: The ML strategy is clearly optimal against the

ML detector (1) in minimizing the detection accuracy. This

is, however, different from minimizing the tracking accuracy,
as the chaff’s trajectory may coincide with the user’s trajectory

at times, when the eavesdropper can track the user perfectly.

C. Optimal Strategy

1) The Strategy: The ultimate goal of the user is to prevent

himself from being tracked by the eavesdropper. To this end,

3Strictly, each vertex v ∈ Lt corresponds to a unique cell ft(v) ∈ L. Edge
(x0, x) for each x ∈ L1 has cost − log π(f1(x)); edge (x, x′) for each
x ∈ Lt−1 and x′ ∈ Lt has cost − logP (ft(x′)|ft−1(x)) (t = 2, . . . , T ).

4Dijkstra’s algorithm works in this case since all the edge costs are non-
negative.

the chaff’s trajectory not only needs to mislead the detector,

but also needs to be as disjoint as possible from the user’s
trajectory. For the ML detector (1), the optimal strategy is to

let the chaff follow a trajectory that is as disjoint as possible
from the user’s trajectory while having a higher likelihood, i.e.,

the solution x2 := (x2,t)
T
t=1 to the following optimization5

min

T
∑

t=1

1{x2,t=x1,t} (4)

s.t.π(x2,1)

T
∏

t=2

P (x2,t|x2,t−1)>π(x1,1)

T
∏

t=2

P (x1,t|x1,t−1), (5)

where the constraint (5) guarantees that the ML detector will

pick the chaff’s trajectory, and the objective (4) minimizes the

number of times that the chaff’s trajectory coincides with the
user’s trajectory. Again, a single chaff suffices as the detector

is deterministic. We refer to this strategy as the optimal (OPT)

strategy, as it is optimal in minimizing the tracking accuracy
of an eavesdropper using the ML detector (1).

Note that (5) will be infeasible if the user’s trajectory has the

maximum likelihood among all the trajectories. In this case,
we change the “>” in (5) to “=” to force the ML detector to

make a random guess, but the objective (4) remains valid as

we want to minimize the number of times the eavesdropper
tracks the user correctly when the detector guesses wrong.

2) The Algorithm: While a brute-force solution to (4) is

infeasible due to the exponentially large solution space, we

can solve it by dynamic programming over the weighted graph
introduced in Fig. 2. Let px1

denote the path in this graph

corresponding to the user’s trajectory, and K(px1
) the length

(sum of edge costs) of this path. Then optimizing (4) subject
to (5) is equivalent to finding a path from x0 to xT+1 with

a length less than K(px1
) (or equal to K(px1

) if px1
is a

shortest path) that is as disjoint as possible from px1
. To this

end, we introduce Kt(x, i) to denote the length of the shortest

path from x ∈ Lt to xT+1 that intersects (i.e., sharing vertices)

with px1
at most i times (0 ≤ i ≤ T − t+ 1), and nt(x, i) to

denote the next hop neighbor of x on this path.

Initially, KT (x, 1) ≡ 0 for all x ∈ LT ,

KT (x, 0) =

{

0 if x 6= x1,T ,
∞ o.w.,

(6)

and nT (x, i) ≡ xT+1 for all x ∈ LT and i ∈ {0, 1}. For

t = T − 1, . . . , 1,

Kt(x, i)=







min
x′∈Lt+1

−logP (x′|x)+Kt+1(x
′, i) if x 6= x1,t,

min
x′∈Lt+1

−logP (x′|x)+Kt+1(x
′, i− 1) o.w.,

∀x ∈ Lt, i ∈ {0, . . . , T − t+ 1}, (7)

and nt(x, i) is the value of x′ ∈ Lt+1 achieving the minimum.

By definition, Kt(x, i) ≡ Kt(x, T−t+1) for all i > T−t+1,

and Kt(x, i) = ∞ for i < 0 (infeasible). At t = 0, we have

K0(x0, i)=min
x∈L1

−log π(x) +K1(x, i), ∀i∈{0, . . . , T }, (8)

and n0(x0, i) is the x ∈ L1 achieving the minimum.

5Here 1{·} is the indicator function.



Then i∗, defined by the smallest value of i ∈ {0, . . . , T }
satisfying K0(x0, i) < K(px1

), is the optimal value of (4)
(if infeasible, then i∗ is the smallest i satisfying K0(x0, i) =
K(px1

)). The optimal chaff’s trajectory x2 is given by:

1) x2,1 = n0(x0, i
∗), and i1 = i∗;

2) for t = 2, . . . , T : x2,t = nt−1(x2,t−1, it−1), and it =
it−1 if x2,t−1 6= x1,t−1 or it = it−1 − 1 otherwise.

The complexity of this dynamic programming is O(T 2L2).

V. PERFORMANCE ANALYSIS

We now analyze the performance of the proposed strategies

in Section IV in terms of the tracking accuracy of the eaves-
dropper in Section III. We denote the time-average tracking

accuracy under each strategy by PIM, PML, and POPT.

A. Tracking Accuracy under IM

Under the IM strategy, the eavesdropper randomly guesses
a trajectory for the user. He correctly tracks the user at time t
if and only if (i) he guesses the trajectory right, which occurs
with probability 1/N , or (ii) he guesses the trajectory wrong

but the guessed trajectory coincides with the user’s trajectory

at time t. Thus, the overall tracking accuracy equals

PIM =
1

N
+

N − 1

N
·
1

T

T
∑

t=1

Pr{x′
t = xt}, (9)

where x
′ = (x′

t)
T
t=1 and x = (xt)

T
t=1 are two independent

instances of the same MC that describes the user’s mobility.
Given the steady-state distribution π of this MC, it is easy to

see that Pr{x′
t = xt} =

∑

x∈L π2(x). Therefore,

PIM =
(

∑

x∈L

π2(x)
)

+
1

N

(

1−
∑

x∈L

π2(x)
)

. (10)

B. Tracking Accuracy under ML

Under the ML strategy, the chaff’s trajectory x2 is deter-
ministic and is guaranteed to be selected by the ML detector6.

The tracking accuracy is therefore determined by the fraction

of time that the user’s trajectory coincides with x2, i.e.,

PML =
1

T

T
∑

t=1

Pr{x1,t = x2,t} =
1

T

T
∑

t=1

π(x2,t), (11)

where x2 is the solution to (2).

C. Tracking Accuracy under OPT

Under the OPT strategy, the chaff’s trajectory is designed to

yield the minimum tracking accuracy. Therefore, its tracking

accuracy is upper-bounded by the tracking accuracy under any
suboptimal strategy.

6We ignore ties as they occur with an exponentially decaying probability
(except for i.i.d. uniform mobility).

1) Auxiliary Strategy: To bound the tracking accuracy

under the OPT strategy, we introduce a suboptimal strategy
whose tracking accuracy can be analyzed in closed form. This

strategy, referred to as the constrained maximum likelihood

(CML) strategy, greedily maximizes the likelihood of the

chaff’s trajectory under the constraint that the chaff cannot

co-locate with the user. That is, given the user’s trajectory x1,
the chaff’s trajectory x2 is computed by

1) at t = 1, x2,1 = argmaxx∈L\{x1,1} π(x);
2) at t > 1, x2,t = argmaxx∈L\{x1,t} P (x|x2,t−1).

Note that CML is actually an online strategy as it never

requires the future trajectory of the user.
2) Analysis of Auxiliary Strategy: Under the CML strat-

egy, the chaff’s trajectory is always disjoint from the user’s

trajectory, and thus the eavesdropper correctly tracks the user
if and only if the ML detector is correct, which occurs only

if the user’s trajectory has a likelihood no smaller than that of

the chaff’s trajectory. That is, the tracking accuracy under the
CML strategy satisfies

PCML ≤ Pr{p(x1) ≥ p(x2)}, (12)

where x2 is generated according to the CML strategy.

As p(x) = π(x1)
∏T

t=2 P (xt|xt−1), we can define

c1(x1,1, x2,1) := log π(x1,1)− log π(x2,1), (13)

ct(x1,t, x2,t, x1,t−1, x2,t−1) := logP (x1,t|x1,t−1)

− logP (x2,t|x2,t−1), t > 1, (14)

and convert Pr{p(x1) ≥ p(x2)} to

Pr{c1(x1,1, x2,1)+

T
∑

t=2

ct(x1,t, x2,t, x1,t−1, x2,t−1) ≥ 0}. (15)

The tracking accuracy under the CML strategy is then upper-
bounded by (15). The key is to show that even if ct’s are

correlated, as long as E[ct] < 0, Pr{
∑

t ct ≥ 0} decays
exponentially with T . See [17] for details.

Specifically, let c0 be the maximum value of c1, cmin (cmax)
be the minimum (maximum) value of ct for t > 1, and w and

δ be constants defined as in Lemma V.2 in [17]. Then we have
the following result.

Theorem V.1. Let E[ct] := −µ (t > 1). If ∃ǫ > 0 such that

µ − ǫδ − c0/(T − w) ≥ 0, then the tracking accuracy under

the CML strategy (and thus the OPT strategy) satisfies

POPT ≤ PCML ≤ w · exp

(

−2
(T

w
− 1
) (µ− ǫδ − c0

T−w
)2

(cmax − cmin + 2ǫδ)2

)

.

(16)

Remark: A few remarks are in order:
i) In contrast to the previous strategies (IM, ML) where the

tracking accuracy is always non-zero, we see that when the

condition in Theorem V.1 holds, the CML strategy and the

OPT strategy can both reduce the tracking accuracy to zero.
ii) For a sufficiently large T , the condition in Theorem V.1

holds if and only if E[ct] < 0. This condition has an

information-theoretic interpretation: By definition, E[ct] =
H(X2,t|X2,t−1) − H(X1,t|X1,t−1), where H(X1,t|X1,t−1)
(H(X2,t|X2,t−1)) is the conditional entropy of the user’s



(chaff’s) movement. Thus, the tracking accuracy decays to

zero if H(X1,t|X1,t−1) > H(X2,t|X2,t−1), i.e., the user has
a higher entropy than the chaff.

VI. PERFORMANCE EVALUATION

We use simulations to evaluate the effectiveness of the pro-
posed chaff control strategies by measuring the eavesdropper’s

tracking accuracy: the lower, the better.

A. Simulation Setting

We generate synthetic mobility traces, where the user fol-

lows a MC of L states with transition probabilities specified

below, and the chaffs follow one of the proposed strategies.
We set T = 100, L = 10, and vary N from 2 to 10 (recall that

N − 1 is the number of chaffs). The performance is averaged

over 1000 Monte Carlo runs.

We evaluate four different mobility models for the user: (a)
neither spatially nor temporally skewed mobility, represented

by a MC with randomly generated transition probabilities, (b)

spatially-skewed mobility, represented by a MC with a high
probability of transiting into a certain cell, (c) temporally-

skewed mobility, represented by a random walk with a uniform

steady-state distribution, and (d) both spatially and temporally
skewed mobility, represented by a random walk with a non-

uniform steady-state distribution. See Fig. 4 in [17] for the
steady-state distribution under each model.

B. Simulation Results

We evaluate the performance of an eavesdropper using the

ML detector (1) in Fig. 3. We see that: (i) while IM and ML
always lead to non-zero tracking accuracy, OPT can drive the

tracking accuracy to zero; (ii) the more skewed the mobility

model (i.e., the more predictable the user’s movements), the
higher the tracking accuracy; (iii) while the deterministic

strategies (ML, OPT) cannot benefit from using more chaffs,

the IM strategy can use more chaffs to lower the tracking
accuracy. We further simulate the auxiliary strategy CML in

Section V-C and verify our analysis that the accuracy under
CML decays exponentially if E[ct] < 0; see Fig. 6 in [17].
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Fig. 3. Tracking accuracy of the eavesdropper.

VII. CONCLUSION

We studied the problem of protecting the location privacy
of a mobile user in MECs using chaff services. Assuming

that a cyber eavesdropper tracks the user by performing ML

detection among observed service trajectories, we examined a
range of chaff control strategies, from a baseline strategy to

an optimal strategy. We proved that the optimal strategy can

reduce the eavesdropper’s tracking accuracy to zero when the
user’s mobility is sufficiently random, while simpler strategies

cannot. Our evaluations highlighted the dependency of the

tracking accuracy on the user’s mobility model, and verified
the efficacy of our solutions in protecting the location privacy,

even for users with highly predictable mobility.
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