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Abstract—Federated learning (FL) enables distributed model
training from local data collected by users. In distributed systems
with constrained resources and potentially high dynamics, e.g.,
mobile edge networks, the efficiency of FL is an important
problem. Existing works have separately considered different
configurations to make FL more efficient, such as infrequent
transmission of model updates, client subsampling, and compres-
sion of update vectors. However, an important open problem is
how to jointly apply and tune these control knobs in a single
FL algorithm, to achieve the best performance by allowing a
high degree of freedom in control decisions. In this paper, we
address this problem and propose FlexFL – an FL algorithm
with multiple options that can be adjusted flexibly. Our FlexFL
algorithm allows both arbitrary rates of local computation at
clients and arbitrary amounts of communication between clients
and the server, making both the computation and communication
resource consumption adjustable. We prove a convergence upper
bound of this algorithm. Based on this result, we further
propose a stochastic optimization formulation and algorithm to
determine the control decisions that (approximately) minimize
the convergence bound, while conforming to constraints related
to resource consumption. The advantage of our approach is also
verified using experiments.

Index Terms—Compressed model update, federated learning,
partial participation, stochastic optimization

I. INTRODUCTION

Many emerging applications nowadays are driven by ma-
chine learning technologies. To train models that are used in
such applications, a large training dataset is usually needed.
However, it has become increasingly common that data are
collected and stored by local users at their end devices or
organizational servers. It is difficult to share such data with a
central entity, due to privacy regulations and communication
bandwidth limitation. As a result, federated learning (FL)
has emerged as a promising technique for distributed model
training from decentralized local datasets [1]–[3].

At its core, FL includes model updates at each client (e.g.,
user device) using its own local data and aggregation of model
parameters through a server (e.g., a cloud instance). In a
resource-constrained system, such as a mobile edge network,
these FL operations consume both computation and commu-
nication resources. Therefore, an important research direction
is how to make the most efficient use of the limited resources
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to maximize the performance of FL. Some recent works have
considered this problem by tuning configuration parameters
of the FL algorithm, such as the number of local updates in
each FL round, participation rate of clients, and compression
rate of parameters transmitted between clients and the server
[4]–[20]. However, the vast majority of them only focus on
adjusting a small subset of all the available control options in
FL, which cannot achieve the full potential of making FL the
most efficient. In particular, the automatic adaptation of both
parameter compression (e.g., sparsification and quantization)
and partial client participation has not been studied, to the
best of our knowledge. There is also usually a tight coupling
between computation and communication in existing works,
which may be difficult to achieve in heterogeneous systems
where the costs of different resources can vary over time.

In light of these limitations, there is an important open
problem: Is it possible to jointly apply a wide range of control
options in a single FL algorithm, to support heterogeneous
and time-varying costs1 of multiple types of resources? There
are several challenges in answering this question. 1) It is non-
straightforward to design an FL algorithm that allows simulta-
neous adjustment of multiple configurations with a high degree
of freedom. 2) It is difficult to analyze and understand the
influence of different control options and the interplay between
them on the FL performance. 3) It is challenging to design an
efficient control algorithm to automatically determine the best
configurations subject to various constraints.

In this paper, we address this problem by proposing FlexFL,
which is an FL algorithm that includes flexible control knobs
that can be adjusted based on computation and communication
costs. In essence, FlexFL includes three components: 1) partial
computation at clients, 2) compressed parameter transmission
from each client to the server, and 3) compressed parameter
transmission from the server to clients. Each of these compo-
nents includes its own controllable parameter to define the rate
of computation (for the first component) or communication
(for the second and third components).

There are several key characteristics in FlexFL. First, the
amount of computation and the amount of communication are
decoupled and can be controlled separately, allowing a high
degree of freedom in control decisions to suit the current costs
of different types of resources. Second, both the computation
and communication rates can vary over time and they can
be different for different clients and the server, which allows
a high degree of system heterogeneity and flexible resource

1We consider the resource cost as a generic metric in this paper, which can
be defined as related to the availability of each type of resource.



usage depending on time-varying costs. Third, FlexFL includes
the special case of multiple local computations2 by setting
the communication rate to zero in certain rounds. Moreover,
FlexFL and its analysis also allow statistical heterogeneity, i.e.,
non-i.i.d. data across clients, which is commonly observed in
practical FL scenarios.

We also present a convergence analysis of our FlexFL
algorithm for general non-convex objectives. The resulting
convergence bound provides important insights. In particular,
we reveal that the convergence error increases in the residual
error and decreases in the participation (computation) rate,
where the residual error captures the gap between the trans-
mitted model parameter and the computed local parameter (at
each client) or received aggregated parameter (at the server).

Finally, we formulate our control problem as stochastic
optimization over a finite time horizon, which makes decisions
on the computation and communication rates over time, to
minimize the convergence error subject to time-averaged cost
constraints. We propose a distributed and online algorithm
to approximately solve this problem. In addition, we conduct
a thorough analysis of this control algorithm and discuss its
important properties and insights, based on which we explain
how to balance constraint satisfaction and optimality, and also
give closed-form solutions for a class of costs.

In summary, our main contributions are as follows.
1) We present an algorithm named FlexFL, which allows

flexible configurations in the amount of computation at
each client and the amount of communication between
clients and the server. This algorithm provides a high
degree of freedom in adapting the FL procedure to
heterogeneous and dynamically changing resource costs.

2) We analyze the convergence error bound of FlexFL,
which reveals important insights on how the residual
error and participation rate affect the convergence. This
result lays out the foundation for our control algorithm.

3) We propose a control algorithm that is derived from
stochastic optimization, to approximately minimize the
convergence error while satisfying constraints on the
time-averaged resource cost. Our control algorithm
makes decisions in an online and distributed manner,
without requiring prior knowledge of system statistics.

4) We give an in-depth analysis of our control algorithm,
revealing several insights including how to adjust the
trade-off between constraint satisfaction and optimality.

5) We present experimental results on real datasets, which
confirm the advantage of our proposed approach.

II. RELATED WORKS

Over the past few years, efforts have been made to make
FL resource-efficient, using techniques such as computing
multiple local updates between communication rounds [21]–
[26], transmitting compressed (sparse or quantized) model

2In FlexFL, clients may perform multiple local computations (updates)
with different mini-batches on the same local model parameter, and do not
immediately update the parameter. This is slightly different from local updates
done in the FL literature, but conceptually both approaches share similarities.

updates [27]–[41], and allowing only a small subset of clients
to participate in each FL round [42]–[45]. A large body of
these works focuses on analyzing the convergence behavior of
these algorithms, but the study of multiple local computations
with partial client participation has been largely separate
from compression. To our knowledge, there does not exist
work that incorporates both partial client participation and
the special case of no transmission (similar to multiple local
computations) with general (possibly biased) compressors.

In addition, the above works consider fixed FL configuration
parameters related to communication and computation, which
can be difficult to tune. To address this problem, some recent
works have considered the automatic determination of commu-
nication interval [4]–[6], rate of compression [7]–[12], client
selection [13]–[20], and other aspects [46], to accommodate
the dynamic availability of resources. However, many of these
works require a sophisticated process of estimating parameters
related to the convergence bound, while some others are
mostly heuristic without convergence guarantee. Moreover,
none of these works consider the joint design of partial client
participation and compression at both the server and clients.

III. FEDERATED LEARNING AND FLEXFL

A. Federated Learning Objective

We consider an FL system with N clients, where each
client n has a local loss function Fn(x) for model parameter
x ∈ Rd. The function Fn(x) is defined on each client n’s
local dataset, which represents the error (or loss) between the
predicted output given by the model (with parameter vector x)
and the ground-truth output in the training dataset. The goal
of FL is to minimize the global loss function f(x), as in:

minx f(x) :=
1
N

∑N
n=1 Fn(x), (1)

where the average can be replaced by a weighted average if
desired, but we consider the weighting coefficients to be part
of Fn(x) for simplicity. A characteristic of FL is that the local
loss functions {Fn(x) : ∀n} are not observed directly, because
the clients’ raw data are not shared. Therefore, FL needs to
solve (1) in a distributed manner.

B. FlexFL Algorithm

We describe our FlexFL algorithm to solve (1). Similar to
other FL algorithms, intermediate model parameter updates
are exchanged between clients and the server, while the raw
data remain private at the clients locally. The full algorithm is
given in Algorithm 1, where we consider a time-slotted system
and the time slots align with the iterations3 in FL. We explain
the main procedure of this algorithm as follows.

The algorithm includes three sets of control parameters
denoted by {qnt }, {vn

t }, and {ut}. These parameters are taken
as inputs by Algorithm 1, and they can be computed by our
control algorithm (Algorithm 2) described later in Section IV.
We further let xt denote the model parameter at the beginning
of each iteration t. However, we do not transmit xt directly

3We use “time slot” and “iteration” interchangeably in this paper.



Algorithm 1: FlexFL
Constants: η > 0, initial (random) model parameter x0

Control parameters: {qnt }, {vn
t }, {ut} // determined by

Algorithm 2 in Section IV
Output: {xt}

1 r0 ← 0; // server residual error
2 en0 ← 0, ∀n; // client residual error
3 for t← 0, . . . , T − 1 do
4 each client n← 1, . . . , N in parallel:
5 Sample Ilnt ∼Bernoulli(qnt ); // randomized compute

6 bn
t ← ent −

ηIlnt
qnt
· gn(xt); // no compute if Ilnt = 0

7 ent+1 ← bn
t − vn

t ; // here, vn
t is usually a compression of bn

t

8 Send vn
t to the server; // transmitted local update

9 the server:
10 at ← rt +

1
N

∑N
n=1 v

n
t ;

11 rt+1 ← at − ut; // here, ut is usually a compression of at

12 Send ut to all clients; // transmitted global update

13 each client n← 1, . . . , N in parallel:
14 xt+1 ← xt + ut; // synchronized model parameter

between clients and the server. Instead, we transmit (possibly)
compressed vectors of parameter updates, as we will see next.
For the purpose of description and analysis, we assume that
there are T iterations in total.

1) Local Computation at Clients: In every iteration t, each
client n computes a new stochastic gradient gn(xt) of the local
loss function Fn(xt) with probability qnt ∈ (0, 1] (Line 5). We
use the identity Ilnt ∈ {0, 1} to denote the random outcome,
which is equal to one if client n performs a new computation
in this iteration t, and zero otherwise. If Ilnt = 1, this stochastic
gradient gn(xt) is applied in Line 6 in the form of stochastic
gradient descent (SGD) with a given learning rate of η > 0. We
divide the learning rate by qnt to keep the update unbiased. If
Ilnt = 0, the last term in the right-hand side (RHS) of Line 6 is
zero, and we do not make any update in this case. In practice,
we do not compute gn(xt) if Ilnt = 0, which is equivalent to
the update equation in Line 6 since the value of gn(xt) has
no effect on the subsequent updates if Ilnt = 0. In this way, the
probability qnt controls the rate of computation, where a larger
qnt indicates that more computation is done (in expectation),
consuming more computation resources, and vice versa.

2) Client-to-Server Communication: Each client n keeps
a residual error, which is a vector that contains portions of
the changes in the model parameter x that have not been
transmitted from the client yet. The residual error of client n at
the beginning of iteration t is denoted by ent . In Line 6, the new
SGD update is accumulated on ent , giving a new temporary
vector denoted by bn

t . Then, in Line 7, the (usually sparse
or quantized) vector that is transmitted to the server (i.e., vn

t )
is subtracted from bn

t , and the remaining quantity that is not
transmitted is kept in ent+1, which is the residual error at the
beginning of the next iteration t+1. The vector vn

t is usually a
compression result of bn

t . We will describe in Section IV how
vn
t is computed, with more specific examples in Section IV-E.
3) Multiple Local Computations and Decoupling: When

vn
t = 0, we do not transmit in this iteration, which captures the

case of multiple rounds of computation before communication
happens. Noting that vn

t = 0 corresponds to no transmission

by client n in iteration t, we emphasize that we can have
vn
t = 0 even if Ilnt = 1, or vn

t ̸= 0 even if Ilnt = 0. In this
way, the computation and communication decisions can be
decoupled. When some iterations have low computation cost
but high communication cost, while other iterations have high
computation cost but low communication cost, we may decide
to compute in those iterations with low computation cost, and
transmit in other iterations with low communication cost.

4) Server-to-Client Communication: After receiving the
parameter updates from clients, the server averages {vn

t : ∀n}
and adds the result to its own residual error rt (Line 10). If
a client n does not transmit any update, the server considers
vn
t = 0 for this client n and it is still included in computing

the average. Then, similar to the operation at clients, a (usually
sparse or quantized) vector ut is transmitted to all the clients
and the remaining part is kept in the residual error rt+1 for
the next iteration t + 1 (Line 11). We consider a broadcast
channel from the server to the clients, hence the information
sent to all the clients is the same.

Finally, each client updates its current model parameter xt

after receiving the update ut from the server (Line 14).

C. Convergence Analysis

We analyze the convergence upper bound of Algorithm 1.
First, we introduce a minimal set of assumptions that are
commonly used in the literature [43].

Assumption 1. We assume that the following hold, ∀n,x,y.
• Lipschitz gradient:

∥∇Fn(x)−∇Fn(y)∥ ≤ L ∥x− y∥ . (2)

• Unbiased stochastic gradient with bounded variance:

E [gn(x)]=∇Fn(x) and E
[
∥gn(x)−∇Fn(x)∥2

]
≤σ2. (3)

• Bounded gradient divergence:

∥∇Fn(x)−∇f(x)∥2 ≤ ϵ2. (4)

The gradient divergence bound ϵ2 captures the degree of
heterogeneous (i.e., non-i.i.d.) data across clients. We now in-
troduce our main convergence result (proof is in the appendix).

Theorem 1. When Assumption 1 holds, if 1
N

∑N
n=1

1
qnt

≤ p,
for all t, and η ≤ 1

4Lp , then Algorithm 1 ensures that

1
T

∑T−1
t=0 E

[
∥∇f(xt)∥2

]
≤ 4(f(x0)−f∗)

ηT

+ 4L2

T

∑T−1
t=0 E

[
∥rt∥2

]
+ 4L2

NT

∑T−1
t=0

∑N
n=1 E

[
∥ent ∥2

]
+ 4ηL(ϵ2+σ2)

NT

∑T−1
t=0

∑N
n=1 E

[
1
qnt

]
, (5)

where f∗ is the true minimum of f(x), i.e., f∗ := minx f(x).

In Theorem 1, we capture the convergence error by the
time-averaged expected squared norm of the gradient. We see
that the upper bound of the convergence error increases in
the squared norm of residual errors rt and ent and decreases
in the probability of local computation qnt . This observation
aligns with the intuition that, in general, more communication



and computation can improve the convergence with respect
to the number of iterations. However, doing so would also
incur higher costs of resource usage. Therefore, we need to
strike a balance between convergence error and resource cost,
after a certain number of iterations T . In the optimization
problem presented in the next section, we aim at minimizing
the convergence error under pre-defined cost constraints.

Before proceeding, we note that the decision variables vn
t

and ut do not explicitly appear in the result in Theorem 1. For
ease of presentation later, we give the following alternative
upper bound that is derived from Theorem 1. Because r0 = 0
and en0 = 0, ∀n, according to Algorithm 1, we can further
bound the terms in (5) in the following way:∑T−1

t=0 E
[
∥rt∥2

]
≤

∑T
t=1 E

[
∥rt∥2

]
=

∑T−1
t=0 E

[
∥rt + 1

N

∑N
n=1 v

n
t − ut∥2

]
, (6)∑T−1

t=0 E
[
∥ent ∥2

]
≤

∑T
t=1 E

[
∥ent ∥2

]
=

∑T−1
t=0 E

[∥∥ent − ηIlnt
qnt

· gn(xt)− vn
t

∥∥2],∀n. (7)

Corollary 1. Under the same conditions as in Theorem 1, an
alternative upper bound of 1

T

∑T−1
t=0 E

[
∥∇f(xt)∥2

]
holds by

replacing the corresponding terms in (5) with (6) and (7).

IV. CONTROL DECISIONS

A. Problem Formulation

The goal of our decision making problem is to determine
the set of control parameters {qnt }, {vn

t }, {ut} over time,
to minimize the convergence error subject to resource cost
constraints. Similar to existing works [5], [12], [16]–[19],
we use the convergence upper bound as an approximation to
the actual error, because it is generally not possible to know
exactly how different configurations affect the actual error.

1) Instantaneous Costs: Let λnt (q
n
t ) denote the computation

cost in iteration t at client n. Also let φn
t (v

n
t ) and ψt(ut)

denote the communication cost at client n and the server,
respectively, both in iteration t. Note that the cost functions
λnt (·), φn

t (·), and ψt(·) themselves can be different for dif-
ferent t and n. That means, even if qnt = qnt′ for t ̸= t′,
we may have λnt (q

n
t ) ̸= λnt′(q

n
t′), for instance. When there

is no ambiguity, we omit the arguments qnt , vn
t , and ut for

simplicity, and only write λnt , φn
t , and ψt which are implicitly

dependent on qnt , vn
t , and ut, respectively.

2) Target Average Costs (Constraints): We further denote
the target time-averaged computation cost by λ̃n (at client n),
and the target time-averaged communication costs by φ̃n (at
client n) and ψ̃ (at the server). These target costs are given
as inputs to our control problem. They represent how much
cost each of the clients and the server would like to spend
on average for the FL task. The notion of cost in this paper
represents a generic metric. For example, it can stand for
the percentage of consumed resources among all the available
resources, monetary cost, energy usage, or a combination of
these and other possible measures.

3) Overall Control Problem: With these definitions, we are
ready to introduce our problem of minimizing the convergence
upper bound given by Corollary 1 under cost constraints.
Ignoring constants and common coefficients, we first define
the following objective:

G := L
T

∑T−1
t=0 E

[∥∥rt + 1
N

∑N
n=1 v

n
t − ut

∥∥2]
+ L

NT

∑T−1
t=0

∑N
n=1 E

[∥∥ent − ηIlnt
qnt

· gn(xt)− vn
t

∥∥2]
+ η(ϵ2+σ2)

NT

∑T−1
t=0

∑N
n=1 E

[
1
qnt

]
. (8)

Then, our overall optimization problem is as follows:

P1: min{qnt },{vn
t },{ut} G (9)

s.t. 1
T

∑T−1
t=0 E [λnt ] ≤ λ̃n, ∀n (10)

1
T

∑T−1
t=0 E [φn

t ] ≤ φ̃n, ∀n (11)
1
T

∑T−1
t=0 E [ψt] ≤ ψ̃. (12)

4) Challenges: There are several challenges in solving
the problem P1 directly. First, there are three terms in the
objective G defined in (8), which have different coefficients. It
is generally difficult to estimate these coefficients as they are
related to characteristics of loss functions and their stochastic
gradients. Second, in each iteration t of Algorithm 1, there is a
sequential order that first determines (according to Ilnt ) whether
each client n computes an update, then transmits the update
vector from clients to the server and finally from the server
to clients. Considering the second term of (8), in practice,
gn(xt) is only computed if Ilnt = 1, but the value of Ilnt
is unknown before the value of qnt is determined. Thus, we
cannot know gn(xt) when determining qnt , which makes it
impossible to use the exact value of the second term of (8) in
the determination of qnt . Similarly, the value of 1

N

∑N
n=1 v

n
t

in the first term of (8) is unknown before each client n has
actually computed its vn

t . Third, the overall impact of control
decisions is correlated across different iterations through both
the objective function and constraints, but we do not have prior
knowledge of resource costs in practice. Therefore, we need
an online algorithm that does not rely on prior knowledge.

To overcome these challenges, we first approximate P1
with three sub-problems that sequentially determine {qnt },
{vn

t }, and {ut} in Section IV-B. Then, we present an online
algorithm for each sub-problem in Section IV-C.

B. Approximation by Sequential Decision Making

We decompose P1 into three sub-problems as follows. In
each sub-problem, one set of decision variables is determined
by minimizing its corresponding term in (8). We substitute
expressions inside the norms using the definitions of bn

t and
at in Line 6 and Line 10 of Algorithm 1, respectively.

P2.1: min{qnt }
1

NT

∑
t

∑
n E

[
1
qnt

]
(13)

s.t. Constraint (10).

P2.2: min{vn
t }

1
NT

∑
t

∑
n E

[
∥bn

t − vn
t ∥2

]
(14)

s.t. Constraint (11).



P2.3: min{ut}
1
T

∑
t E

[
∥at − ut∥2

]
(15)

s.t. Constraint (12).

With this decomposition, we first solve P2.1 to obtain
{qnt }. Then, we consider {qnt } as given and solve for {vn

t }
in P2.2. Finally, we consider {vn

t } as given and solve for
{ut} in P2.3. We can regard this sequential decision-making
procedure as an approximation to the original problem P1.
The exact approximation error is difficult to analyze and is
left for future work. However, we will see in Section V
that the solution obtained by this approximation, together
with the online algorithm described in Section IV-C, provides
performance gain compared to baselines in experiments.

C. Online Decision Making

The problems P2.1–P2.3 are still difficult to solve directly,
because both the objective functions and constraints are av-
eraged over time, and it is difficult to predict future costs
in practice. Therefore, we present an online decision making
approach in the following, where the quantities qnt , vn

t , and
ut are determined within each iteration t without knowledge
of statistics in future iterations.

1) Methodology and Challenges: Our approach is based
on the Lyapunov drift-plus-penalty framework [47], but with
some notable differences. First, while infinite T is the primary
focus in [47], we allow finite T in this paper, both in the
problem formulation (see P1 and P2 above) and in our
analysis later in Section IV-D. This consideration is because,
in practice, we usually train the model only for a finite number
of iterations. Second, while P2.1 can depend on an underlying
system state (i.e., ω(t) defined in [47]) that is independent
across time t, we emphasize that the underlying states of
P2.2 and P2.3 are both time-dependent and also dependent on
previous decisions made by the control algorithm. To see this,
note that the quantity bn

t in P2.2 depends on the stochastic
gradient computed on the model parameter xt, and the value
of xt is related to the decisions on qnτ , vn

τ , uτ made in previous
iterations τ < t. Similarly, at in P2.3 also depends on past
decisions and other random outcomes. This dependency makes
it substantially harder to analyze P2.2 and P2.3, where the
standard results in [47] no longer hold.

2) Virtual Queues: We define virtual queues to capture the
constraints (10)–(12). The virtual queues lengths Λn

t , Φn
t , and

Ψt evolve according to the following recursions:4

Λn
t+1 = max{0,Λn

t + λnt − λ̃n}, ∀n, (16)
Φn

t+1 = max{0,Φn
t + φn

t − φ̃n}, ∀n, (17)

Ψt+1 = max{0,Ψt + ψt − ψ̃}. (18)

Intuitively, these virtual queues capture the accumulated vi-
olation of constraints (10)–(12). Hence, we would like to
jointly minimize the objectives (13)–(15) and the virtual queue
lengths. In our problem formulation (P1 and P2), the cost
definitions and their constraints are separate across clients

4In practice, we may set the minimum queue length to a very small positive
number instead of zero, to avoid large instantaneous costs from being incurred
and added to the queue (see also the objectives of problem P3).

Algorithm 2: Online Control
Constants: V > 0, initial queue length W ≥ 0
Output: {qnt }, {vn

t }, {ut}
1 Run Lines 1–2 in Algorithm 1;
2 Λn

0 = W , ∀n; Φn
0 = W , ∀n; Ψ0 = W ;

3 for t← 0, . . . , T − 1 do
4 each client n← 1, . . . , N in parallel:
5 Get qnt from P3.1 and update Λn

t using (16);
6 Run Lines 5–6 of Algorithm 1;
7 Get vn

t from P3.2 and update Φn
t using (17);

8 Run Lines 7–8 of Algorithm 1;

9 the server:
10 Run Line 10 of Algorithm 1;
11 Get ut from P3.3 and update Ψt using (18);
12 Run Lines 11–12 of Algorithm 1;

13 Run Lines 13–14 of Algorithm 1;

and the server, thus we can distributedly optimize for each
entity separately. An extension to settings with coupled cost
constraints is possible by sharing queue length information
across clients and the server.

3) Decision Problem for Each Iteration: Define a constant
V > 0 that will be discussed further in Section IV-D. We have
the following drift-plus-penalty minimization problems for
each client n (P3.1 and P3.2) and server (P3.3) in iteration t.

P3.1: minqnt
V
qnt

+ Λn
t

(
λnt − λ̃n

)
. (19)

P3.2: minvn
t

V ∥bn
t − vn

t ∥2 +Φn
t (φ

n
t − φ̃n) . (20)

P3.3: minut
V ∥at − ut∥2 +Ψt

(
ψt − ψ̃

)
. (21)

Note that when solving P3.1–P3.3, we consider the virtual
queue lengths Λn

t , Φn
t , and Ψt as well as the vectors bn

t and
at as given variables. However, these variables are inherently
random due to the random noise in stochastic gradient and
probabilistic client sampling, so the objectives and constraints
in P1 and P2 are expressed as expectations.

The control decisions obtained from P3.1–P3.3 and virtual
queue updates (16)–(18) are combined with Algorithm 1 to
provide the values of control variables. The full procedure
is shown in Algorithm 2, where we may choose a non-zero
initial queue length W to prevent a high degree of constraint
violation in initial iterations (see (19)–(21) and Section IV-D).5

D. Analysis of Online Control Algorithm

We discuss the optimality and constraint satisfaction of
approximately solving P2.1–P2.3 via minimizing the drift-
plus-penalty objectives (19)–(21) in P3.1–P3.3, as in Algo-
rithm 2. Our discussion shares similarities with [47]. However,
there are some key differences and challenges as discussed
in Section IV-C1. With a slight abuse of notation, we reuse
qnt ,v

n
t ,ut, λ

n
t , φ

n
t , ψt to denote the control variables and their

corresponding costs obtained from the solutions of P3.1–P3.3.
We first make an assumption to facilitate the analysis.

Assumption 2. We assume that i) qnt ∈ [1/D, 1],
ii) ∥bn

t ∥
2
, ∥at∥2 ∈ [0, D], iii) λnt , φ

n
t , ψt, λ̃n, φ̃n, ψ̃ ∈

5The idea of setting initial values for (virtual) queues is called place-holder
backlog in [47], but its original goal is to improve the performance-delay
trade-off when T → ∞. In contrast, we consider finite T in our case, and
the “place-holder backlog” can guarantee arbitrarily small constraint violation.



[0,
√
2B], iv) λ̃n ≥ λnt (

1
D ) (i.e., cost computed at qnt = 1/D),

v) φn
t (0) = ψt(0) = 0, for some D > 0, B > 0.

In this assumption, the bound on qnt usually holds for some
D > 0 as long as the virtual queue length Λn

t is bounded.
The rationale behind the bounds on ∥bn

t ∥2 and ∥at∥2 is that,
although the residual errors are accumulated over time, they
usually will not be arbitrarily large because the parameter
updates get smaller when the gradient approaches zero. Note
that this is only needed for Theorems 2 and 3 below, while our
algorithm can still work empirically without Assumption 2.

Theorem 2. Under Assumption 2, solving P3.1–P3.3 for
each t ensures the following bounds on constraint violation:

1
T

∑T−1
t=0 E [λnt ]− λ̃n ≤

√
W 2

T 2 + 2V D+2B
T − W

T , (22)

1
T

∑T−1
t=0 E [φn

t ]− φ̃n ≤
√

W 2

T 2 + 2V D+2B
T − W

T , (23)

1
T

∑T−1
t=0 E [ψt]− ψ̃ ≤

√
W 2

T 2 + 2V D+2B
T − W

T . (24)

Proof. The Lyapunov drift of virtual queue length Λn
t is

∆(Λn
t ) :=

1
2

[
(Λn

t+1)
2−(Λn

t )
2
]
≤ 1

2

[(
Λn
t +λ

n
t −λ̃n

)2−(Λn
t )

2
]

= Λn
t

(
λnt − λ̃n

)
+

(λn
t −λ̃n)

2

2 ≤ Λn
t

(
λnt − λ̃n

)
+B.

We have Λn
t

(
λnt − λ̃n

)
≤ V D, because otherwise setting

qnt = 1
D will give a smaller value of the objective (19) due to

Assumption 2. Thus, ∆(Λn
t ) ≤ V D+B. We further note that

1
2 (Λ

n
T )

2 − 1
2 (Λ

n
0 )

2 =
∑T−1

t=0 ∆(Λn
t ) ≤ V DT +BT.

Hence, Λn
T ≤

√
(Λn

0 )
2 + 2V DT + 2BT . From (16), we have

Λn
t +λ

n
t − λ̃n ≤ Λn

t+1, thus λnt − λ̃n ≤ Λn
t+1−Λn

t . This gives

1
T

∑T−1
t=0 λnt − λ̃n ≤ Λn

T−Λn
0

T ≤
√

W 2

T 2 + 2V D+2B
T − W

T ,

where we recall that Λn
0 = W . After taking expectation on

both sides, we have proven (22). The results in (23) and (24)
can be proven using a similar procedure.

Theorem 3. Under Assumption 2, solving P3.1–P3.3 for
each t gives the following bounds related to the objectives
(13)–(15) of P2.1–P2.3:

1
T

∑T−1
t=0 E

[
1
qnt

]
≤ OPTqn + B

V + W 2

2V T , (25)

∥bn
t − vn

t ∥
2 ≤ min

{
D,

Φn
t

√
2B

V

}
, (26)

∥at − ut∥2 ≤ min
{
D,

Ψn
t

√
2B

V

}
. (27)

where OPTqn denotes the optimal value of the time-averaged
objective given by a possibly randomized offline algorithm that
has complete statistics of all T iterations.

Proof. The inequality (25) can be directly obtained from the
proof of Theorem 4.8 in [47]. To prove (26), we consider an
alternative choice of vn

t , denoted by v′n
t = bn

t , which makes
the objective (20) equal to Φn

t (φ
n
t (b

n
t )− φ̃n). Since vn

t is the
optimal solution to P3.2, we have

V ∥bn
t − vn

t ∥
2
+Φn

t (φ
n
t (v

n
t )− φ̃n) ≤ Φn

t (φ
n
t (b

n
t )− φ̃n) .

Rearranging gives

V ∥bn
t − vn

t ∥
2 ≤ Φn

t (φ
n
t (b

n
t )− φn

t (v
n
t )) .

Then, we note that φn
t (b

n
t ) ∈ [0,

√
2B] and φn

t (v
n
t ) ∈

[0,
√
2B] according to Assumption 2 and divide by V on both

sides. We also have ∥bn
t − vn

t ∥
2 ≤ ∥bn

t ∥
2 ≤ D, because

otherwise choosing vn
t = 0 gives a smaller value of (20),

where we note that φn
t (0) = 0 and ∥bn

t ∥
2 ≤ D according to

Assumption 2 and Φn
t ≥ 0. Combining the above gives (26).

The result in (27) can be shown similarly.

Insights: We first discuss some important insights provided
by Theorem 2. 1) Theorem 2 shows that the constraints (10)–
(12) are satisfied as T → ∞. This is a desirable property of the
drift-plus-penalty algorithm in time-independent settings [47].
Here, we have shown that although our objectives ∥bn

t − vn
t ∥

2

and ∥at − ut∥2 are correlated with past decisions over time
(see Section IV-C1), we can still guarantee zero constraint vio-
lation when running the algorithm for a sufficiently long time.
2) By taking the derivative with respect to W , we can further
see that the RHS of (22)–(24) decreases in W . For a finite
T , as W gets large, we will have

√
W 2

T 2 + 2V D+2B
T − W

T ≈
W
T − W

T = 0. Assume that we require the RHS of (22)–(24) to
be not larger than ν, for some ν > 0. For any finite T , we can
always find a value of W so that this requirement is satisfied.
Therefore, the introduction of W in our approach extends the
constraint satisfaction from infinite T , which is the primary
focus of [47], to finite T . 3) When T gets large, the dominant
term in the RHS of (22)–(24) becomes O

(√
V/T

)
. This shows

that W controls the constraint satisfaction primarily for small
T , while the effect of V becomes more prominent for large T .

Next, we discuss Theorem 3. In (25), we observe an additive
optimality gap of O

(
1
V + W 2

V T

)
. This result is similar to that

in [47], because the objective 1/qnt here only depends on the
decision (i.e., qnt ) made in the current iteration t. However,
because ∥bn

t − vn
t ∥

2 and ∥at − ut∥2 depend on past deci-
sions, the same result does not hold for them. Nevertheless,
according to the queue-length dependent bounds in (26) and
(27), the main insight that the optimality error decreases in V
still holds. How to obtain a queue-independent bound for the
∥bn

t − vn
t ∥

2 and ∥at − ut∥2 objectives is left for future work.
Combining the above, we have the following key insight

on the parameters W and V . Increasing W or decreasing
V improves constraint satisfaction but makes the objective
function value less optimal, and vice versa. In addition, W
primarily affects the short-term performance with finite T ,
while V affects the long-term performance. These observations
are useful to guide the tuning of W and V , so that a desired
trade-off between optimality and constraint satisfaction can be
achieved.

E. Specific Costs and Compression Methods

Next, we give closed-form solutions to P3.1–P3.3 for some
exemplar cost functions that have specific forms with respect
to their inputs, and also discuss compression methods to obtain
vn
t and ut from bn

t and at, respectively.



1) Linear Computation Cost and Solution to P3.1: Con-
sider a linear computation cost defined as λnt = αn

t q
n
t for

some αn
t > 0. The rationale behind this definition is that the

expected amount of computation (e.g., number of CPU or GPU
cycles) is usually proportional to the probability qnt . With this
definition, we can see that the objective (19) of P3.1 is convex
in qnt . By letting the derivative of (19) equal to zero and noting
that the probability qnt ∈ [0, 1], we obtain the optimal solution
q̂nt := argminqnt

V
qnt

+ Λn
t

(
αn
t q

n
t − λ̃n

)
as:

q̂nt = min
{
1,
√

V
Λn

t α
n
t

}
. (28)

2) Transmitting Compressed Update Vectors: Regardless of
the exact definition of the communication cost, the vector vn

t

is usually derived from bn
t . In a widely applied compression

method known as top-k sparsification [33]–[35], the k compo-
nents of bn

t with the largest magnitudes are included in vn
t and

transmitted to the server, while the remaining components that
are not transmitted are kept in ent+1 for possible transmission
in future iterations. When k is small, the vector vn

t is usually
represented as a sparse vector by index-value pairs, so that
only the k selected components are transmitted. By tuning k
(and the corresponding vn

t ), we can adjust the communication
cost. The vector ut can be obtained from at similarly. There
are other parameter compression methods such as quantiza-
tion [29]–[32]. We mainly focus on top-k sparsification in
subsequent discussion and experiments, while noting that the
same insights also apply to other compression methods.

3) Constant-Plus-Linear Communication Cost and Solu-
tions to P3.2–P3.3: For the communication cost, we consider
a definition that includes a constant cost portion βn

t whenever
communication occurs. This constant portion captures the
additional overhead caused by packet headers and any other
necessary control information. In addition, there is a linear
portion of the cost that is γnt times the amount of information
transmitted. As in top-k sparsification, vn

t and ut include some
components of bn

t and ant , respectively. Then, the number
of non-zero components (floating-point numbers) in vn

t or
ut represents the amount of communication. Based on this
description, the cost φn

t is expressed as

φn
t =

{
0, if ∥vn

t ∥0 = 0

βn
t + γnt ∥vn

t ∥0 , if ∥vn
t ∥0 > 0

, (29)

where βn
t ≥ 0, γnt > 0, and ∥ · ∥0 denotes the ℓ0 norm that

counts the number of non-zero elements in the vector.
For a given number of non-zero components in vn

t , it
is apparent that the objective (20) of P3.2 is minimized
by choosing vn

t to include the ∥vn
t ∥0 largest components

(in terms of magnitude) in bn
t . This is exactly the top-k

sparsification method with k = ∥vn
t ∥0. Now, the question

is how to determine k. Let (bnt )i denote the i-th largest
component in bn

t ; we note that the change in the value of
the objective (20) from ∥vn

t ∥0 = j − 1 to ∥vn
t ∥0 = j is

Φn
t γ

n
t −V (bnt )

2
j (recall the definition of φn

t in (29)), for j ≥ 2.
The quantity Φn

t γ
n
t − V (bnt )

2
j does not decrease in j because

{(bnt )i : ∀i} is sorted in descending order. Therefore, for a

specific j such that Φn
t γ

n
t −V (bnt )

2
j ≥ 0, including more than

j non-zero components in vn
t for transmission cannot make the

objective (20) smaller. Due to the discontinuity in φn
t when

switching from ∥vn
t ∥0 = 0 to ∥vn

t ∥0 = 1, we also need to
check the value of the objective (20) for the case of φn

t = 0.
Let j∗ denote the smallest j such that Φn

t γ
n
t − V (bnt )

2
j ≥ 0.

We have the following expression for the optimal number of
components to transmit:

k∗=

{
0, if V ∥bn

t ∥
2≤V ∥bn

t −vn
t |j∗∥

2
+Φn

t (β
n
t +γ

n
t j

∗)

j∗, otherwise
, (30)

where vn
t |j∗ ∈ Rd denotes the vector that includes the

j∗ largest components in bn
t . Finally, the optimal v̂n

t is
obtained by setting it to vn

t |k∗ , which includes the k∗ largest
components in bn

t . The solution to P3.3 has the same form
after replacing the corresponding variables.

We conclude that P3.1–P3.3 with these simple but realistic
cost definitions can be solved efficiently, while noting that our
control algorithm works with other cost definitions too.

V. EXPERIMENTS
A. Setup

1) Datasets and Models: We ran experiments of applying
our approach to train models on image datasets. We consider
two model and dataset combinations: 1) a two-layer neural
network with a hidden layer size of 50, trained on the Fashion-
MNIST (FMNIST) dataset [48]; 2) a convolutional neural
network (CNN) with two convolutional + max-pool layers
(3 × 3 kernel with padding, 32 filters, followed by 2 × 2
max-pool) and three fully-connected layers (of sizes 256, 64,
10), trained on the CIFAR-10 dataset [49]. We use ReLU
activation functions (except for the last layer) and Kaiming
initialization [50]. We simulate an FL system with 100 clients.
Each dataset is partitioned in a non-i.i.d. manner so that each
client only has data of one class (out of all the 10 classes), to
simulate a challenging setup with high statistical heterogeneity.

2) Costs: The costs are defined according to the discussion
in Section IV-E. For the computation cost, we assume that the
linear coefficient αn

t follows a uniform random distribution
between 0 and 1. For the communication cost from clients to
the server, we fix the constant portion to βn

t = 0.05 to capture
the overhead for headers, communication establishment, etc.
The linear coefficient γnt depends on the amount of channel
usage, which is related to the channel capacity. Note that the
Gaussian channel capacity is C(ΓSNR) :=

1
2 log2(1 + ΓSNR)

per channel use, where ΓSNR denotes the signal-to-noise ratio
(SNR). We define the linear portion of the communication
cost γnt k as the number of channel use for transmitting k
components with ΓSNR = ζ, normalized by the number of
channel use for transmitting the entire model with d ≥ k
components and a fixed ΓSNR = 1. This gives γnt :=
1
k ·

k
C(ζ)

/
d

C(1) =
1

2dC(ζ) . Here, we choose ζ ∼ χ2
2 to simulate

a Rayleigh fading channel, where we note that the square
of a Rayleigh-distributed channel gain follows chi-squared
distribution with a degree of freedom of 2 (denoted by χ2

2).



Fig. 1. FMNIST and CIFAR-10 results in comparison to baselines. The test accuracy for the baseline with kr := k/d = 1.0 is below 0.4 so it is not visible
in the accuracy plot. The average cost in the plots are computed up to the iteration index on the x-axis (C = client; S = server). The costs of the baseline
method with different kr largely overlap, therefore in many cases only one curve for the baseline is visible.

This definition of γnt captures the random channel condition
and makes the communication cost φn

t defined in (29) to scale
only with the percentage of parameter components transmitted.
The communication cost from the server to clients is defined
in the same way, but it is scaled down by a factor of 5,
because the downlink channel usually has higher bandwidth
than the uplink channel. In general, the randomness in these
cost definitions simulate random resource costs that can be
time-varying and heterogeneous across clients and the server.

3) Baseline: In addition to our proposed FlexFL algorithm
with online control, we also consider a baseline algorithm that
either transmits k components or transmits nothing in each
iteration t. When there are less than k non-zero elements
in vn

t or ut, the baseline only transmits those non-zero
elements, which can be less than k. To conform to the re-
source constraints (10)–(12), the baseline makes a randomized
decision of whether to transmit or not in each iteration t,
so that the expected cost in each iteration is equal to the
targeted average cost (either λ̃n, φ̃n, or ψ̃). The probability
qnt is determined using a similar randomized approach by
the baseline. Note, however, that when vn

t or ut has all zero
entries, the expected cost of the baseline is also zero, which
is smaller than constraint upper bounds (φ̃n or ψ̃). Thus, it
is possible that the actual average communication cost of the
baseline is slightly lower than the target (see Fig. 1). This
baseline is a representative method that includes core ideas
of a range of existing techniques. For example, it adapts the
communication frequency based on cost constraints [4]–[6],
supports partial client participation (computation) [13]–[20],
and works with different sparsity values k [7]–[12]. We use
this baseline instead of specific existing methods, because we
are not aware of a method that captures the same set of
cost constraints as in our work, and a comparison is only
meaningful if the time-averaged cost constraints are aligned.

4) Other Parameters: We set the time-averaged constraints
to λ̃n = 0.25, φ̃n = ψ̃ = 0.01, to simulate an environment

with limited communication resources. We also set the learn-
ing rate to η = 0.1 and the default parameters of our control
algorithm V = 0.02 and W = 1.0. Each setting was run with
20 different random seeds for FMNIST and 5 different random
seeds for CIFAR-10. In each plot, the curve shows the mean
and the shaded area shows the standard deviation.

B. Results

1) Comparing to Baseline: We define kr := k/d as the ratio
of the transmitted parameter components to the total number
of components. A few observations from Fig. 1 are as follows.

First, our proposed method outperforms the baseline with
different kr values in both loss and accuracy values for both
datasets (and models). This shows the advantage of our method
that optimizes the convergence upper bound over time, which
can choose different kr depending on instantaneous cost and
virtual queue lengths, and it is more flexible and performs
better than fixing kr as in the baseline.

Second, the average costs of our proposed method get
close to or are below their target values when the number
of iterations (i.e., T ) is large enough. This aligns with our
theory in Section IV-D that has shown the constraint violation
is bounded and approaches zero when T gets large. It is
also interesting to see that, in our proposed approach, the
computation cost and server-to-client communication cost start
from the lower end below the target value, while the client-
to-server communication cost becomes larger than the target
value in initial iterations but reduces later. This shows that the
client-to-server communication is the main bottleneck with the
current choice of cost and constraint parameters.

2) Comparing Different Configurations of V and W : The
trade-off between constraint satisfaction and optimality can
be tuned by V and W , as discussed in Section IV-D. We
verify this using experiments and their results are shown in
Figs. 2–3. Due to space limitation, we only show the accuracy,
computation cost, and client-to-server communication cost for



Fig. 2. Proposed method with W = 1.0 and different V (CIFAR-10).

Fig. 3. Proposed method with V = 0.02 and different W (CIFAR-10).

CIFAR-10. The main observations remain the same for the
other metrics and dataset. We can clearly see that the choice of
W mainly affects the costs in initial iterations, while the choice
of V has a more long-term effect. In addition, a smaller V or a
larger W reduces the cost and gives a slightly lower accuracy.
This aligns with our theoretical results in Section IV-D.

VI. CONCLUSION

In this paper, we have proposed FlexFL and its online
control algorithm. FlexFL has a set of flexible control knobs
to adjust the amount of computation and communication. It
includes no communication as a special case and randomly
decides whether to compute in each iteration according to
an adjustable probability, therefore supporting multiple lo-
cal computations and partial participation. By analyzing its
convergence, we have provided a theoretical foundation on
how the amount of computation and communication affect the
model training performance. Accordingly, we have proposed
a control algorithm to automatically determine the config-
uration parameters of FlexFL subject to time-averaged cost
constraints. The control algorithm includes useful parameters
V and W , which can be tuned to adjust the trade-off between
constraint satisfaction and optimality. Our experiments show
that coarsely chosen V and W can provide good results on
two different datasets without the need of detailed tuning. If
desired, V and W can be further tuned for fine-grained control.

There are direct extensions possible to our algorithm. For
example, we may only optimize a subset of the configuration
parameters in FlexFL, we can also choose different V and W
for different types of costs and different entities. Moreover, our
work provides a comprehensive methodology of optimizing
multiple configuration options in FL using stochastic optimiza-
tion, which can inspire future works.

APPENDIX: PROOF OF THEOREM 1

We first note some preliminary inequalities that will be used
throughout the proof. From Jensen’s inequality, for any {zm ∈
Rd : m ∈ {1, 2, . . . ,M}}, we have

∥∥ 1
M

∑M
m=1 zm

∥∥2 ≤

1
M

∑M
m=1 ∥zm∥2, which directly gives

∥∥∑M
m=1 zm

∥∥2 ≤
M

∑M
m=1 ∥zm∥2. Peter-Paul inequality (also known as the

generalized version of Young’s inequality) gives ⟨z1, z2⟩ ≤
ρ∥z1∥2

2 + ∥z2∥2

2ρ , for any ρ > 0 and any z1, z2 ∈ Rd. In
addition, we use the notations in Algorithm 1. We also let
Et [·] := E [ ·|xt, rt, {ent }]. We define

x̃t := xt + rt +
1
N

∑N
n=1 e

n
t . (31)

From Algorithm 1, we know that

x̃t+1 = xt+1 + rt+1 +
1
N

∑N
n=1 e

n
t+1

= (xt + ut) + (at − ut) +
1
N

∑N
n=1(b

n
t − vn

t )

= xt + rt +
1
N

∑N
n=1

(
ent − ηIlnt

qnt
· gn(xt)

)
= x̃t − η

N

∑N
n=1

Ilnt
qnt

· gn(xt).

From smoothness, we have

Et [f(x̃t+1)] ≤ f(x̃t)−
〈
∇f(x̃t),Et

[
η
N

∑N
n=1

Ilnt
qnt

· gn(xt)
]〉

+ L
2Et

[∥∥ η
N

∑N
n=1

Ilnt
qnt

· gn(xt)
∥∥2]

≤f(x̃t)−η⟨∇f(x̃t),∇f(xt)⟩+ η2L
2N

∑N
n=1Et

[∥∥ Ilnt
qnt

·gn(xt)
∥∥2].
(32)

We consider the two terms in (32) separately. We first have

− η ⟨∇f(x̃t),∇f(xt)⟩
= −η ⟨∇f(x̃t)−∇f(xt),∇f(xt)⟩ − η ⟨∇f(xt),∇f(xt)⟩

≤ ηL2

2 ∥x̃t − xt∥2 + η
2 ∥∇f(xt)∥2 − η ⟨∇f(xt),∇f(xt)⟩

= ηL2

2

∥∥∥rt + 1
N

∑N
n=1 e

n
t

∥∥∥2 − η
2 ∥∇f(xt)∥2

≤ ηL2 ∥rt∥2 + ηL2

N

∑N
n=1 ∥ent ∥

2 − η
2 ∥∇f(xt)∥2 . (33)

By noting that (Ilnt )
2 = Ilnt and Et [Il

n
t ] = qnt , we also have∑N

n=1 Et

[∥∥ Ilnt
qnt

· gn(xt)
∥∥2] =

∑N
n=1 Et

[
Ilnt

(qnt )2

]
·Et

[
∥gn(xt)∥2

]
=

∑N
n=1

1
qnt

Et

[
∥gn(xt)∥2

]
≤

∑N
n=1

1
qnt

(
∥∇Fn(xt)∥2 + σ2

)
≤

∑N
n=1

1
qnt

(
2∥∇f(xt)∥2 + 2ϵ2 + σ2

)
, (34)

where the last two inequalities are due to Assumption 1 and
also the variance relation Et

[
∥z∥2

]
= ∥E [z] ∥2 + Et

[
∥z −

Et[z]∥2
]

for any random variable z.
Let Qt :=

1
N

∑N
n=1

1
qnt

. Note that we assume Qt ≤ p and
η ≤ 1

4Lp . Hence, η ≤ 1
4Lp ≤ 1

4LQt
and −η

2 + η2LQt ≤ −η
4 .

Plugging (33) and (34) back into (32), we obtain

Et [f(x̃t+1)] ≤ f(x̃t) + ηL2 ∥rt∥2 + ηL2

N

∑N
n=1 ∥ent ∥

2

− η
2 ∥∇f(xt)∥2 + η2LQt ∥∇f(xt)∥2 + η2LQt(ϵ

2 + σ2)

≤ f(x̃t) + ηL2 ∥rt∥2 + ηL2

N

∑N
n=1 ∥ent ∥

2

− η
4 ∥∇f(xt)∥2 + η2LQt(ϵ

2 + σ2).

Taking total expectation and rearranging, we obtain

E
[
∥∇f(xt)∥2

]
≤ 4(E[f(x̃t)]−E[f(x̃t+1)])

η

+4L2E
[
∥rt∥2

]
+ 4L2

N

∑N
n=1 E

[
∥ent ∥2

]
+4ηL(ϵ2+σ2)E[Qt] .

Averaging over all t, we obtain the final result.
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