
Emulation-Based Study of Dynamic Service
Placement in Mobile Micro-Clouds

Shiqiang Wang∗, Kevin Chan†, Rahul Urgaonkar‡, Ting He‡, and Kin K. Leung∗
∗Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

†Army Research Laboratory, Adelphi, MD, United States
‡IBM T. J. Watson Research Center, Yorktown Heights, NY, United States

Email: ∗{shiqiang.wang11, kin.leung}@imperial.ac.uk, †kevin.s.chan.civ@mail.mil, ‡{rurgaon, the}@us.ibm.com

Abstract—Tactical networks are highly constrained in commu-
nication and computation resources, particularly at the edge. This
limitation can be effectively addressed by the emerging technol-
ogy of mobile micro-clouds (MMCs) that is aimed at providing
seamless computing/data access at the edge of such networks.
Deployment of MMCs can enable the delivery of critical, timely,
and mission relevant situational awareness to end users in highly
dynamic environments. Different from traditional clouds, an
MMC is smaller and deployed closer to users, typically attached
to a fixed or mobile basestation that is deployed in the field. Due
to the relatively small coverage area of each basestation, a mobile
user may frequently switch across areas covered by different
basestations. An important issue therefore is where to place the
service so that acceptable service performance can be maintained,
while coping with the user and network dynamics. Existing work
has considered this problem mainly from a theoretical angle. In
this paper, with the aim of pushing the theoretical results one
step closer to practice, we study the performance of dynamic
service placement using an emulation framework, namely the
Common Open Research Emulator (CORE) which embeds the
Extendable Mobile Ad-hoc Network Emulator (EMANE). We
first present the system architecture used in the emulation. Then,
we present the message exchange and control process between
different network entities, as well as methods of deciding where
to place the services. Finally, we perform emulation using real-
world user mobility traces of San Francisco taxis and present
the results. The results show several insightful observations in a
realistic network setting, such as the impact of randomness and
delay on the service placement performance.

Index Terms—Cloud technologies, edge computing, emulation,
mobility, optimization, wireless networks

I. INTRODUCTION

Tactical networks are required to provide efficient and effec-
tive computing capability at the tactical edge. As described in
[1], there is an increasing need for enhanced information ser-
vices and associated infrastructure, and mobile cloud comput-
ing can enhance mission performance by providing users on-
demand data and services in dynamic network environments.
Typical cloud applications consists of front-end components
running on the mobile devices carried by users and back-
end components that perform the majority of computation
running on the cloud. With this architecture, applications can
take advantage of the on-demand feature of cloud computing.
However, new challenges are also introduced, such as increase
in network load and latency.

These challenges can be addressed by moving computation
closer to the users. It is envisioned that small cloud comput-
ing platforms will be distributed across the network, hosted
by entities at the network edge (such as fixed or mobile

Figure 1. Application scenario of mobile micro-clouds (MMCs).

basestations deployed on the field), as shown in Fig. 1. We
refer to this distributed micro-cloud infrastructure as Mobile
Micro-Cloud (MMC) in this paper, which is also known as
Edge Computing [2], Cloudlets [3], Follow Me Cloud [4],
etc. MMCs are expected develop rapidly as the data and
computation requirements of users at the tactical edge increase.
Furthermore, they can also improve the robustness of cloud
computing systems in hostile environments [3].

One important aspect in MMCs is to determine the location
(in terms of which cloud) of running the services, where
services for different users may be run at different locations
and the users are usually mobile. Both MMCs and centralized
core cloud(s) can host services, and the selection of service
locations depends on several factors. There usually exists on-
going data transmission between each user and the cloud that
is hosting its service, which incurs a transmission cost. There
is also a migration cost associated with migrating a service
from one cloud to another cloud. In practice, these costs can
be related to communication bandwidth consumption, delay in
accessing the service, interruption of service, etc. Migration
is needed because the best service location may change over
time due to user mobility. A trade-off exists between the
transmission and migration costs, both of which are related
to factors including the distance of data transmission and
migration, load of the cloud and the network, etc.

The problem of dynamic service placement/migration aims
at adaptively mapping services to clouds to minimize the total
transmission and migration cost. It is a highly challenging
problem particularly due to user mobility, and has attracted
notable interest recently. Most existing work take a theoretical
approach to this problem, using mathematical tools ranging
from Markov decision processes (MDPs) [5]–[7], dynamic
programming [8], and Lyapunov optimization [9]. While these
theoretical results provide useful insights into the problem,
the performance of these algorithms under a practical setting
remains to be investigated.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution 

to servers or lists, or reuse of any copyrighted component of this work in other works.



In this paper, we aim to push the theoretical results one step
closer to practice. We present a framework for conducting ex-
periments in an emulated cloud environment that contains one
centralized core cloud (the tactical operations center (TOC) in
Fig. 1) and multiple MMCs, which jointly cover an area that
contains multiple mobile users. The emulation is performed
using the Common Open Research Emulator (CORE) [10],
[11] which embeds the Extendable Mobile Ad-hoc Network
Emulator (EMANE) [12]. Implementing algorithms in CORE
enables experimentation with greater realism than simulation,
thus providing insight into what behavior or performance may
be expected upon actual deployment of these algorithms.

The emulation-based study we consider in this paper has the
following key differences from the theoretical work in [5]–[9]:

1) In the emulation, the parameters related to the transmis-
sion and migration costs are estimated based on real-
time network measurements, which can be subject to
fluctuations and inaccuracies.

2) A fully distributed system is considered in the emulation.
No node (i.e., core cloud, MMC, or user) in the network
has full control over other nodes. They can only commu-
nicate with each other by exchanging control messages
over the communication network.

3) The emulation considers realistic communication links
that may experience loss and delay as a result of con-
gestion and/or physical layer effects. Control messages
may also be delayed or lost.

The remainder of this paper is organized as follows. We first
give an overview to the existing theoretical results in Section
II. The system architecture that we use in the emulation is
presented in Section III. In Section IV, we present the process
of control message exchange that is used for performance
measurement and controlling the placement of services; we
also introduce the methods that we use for placement decision
in the emulation. The emulation is performed using real-world
user mobility traces of San Francisco taxis, and results are
shown in Section V. Section VI draws conclusions.

II. OVERVIEW OF THEORETICAL RESULTS

In this section, we summarize the existing results on the
theoretical modeling and analysis of dynamic service place-
ment/migration in MMCs. Starting with the work in [5], the
problem of dynamic service migration and workload schedul-
ing has been studied under increasingly complex settings. The
overall objective is to develop a fundamental understanding of
this decision problem and the associated tradeoffs.

A class of existing work aims at solving this problem
using MDPs [5]–[7]. The work in [5] formulated the service
migration problem for a single user with a one-dimensional
(1-D) mobility and a specific cost function, and the solution
is found with standard MDP solution approaches such as value
and policy iteration. We note that these standard solutions can
become time consuming when the number of states in the
MDP is large. Therefore, simplified solution approaches and
approximate solutions are proposed in [6], [7].

The work in [6] considers the problem of service migra-
tion for a single user with a 1-D asymmetric random walk

mobility model, where the transmission and migration costs
are assumed to be constants respectively when transmission
or migration occurs, and zero otherwise. This problem is
formulated as an MDP, and the optimal policy for service
migration is shown to be a threshold policy, in which the
service is migrated to the closest MMC to the user when
the offset between the service and user locations exceeds a
threshold. Further, an analytical solution of the cost is derived
for any given thresholds, based on which an algorithm is
proposed to find the optimal thresholds. It is shown that the
proposed algorithm is more efficient than standard mechanisms
for solving MDPs.

The work in [7] extends the formulation in [6] to consider
more general two-dimensional (2-D) mobility. A more general
cost function, which is in a constant-plus-exponential form,
is also considered. To reduce the computational complexity,
the state space of the MDP is approximated by the distance
between the user and service locations. This approximation
is shown to be exact for uniform 1-D mobility and closely
approximate uniform 2-D mobility with a constant additive
error term. The proposed algorithm is significantly faster than
traditional MDP solution for 2-D mobility.

In all the above works, the decision problem is formulated
as an MDP. The solutions are relatively straightforward to
implement. However, the MDP formulation requires that the
user mobility has to follow (or at least can be approximated
by) a Markov chain, and that the transition probabilities of
this chain is known. Moreover, the methods for simplifying
and approximating the MDP only work for a specific class of
cost functions.

To overcome some of these drawbacks, an alternative ap-
proach is taken in [8], where a mechanism for dynamic
service placement utilizing future costs that can be predicted
with known accuracy is proposed. In contrast to slot-based
decisions in the MDP approaches, the solution in [8] makes
decisions on the basis of a look-ahead window, whose size
is optimized as a function of the prediction accuracy. Within
the look-ahead window, placement decisions are made using
dynamic programming based on the predicted costs. This
method can work with more general cost functions, as long as
future costs are predictable with known accuracy.

Finally, [9] considers a more general problem involving
both service migration and workload scheduling. This joint
problem is still formulated as a constrained MDP for which
traditional solution methods (such as dynamic programming)
require extensive statistical knowledge and are computation-
ally prohibitive. Instead, a novel alternative methodology is
developed. First, an interesting decoupling property of the
MDP is established, which reduces it to two independent
MDPs on disjoint state spaces. Then, using the technique of
Lyapunov optimization over renewals, an online control algo-
rithm is designed for the decoupled problem that is provably
cost-optimal. This algorithm does not require any statistical
knowledge of the user mobility or demand model and can be
implemented efficiently. However, the user requests usually
need to be queued before they can be served by the MMCs.

The ultimate goal of the emulation study we consider in



Figure 2. System architecture for CORE emulation.

this paper is to evaluate the above theoretical findings in
realistic settings where some assumptions made for theoretical
tractability may not hold. We propose an initial emulation
framework in this paper, and perform the emulation with some
simple algorithms. This sets the foundation of emulating more
sophisticated algorithms in the future.

III. SYSTEM ARCHITECTURE

In the CORE emulation, we abstract the application scenario
depicted in Fig. 1 into the system architecture shown in Fig. 2.
In Fig. 2, node n1 is the core cloud, which is located in the
TOC in Fig. 1; nodes n2, n3, and n4 are MMCs; and nodes
n5 and n6 are users. Note that this is only an example and the
number of MMCs and users can be arbitrary in the emulation.

A. Network Connection and User Mobility

The core cloud is connected with each MMC via a satellite
link that is emulated by a persistent link configured with a
relative low bandwidth and a relatively large delay.

Each MMC and each user has a wireless interface, which
has an IP address of 20.0.0.x and is configured by the
configuration node wlan7 in Fig. 2. Throughout the emula-
tion, we use a fixed range radio propagation model. A pair
of nodes within the specified range can communicate with
each other, and they cannot communicate if they are outside
the specified range, where a node can be either a user or an
MMC. More realistic propagation models can be considered in
the future using functionalities of EMANE. The OSPF-MDR
routing protocol [13] is used for routing among the wireless
nodes. A pair of nodes may communicate either in single-hop
or multi-hop depending on their distance.

We consider in the emulation the case where MMCs are
static and users are mobile. This is only to ease the emulation
setup, and the same design principle can be applied to scenar-
ios where MMCs are also mobile. We employ the EMANE
event service to use existing traces to govern the mobility
of users. The mobility is described by an Emulation Event
Log (EEL) file. To receive messages from EMANE, each user
has an additional wireless interface with an IP address of
30.0.0.x, which is configured by the configuration node
wlan8. This interface is used only for communicating with
EMANE (which is executed outside the emulator in the emu-
lator’s host machine) so that the user locations remain updated
in real time according to the trace file. It does not participate
in any actual communication in the emulated network.

With the above setting, the core cloud, MMCs, and users
can communicate with each other. The wireless connections
are also updated in real-time based on locations of users. Users
do not have a direct connection with the core cloud, but they
can connect to the core via an MMC.

B. Service Model

We consider a relatively simple service model as presented
next, while noting that more sophisticated cases can be built
based on the emulation framework presented in this paper.

We assume that each user is running one service instance
in the cloud, and the terms “service” and “service instance”
are exchangeably used in this paper. We consider a delay-
sensitive situational awareness application, where each user
regularly sends data (e.g., images) describing its current sur-
rounding to the cloud that is hosting its service. The cloud
analyzes user data to extract user situation (e.g., detecting and
tagging objects and faces in images) and sends the results
back to the user, also in a regular manner. We abstract this
process as UDP packet transfer between the user and the
cloud, and we name these packets as service packets to
distinguish them from control packets introduced later. The
service packet transmission is initiated by the cloud. The
cloud sends a MMC_SERVICE_PACKET to each user (for
which it is hosting a service) at a pre-specified interval.
After receiving this packet, the user responds with its own
USER_SERVICE_PACKET that contains newly measured
data to the cloud.

The performance metric of the service is the round-trip
delay of transmitting service packets from the cloud to the
user and then back to the cloud. This mimics situational
awareness applications that need to collect user data as quickly
as possible so that rapid decisions can be made. This round-
trip delay can be seen as the transmission cost between the
user and the cloud.

For simplicity, we assume that service migration can be
completed instantaneously. We record the number of migra-
tions in the emulation results in Section V, which is an
indicator of the migration cost.

We assume that services can only be run on MMCs and no
service is run on the core cloud. This can be justified by noting
that it can be inefficient to run delay sensitive applications
on the core cloud due to the large communication delay. It
also simplifies the control procedure of service placement. The
role of the core cloud is to act as a controller for the service
placement, which is a relatively robust setup for a centralized
control approach because the system can still work even if
some MMCs fail to function. The centralized control approach
is also used in the theoretical work in [5]–[9].

IV. PACKET EXCHANGE AND PLACEMENT CONTROL

A. Control Messages

Control messages need to be exchanged for performance
measurement and controlling the placement of services. All
messages are sent in UDP packets. The different types of
messages are described as follows.



Algorithm 1 Procedure at the core cloud

1: loop
2: if timer t(CORE_BEACON_MMC) expired then
3: Update beacon information, such as the placement of services for

all users (obtained based on the recorded delay measurements)
4: Send CORE_BEACON_MMC to each MMC
5: Reset timer t(CORE_BEACON_MMC)
6: if timer t(CORE_BEACON_USER) expired then
7: Update beacon information
8: Send CORE_BEACON_USER to each user
9: Reset timer t(CORE_BEACON_USER)

10: if received MMC_USER_DELAY_MEASURED then
11: Update the recorded delay statistics
12: if received MMC_CONNECT or USER_CONNECT then
13: Update the MMC or user record

1) Beacon Messages from Core Cloud: At a pre-specified
interval, the core cloud sends out a beacon message
CORE_BEACON_MMC to each MMC, and it also sends out a
beacon message CORE_BEACON_USER to each user. This is
to notify MMCs and users of some status information, includ-
ing the set of users each MMC should currently serve, the set
of users each MMC should probe for delay measurement, etc.
Before sending these beacon messages, the core cloud makes
decisions such as where to place the service for each user.

2) Connection Request: In order for the core cloud to
know which MMCs and users are currently present in the
system, each MMC sends MMC_CONNECT and each user sends
USER_CONNECT at a pre-specified interval.

3) Delay Probing: Probing for delay measurement is ini-
tiated by each MMC at a pre-specified interval. Every MMC
probes a set of users as instructed by the core cloud. This set
of users should be within a specific proximity of the MMC,
so that the MMC is potentially suitable of running services
for these users. An MMC first sends MMC_DELAY_PROBE to
all the users it intends to probe. Upon receiving this message,
each user immediately replies with a USER_DELAY_PROBE
to the MMC that sent this message. The MMC calculates the
round-trip delay for the particular user and sends the result to
the core cloud with an MMC_USER_DELAY_MEASURED mes-
sage. After the core cloud has received this delay information,
it stores it in a list so that it can be used for making service
placement decisions before sending beacon messages.

We note that one may think of using service packets for
delay measurement. However, service packets are only trans-
mitted between a user and the particular MMC that is hosting
its service, and the delay of transmitting packets between the
user and other MMCs cannot be obtained from service packets.
Therefore, we introduce additional packets for delay probing,
which is usually substantially shorter than service packets.

B. Packet Exchange and Control Procedure

The detailed procedures that are executed at the core cloud,
MMC, and user are respectively shown in Algorithms 1, 2,
and 3, where we use the notation t(A) to denote the timer for
packet A, the packet A is sent when t(A) expires.

C. Service Placement Decisions

In the emulation, we consider three different policies for
deciding the service placement. These are described as follows.

Algorithm 2 Procedure at each MMC

1: loop
2: if timer t(MMC_CONNECT) expired then
3: Send MMC_CONNECT to the core cloud
4: Reset timer t(MMC_CONNECT)
5: if timer t(MMC_DELAY_PROBE) expired then
6: Send MMC_DELAY_PROBE to each user it intends to probe
7: Reset timer t(MMC_DELAY_PROBE)
8: if timer t(MMC_SERVICE_PACKET) expired then
9: Send MMC_SERVICE_PACKET to each user it is serving

10: Reset timer t(MMC_SERVICE_PACKET)
11: if received USER_DELAY_PROBE then
12: Calculate the round-trip delay and send the result via

MMC_USER_DELAY_MEASURED to the core cloud

Algorithm 3 Procedure at each user

1: loop
2: if timer t(USER_CONNECT) expired then
3: Send USER_CONNECT to the core cloud
4: Reset timer t(USER_CONNECT)
5: if received t(MMC_DELAY_PROBE) then
6: Send USER_DELAY_PROBE to the originating MMC
7: if received t(MMC_SERVICE_PACKET) then
8: Send USER_SERVICE_PACKET to the originating MMC

1) Always Migrate (AM): In the AM policy, the core cloud
always looks at its most recently received delay measurements,
and places the service for each user to the MMC that has the
lowest delay as measured by the latest probe. This policy puts
strong emphasis on minimizing the transmission cost (round-
trip delay), and does not consider the migration cost (number
of migrations).

2) Infrequently Migrate (IM): The IM policy is similar
to the AM policy, except that migration can only occur at
an interval denoted by τ . The value of τ is normally large
compared to the delay probing interval, so that migration
happens infrequently. The initial placement of services is not
restricted by τ , which means that if a user is not served by any
cloud previously, its service can be placed immediately after
the core cloud (controller) recognizes that it has established
connection with an MMC. The IM policy attempts to bound
the migration cost, while the transmission cost may be large
because services may not be migrated soon enough after the
transmission delay has changed.

3) Moving Average + Hysteresis (MAH): The MAH policy
does not use the instantaneous delay measurement for ser-
vice placement and migration decisions. Instead, it uses an
exponentially-weighted moving averaged delay for decision
making. For each MMC i and user j, the moving average is
performed according to

Dij(k) = αDij(k − 1) + (1− α)dij(k) (1)

where dij(k) is the kth round-trip delay for MMC-user pair
(i, j) that has been received by the core cloud, Dij(k) is the
delay used for decision making after receiving the kth and
before receiving the (k + 1)th measurement, 0 ≤ α ≤ 1 is a
controllable parameter for moving average computation.

The MAH policy also has a hysteresis delay value ε ≥ 0.
If the service for user j is previously running at MMC i, a
migration to MMC i′ only occurs when Di′j(k) < Dij(k)−ε.
This prevents frequent migration between different MMCs.

We can see that the MAH policy can be configured to



Figure 3. Emulation scenario (source of map: https://maps.google.com/).

Table I
EMULATION SETUP

Parameter name Value
Wireless communication bandwidth 10Mbps

One-hop wireless communication range 6, 000m

One-hop wireless communication delay 20ms

Bandwidth of link connecting MMC and core cloud 10Mbps

Delay of link connecting MMC and core cloud 500ms

Size of MMC_SERVICE_PACKET 1, 000Bytes

Size of USER_SERVICE_PACKET 50, 000Bytes

Interval of sending MMC_SERVICE_PACKET 2 s

Interval of sending MMC_CONNECT 10 s

Interval of sending CORE_BEACON_MMC,
CORE_BEACON_USER, and MMC_DELAY_PROBE

T (variable)

Parameter τ in IM policy 100 s

Parameter α in MAH policy 0.5
Parameter ε in MAH policy 10ms

achieve various trade-offs between the transmission and migra-
tion costs by tuning the values of α and ε. It is used here as an
alternative representative of the theoretical results in [5]–[9],
which jointly consider the transmission and migration costs.
The MAH policy is simpler than the algorithms in [5]–[9],
but also less robust due to the existence of parameters α and
ε that is subject to tuning. We also note that the AM policy is
a special case of the MAH policy under α = ε = 0.

V. EMULATION SCENARIO AND RESULTS

We created an emulation scenario that consists of 20 users
and 16 MMCs distributed in the San Francisco area, as
shown in Fig. 3. We assume that the MMCs are static. The
user mobility is generated using the taxi cabspotting dataset
[14], which is a dataset of 536 taxis with time (with minute
resolution), latitude, longitude, altitude, and occupancy data
for each taxi over approximately a 30 day period. To reduce the
required emulation time and see the impact of user mobility,
we compressed the timescale by a factor of 6, so that 6 seconds
in the original trace is one second in the emulation.

We ran the emulation for 15, 000 seconds, in which we
applied either the AM, IM, or MAH policy for service
placement. The interval of sending CORE_BEACON_MMC,
CORE_BEACON_USER, and MMC_DELAY_PROBE is speci-
fied by parameter T which take different values in the emu-
lation. The value of T specifies the interval of delay probing
and service placement update. Other parameter settings in the
emulation are summarized in Table I.

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

R
ou

nd
−t

rip
 d

el
ay

 o
f s

er
vi

ce
 p

ac
ke

ts
 (s

ec
on

ds
)

(a)

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

R
ou

nd
−t

rip
 d

el
ay

 o
f s

er
vi

ce
 p

ac
ke

ts
 (s

ec
on

ds
)

(b)

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

R
ou

nd
−t

rip
 d

el
ay

 o
f s

er
vi

ce
 p

ac
ke

ts
 (s

ec
on

ds
)

(c)

Figure 4. Instantaneous round-trip delays of service packets for the first
3, 000 s of emulation with T = 2 s: (a) AM policy, (b) IM policy, (c) MAH
policy.

0 1000 2000 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (seconds)

Av
er

ag
e 

ro
un

d−
tri

p 
de

la
y 

of
 s

er
vi

ce
 p

ac
ke

ts
 (s

ec
on

ds
)

AM
IM
MAH

(a)

0 1000 2000 3000
0

1

2

3

4

5

6

7

8

Time (seconds)

Av
er

ag
e 

nu
m

be
r o

f m
ig

ra
tio

ns
 p

er
 s

ec
on

d

AM
IM
MAH

(b)

Figure 5. Moving average results for the first 3, 000 s of emulation with
T = 2 s: (a) round-trip delay of service packets, (b) number of migrations.

We first set T = 2 s and focus on the instantaneous results in
the first 3, 000 seconds of emulation. The instantaneous round-
trip delay of service packets under different policies is shown
in Fig. 4, where the results for service packets corresponding to
different MMC-user pairs are merged into the same timeline
and plotted in one graph. We can see that there are many
spikes in the figure, which indicates that the delay exhibits
large variation. Reasons for this include variation in network
traffic, diversity of user and service locations, as well as the
change of user and service locations over time. The last reason
is obvious from Fig. 4(b), where the delay has a block pattern
because the IM policy only migrates (and thereby changing
service locations) once in 100 seconds.

To obtain a more comprehensible set of results, we perform
cumulative moving average with a window size of 50 s on the
instantaneously measured data. At each time instant (in the
resolution of one second), we look back to the past 50 s (or
up to the emulation start time, whichever is later) and plot the
average result within this window. The moving averaged delay
is shown in Fig. 5(a), and Fig. 5(b) shows the average number
of service migrations within the 50 s window size. We can see
that compared to the AM and MAH policies, the IM policy
may cause blocks of large delays, because services may be
placed at non-optimal locations for a long time.

The overall performance with different values of T is shown
in Fig. 6, where the results are collected starting from 1, 000 s
emulation time to remove the impact of variation in the
initialization time under different T . We see that as expected,



0.5 1 2 3 5 10 20 50 100
−0.2

0

0.2

0.4

0.6

0.8

R
ou

nd
−t

rip
 d

el
ay

 o
f s

er
vi

ce
 p

ac
ke

ts
 (s

)

Probing and placement update interval T (s)

AM
IM
MAH

(a)

0.5 1 2 3 5 10 20 50 100
0

2

4

6

8

10

12

14

Av
er

ag
e 

nu
m

be
r o

f m
ig

ra
tio

ns
 p

er
 s

ec
on

d

Probing and placement update interval T (s)

AM
IM
MAH

(b)

0.5 1 2 3 5 10 20 50 100
2.5

2.55

2.6

2.65

2.7

2.75

2.8
x 105

N
um

be
r o

f r
ec

ei
ve

d 
se

rv
ic

e 
pa

ck
et

s

Probing and placement update interval T (s)

AM IM MAH

(c)

Figure 6. Overall results: (a) average round-trip delay of service packets
(error bars denote the standard deviation), (b) average number of migrations
per second, (c) total number of received service packets.

the AM policy always has the largest number of migrations.
It is interesting that round-trip delay of the AM policy is also
generally larger than that of the MAH policy, mainly because
the AM policy uses instantaneous delay measurements for
service placement decisions, which may fluctuate substantially
over time and cause the placement decision deviate away from
the optimum. Instead, the MAH policy is more stable because
it has the moving average and hysteresis building blocks. The
delay performance of the MAH policy is also generally better
than the IM policy, because services are migrated to good
locations more frequently.

The performance is related to the value of the interval T .
It is clear that T = 0.5 s brings the worst performance, in
which case the control messages overload the network. For the
MAH policy, its lowest delay and highest number of received
service packets (which represents the packet success rate) is
attained at T = 2 s, while giving an intermediate number of
migrations. We also note that the average delay of the MAH
policy is the lowest among all the policies when T = 2 s,
also with lower standard deviation than all other cases. This
implies that the MAH policy can be beneficial for delay-
sensitive applications. When T is large, the delay performance
does not vary significantly with different T , but the number
of received service packets decreases with T . The network in
this case is not overloaded, thus the delay is not very large.
However, due to obsolete delay measurement and prolonged
service placement update, the service location may be far away
from user location, so that the connection between the MMC
and the user has multiple hops, causing higher packet loss.
The slight fluctuation in the performance with different values
of T is due to randomness in the emulation.

VI. CONCLUSIONS

In this paper, we have taken an initial step to an emulation-
based study of service placement/migration in an MMC envi-
ronment containing mobile users. We have proposed a simple
emulation framework that can be used as a foundation for more
sophisticated emulations in the future. The emulation results
show several insightful observations, such as the impact of
randomness and delay on the service placement performance
in a realistic network setting. It is worthwhile to carry out an
in-depth future study on these impacts and their solutions from
both a theoretical and practical point of view.

ACKNOWLEDGMENT

The authors thank Rommie Hardy for technical assistance
in the CORE/EMANE software.

This research was sponsored in part by the U.S. Army
Research Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-
0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] T. Takai, “Cloud computing strategy,” U.S. Department of Defense,
Chief Information Officer, Tech. Rep., 2012.

[2] S. Davy, J. Famaey, J. Serrat-Fernandez, J. Gorricho, A. Miron,
M. Dramitinos, P. Neves, S. Latre, and E. Goshen, “Challenges to
support edge-as-a-service,” IEEE Communications Magazine, vol. 52,
no. 1, pp. 132–139, Jan. 2014.

[3] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE Pervasive
Computing, vol. 12, no. 4, pp. 40–49, Oct. 2013.

[4] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, Sept. 2013.

[5] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based
service migration procedure for follow me cloud,” in Proc. of IEEE ICC
2014, Jun. 2014.

[6] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in Proc.
of IEEE MILCOM 2014, Oct. 2014.

[7] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proc. of IFIP
Networking 2015, May 2015.

[8] S. Wang, R. Urgaonkar, K. Chan, T. He, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future cost,” in Proc. of IEEE ICC 2015, Jun. 2015.

[9] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, Sept. 2015.

[10] J. Ahrenholz. (2010) CORE download. [Online]. Available:
http://downloads.pf.itd.nrl.navy.mil/core/

[11] ——, “Comparison of core network emulation platforms,” in Proc. of
IEEE MILCOM 2010, Oct.-Nov. 2010, pp. 166–171.

[12] N. Ivanic, B. Rivera, and B. Adamson, “Mobile ad hoc network
emulation environment,” in Proc. of IEEE MILCOM 2009, Oct. 2009.

[13] R. Ogier and P. Spagnolo. (2009, Aug.) RFC 5614, Mobile ad hoc
network (MANET) extension of OSPF using connected dominating set
(CDS) flooding. [Online]. Available: http://www.ietf.org/rfc/rfc5614.txt

[14] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser, “A
Parsimonious Model of Mobile Partitioned Networks with Clustering,”
in Proc. of COMSNETS, Jan. 2009.




