
Mobile Micro-Cloud: Application Classification,
Mapping, and Deployment

Shiqiang Wang^, Guan-Hua Tu#, Raghu Ganti*, Ting He*, Kin Leung^, Howard Tripp+, Katy Warr+, and

Murtaza Zafer*
UCLA – US, * IBM – US, ^ Imperial College – UK, + Roke Manor – UK

Abstract— Mobile micro-cloud envisions a logical network
composed of two components, the core (e.g., the command and
control center) - with access to large quantities of static (and
possibly stale) information and the edge (e.g., the forward
operating base) - with access to smaller quantities of more real-
time and dynamic data. The edge and core are separated by
dynamic and performance constrained networks with a many-to-
one relationship between the core and the edge. The goal of the
mobile micro-cloud is to deliver situational awareness to the
small units (primarily interacting with the edge) in a timely and
resource aware manner.

Fundamental to this mobile micro-cloud paradigm is the
flexibility for users to deploy varied applications dynamically as
demands, capacity, connectivity, and mission requirements
continuously evolve. This “runtime” approach is in contrast to
historical systems that are provisioned based on fixed
requirements for specific applications.

In this paper, we examine various aspects of the mobile
micro-cloud. First, we present an approach to deriving semantics
for consistent representation of application requirements in
order to enable a generic approach to application deployment in
the mobile micro-cloud environment. Second, we examine the
advantages of migrating an application (or service) to the edge
and quantify these gains through preliminary experimental
results. Third, we examine the problem of mapping applications
(identified for migration) to available resources that are changing
dynamically in a Security-aware manner. Finally, we illustrate
the prototype platform for the mobile micro-cloud and its
characteristics.

Keywords— Mobile micro-cloud, application placement

I. 	
 INTRODUCTION	

Mobile micro-cloud envisions that applications (or
computing tasks) will be deployed in a mobile micro-cloud, a
logical network composed of two components, the core (e.g.,
the command and control center) – with access to large
quantities of static (and possibly stale) information and the
edge (e.g., the forward operating base) – with access to
smaller quantities of more real-time and dynamic data. The
edge and core are separated by dynamic and performance
constrained networks with a many-to-one relationship between
the core and the edge. It is also possible for edge nodes to

communicate with each other. Further, the (edge and core)
nodes can belong to different coalition partners, raising the
question of security and operational policies for handling of
data and computation. Figure I-1 illustrates the vision of the
micro-cloud for the delivery of situation awareness to the
tactical edge and Figure I-2 illustrates a typical architecture of
the mobile micro-cloud in the army coalition context.

Figure I-1: Using micro-clouds to deliver Situational

Awareness to the tactical edge

Figure I-2: A tactical network scenario – Enabling efficient
computations over dynamic networks

The benefits of embedding storage and computation into such
a micro-cloud tactical network are two fold: (i) Effective

provisioning for diverse information requirements – the micro-
cloud supports users with different latency requirements and
access rights and (ii) Effective information exchange in a
constrained environment – Complete shuffling of information
is impractical in a tactical network and the micro-cloud
reduces congestion by providing computation at the edge.

 A natural question that arises is that of the applicability of
traditional cloud computing technologies to the dynamic
tactical network based micro-cloud environment. Traditional
cloud computing has become quite popular in the recent years,
providing utility computing in a flexible, agile, and scalable
manner [1]. The micro-cloud tactical environment poses some
fundamentally new challenges to the traditional cloud-
computing paradigm. The underlying networks are dynamic
and cannot be pre-planned whereas traditional cloud
computing facilities provide and assume a homogenous and
stable data center environment. Further, coalition operations
require distributed and shared compute/storage capabilities
with the additional constraint of adhering to the coalition
security policies. In contrast, typical cloud computing
infrastructure does not warrant the sharing of clouds across
multiple parties (this can be thought of as two different
enterprises collaborating to achieve a single end-goal).

In this paper, we propose preliminary steps toward
realizing the mobile micro-cloud vision. We observe that an
key first step in the tactical war fighter context is that of the
initial assessment to establish that the cloud’s capabilities are
sufficient and appropriate to the application’s requirements.
The mobile micro-cloud presents additional challenges to this
assessment that are not present in commercial cloud
provisioning environments. For example, the micro-cloud may
be highly constrained in terms of its processing power,
network bandwidth, latency and reliability. In addition, in the
hybrid coalition environment, security domain restrictions
may prevent the deployment of an application to a particular
micro-cloud. Because of the constraints of the mobile micro-
cloud environment, it may not be possible to deploy an
application in its entirety to a single edge or it may simply be
best if the application is running at the core (e.g., DCGS core
cloud). If the application is to be distributed, it may require
division into sub-applications and subsequent deployment
across multiple micro-clouds in order for its requirements to
be satisfied.

Deployment to the mobile micro-cloud must also enable
the flexibility and agility appropriate to the tactical
environment. This presents a challenge due to the diversity of
applications and the highly heterogeneous and dynamic nature
of the clouds to which they may be deployed. We seek to
establish whether an effective logical application requirements
representation can be utilized for multiple application varieties
in order to ease the complexity of this deployment and of
subsequent application management.

This paper outlines our approach to researching how a
tactical cloud’s resources can be provisioned on-demand using
a consistent language for representation of application
structure and its requirements. Fundamental to this is the
recognition that applications, or application parts, could have

vastly different needs; for example, some tasks might be static
triggered batch events, whereas others might be long-running
continuous stream processing. We explore the benefits and
challenges of developing taxonomy to represent such
applications based on their multidimensional needs and the
needs of the application parts. The goal is to develop a
language to enable applications to be expressed in a normal
form suitable for direct integration into the cloud placement
and scheduling optimization algorithms. Such a language
could be exploited in order to automate the cloud deployment
by using the same generic techniques across multiple
applications and types. Then, we will we examine the
advantages of migrating an application (or service) to the edge
and quantify these gains through preliminary experimental
results. Further, we will present the problem of mapping
applications (identified for migration) to available resources
that are changing dynamically in a Security-aware manner.
Finally, we illustrate the prototype platform for the mobile
micro-cloud and its characteristics.

II. THE BENEFITS OF A CONSISTENT APPLICATION
TAXONOMY FOR MOBILE MICRO-CLOUD DEPLOYMENT
In order to ascertain the applicability of a micro-cloud for

a specific application, and then to aid the application’s
subsequent micro-cloud placement (IV), we propose
consistent representation of application requirements through
a consistent taxonomy. This approach is likely to bring the
following benefits:

A. Application	
 Placement	
 Optmization	

The ability to recognize common application requirement

patterns (for example, requirements patterns that are common
in MapReduce or Streams processing) and to optimize
placement of applications with these requirements based
previous assessments and heuristics.

B. Application	
 Partitioning	

An application may need to be deployed across multiple

micro-clouds due to coalition security or other constraints
defining what and where processing and storage can be
located. This approach will ease the the ability to optimize
application partitioning and subsequent distribution across
multiple micro-clouds.

C. Standard	
 Treatment	
 of	
 Policies	
 and	
 SLAs	

A generic mechanism for application representation will

enable policies (such as resilience, performance or coalition
security) to be associated with the application or its parts in a
standard way. This capability may also ease other aspects of
application management such as the Policy-driven cross-
coalition Service Provision (reference task 5.2).

The following figure depicts the methodology for
deploying applications using such a classification mechanism.

Figure II-1: Deployment to Mobile Micro-Cloud Environment exploiting
Application Requirements Classification

The steps illustrated in the diagram are as follows:

Step 1 Application Requirements Generation: The
application is converted to a normal form depicting its key
graphical structure and its requirements. Requirements may be
generated automatically from the application itself, from
policies associated with the application or from manual
applied hints pertaining to application placement. This is
discussed below in section III.

Step 2 Application Partitioning: If the application
requirements cannot be satisfied by a single micro-cloud (for
example, the micro cloud application spans security domains),
the application requirements graph may be partitioned into
sub-graphs prior to deployment. This is discussed below in
section III.

Step 3 Exploitation of Application Requirements
During Micro-Cloud Deployment: The application
requirements in normal form are matched to micro-cloud
capabilities. The compatibility of the micro-clouds(s) with the
application requirements are considered in order to deploy the
application to the appropriate micro-cloud(s). The subsequent
placement of the application is discussed below in section IV.

III. APPROACH FOR THE DEVELOPMENT OF AN
APPLICATION REQUIREMENTS/CONSTRAINTS TAXONOMY
In this section, we present existing application taxonomies

and classifications that may be exploited for deployment of
applications to cloud environments. We discuss the additional
challenges presented by the mobile micro-cloud environment
and assess the applicability of existing classifications to this
environment. Where the classification is not applicable or is
insufficient for the mobile micro-cloud environment, we
consider how the classification is likely to require
extension/alteration.

A. Application	
 Classification	
 in	
 the	
 Constrained	
 Tactical	

Environment	

A distributed application can be represented as a logical

graph of communicating nodes where the graph nodes denote
‘computations’ and graph links denote ‘message passing’.
The graph provides an indication of the topology of the
application but does not indicate the requirements of that
topology in terms of, for example, processing or network
requirements. Such requirements may apply to the complete
application (for example, represent a profile of the complete
anticipated workload), to individual nodes or links, or to
portions of the graph.

The approach presented will assess the feasibility of
augmentation of an application description and its logical
graph representation with additional metadata describing the
application’s requirements. We will also consider whether
specific nodes or sub-graphs of the application can be labeled
in terms of their service provision requirements (for example,
required connectivity to a service requester).

In the broadest sense, the application may be classified
according to existing classification mechanisms that consider
the application in terms of broad CPU and IO requirements
([2], [3]). Its primary logical parts are then represented and
associated with requirements. Logical parts may be logical
nodes, logical communications paths or sub-graphs within the
application graph.

The research will begin by the specification of the
appropriate application requirements and the association of
these requirements with the logical application graph.
Potential requirements that may be considered within the
context of this research include:

• Whole application categorization using an
existing application categorization mechanism.
This will enable an application to be classified in
terms of (for example) IO bound, CPU bound,
discrete batch, continuous task.

• Security constraints derived from coalition
policies. For example, domain and conflict
constraints (further discussed in I.B) and
minimum encryption level. The security
constraints may also specify a subset of modules
in the application that has to be run on the same
server, in which case these modules are merged
into one logical node.

• Required Qualities of Service (derived from
policies) applied to the complete application or its
logical parts. For example, bandwidth and latency
requirements between different parts of the
application, or resilience requirements. This is
important for assessing whether a micro-cloud is
capable of supporting an application as well as
potentially aiding the application’s subsequent
placement on that cloud (see I.C).

• Hints to aid realization of Qualities of Service
applied to the complete application or to its parts.
For example, service requester proximity or data

collector proximity or anticipated temporal
workload variation (such as expected data
reduction at night).

We will take the following approach in order to develop
application requirements taxonomy:

1) Derivation and Theoretical Assessment of an
Application Requirements Taxonomy

In order to define the appropriate application taxonomy,

we will derive and apply a categorization for a number of
contrasting example applications informed by tactical
scenarios. We will enumerate the similarities and differences
between the applications and consider how applications may
be logically partitioned and how the sub-parts may be
represented within the taxonomy.

We will then consider theoretical physical networks in
order to assess whether the information provided in the
taxonomy would be sufficient to enable appropriate
application placement.	
 	

We anticipate that this initial process of defining the
application taxonomy will be iterative as we consider broader
application examples and different topologies. The output of
this step will be an assessment as to the feasibility of defining
a broad range of applications in a generic language and
recommendations as to the structure and key taxonomy of that
language.

2) Automation of Application Requirements Classification
and Application Partitioning

We will apply our classification method to a number of

applications in order to assess the ease and feasibility of
classification automation and what information is required to
perform this classification process. Automation of the
classification step might be performed based on known
classification patterns (for example, a MapReduce job tends to
have a particular classification), application of policy
information, or monitoring of the application on a non-
network constrained system.

Using example logical application graphs, we will assess
the use of heuristics for optimum sub-graphing of the
application when its requirements cannot be fulfilled by a
single micro-cloud.

IV. APPLICATION PLACEMENT
In this Section, we examine two key problems that arise in

the mobile micro-cloud scenario – (i) What are the advantages
of migrating an application to the edge and (ii) Provided
application migration is advantageous, how do we map the
application to the available resources (in the micro-cloud)?
We will examine the advantages of migrating an application to
the edge through experimental observations in the first part of
this section and then tackle the problem of mapping the
application to existing resources in a security-aware manner in
the latter part.

A. Advantages	
 of	
 Migration	
 to	
 the	
 Edge:	
 A	
 Case	
 Study	
 	

A key question that arises in the context of mobile micro-
cloud is the quantification of the advantages that the edge
offers. These are clearly dependent on the application and its
characteristics, where we elaborated on the taxonomy. This
section focuses on observations drawn from a real-world
scenario and illustrates preliminary results obtained from
analysing a large dataset consisting of accessing a large range
of services from a cellular network (across a population of
about 800k users). We note that the cellular network is
representative of a typical three-tiered architecture consisting
of the mobile device layer, an edge layer, and a core layer –
which is similar to the mobile micro-cloud architecture
(depicted in Figure I-2). We use observations drawn from one
such network to showcase the advantages that an edge can
offer.

In today’s cellular networks, all the services run at the core
(or in the Internet, accessed via the core). In this context, we
compute the average response time to access a service from
the mobile devices and compare that with emulated access to
services (residing at the edge). Since, there are no services
running at the edge in today’s deployments, we emulate it by
accessing these services without going through the mobile
network (e.g., accessing google.com over the WiFi/Ethernet
interface as opposed to using the GPRS network).

Based on preliminary experimental results, we observed
that the delay incurred in accessing a service in the core is
significantly higher than the delays incurred when accessing
the same service at the edge. This is a preliminary indicator of
the advantages of migrating services to the edge. Further, we
also observe that the response delays increase with varying
time of day, due to network load and usage patterns.

B. Application	
 Placement	
 with	
 Security	
 Considerations	

As we observed in the pervious Section, changes in
network characteristics can affect the performance of
applications (e.g., increased response times), thus raising a key
question – given an application, how do we map this
application the resources provided by the mobile micro-cloud
environment?

The goal of application placement is to place the
workloads onto the physical cloud, to satisfy the constraints of
available resource, delay, security, etc., as well as to balance
the load of servers and communication links. Without loss of
generality, we model the workload as a logical graph with
nodes representing modules in the application, and edges
representing communications between modules. The physical
mobile micro-cloud can also be modelled as a graph with
nodes representing servers and edges representing
communication links. The logical graph is associated with
resource demands and the physical graph is associated with
available resources at servers and communication links. The
problem of application placement is therefore converted into a
graph mapping problem, which maps each logical node to at
least one physical node and each logical link to at least one
physical path between the hosts of corresponding logical
nodes, such that all resource demands are satisfied within
physical node/link capacities. Compared with application

placement in traditional clouds, challenges in application
placement in mobile micro-clouds include the security
requirement, time variability of communication links, and the
distributive nature of multiple micro-clouds and their
coordination in between.

The security requirement in a coalition environment can
involve restrictions such as in data sharing, remote access,
resource allocation, etc. While the specific security
requirements may be protocol-dependent, many of such
constraints can be classified into one of the following
categories [4]:

• Domain constraint, which specifies the subset of
physical nodes and edges that each logical node or edge can be
placed to.

• Conflict constraint, which specifies a set of logical
nodes or edges that cannot be placed onto the same physical
node or edge.

In a coalition environment, the domain constraint can be
used to capture cases where a subset of the logical graph can
only be processed in a specific subset of physical nodes in the
micro-cloud that is own by a particular team. Such a domain-
constrained assignment can reduce the risk of sensitive data
being eavesdropped by other teams. The conflict constraint is
significant for distinguishing different security levels. For
instance, a server that is processing sensitive data for a
particular team may not wish to share its resource with logical
nodes from other teams, because sharing resources imposes
potential eavesdropping risks.

The domain and conflict constraints, together with other
resource availability constraints, can be expressed as a set of
linear constraints with some binary variables. As a result, the
application placement problem can be formulated as a mixed-
integer linear program [5], which can be solved with standard
optimization tools for small-scale networks. Because the
problem is NP-hard in nature, approximation algorithms need
to be developed for efficiently solving the problem in large-
scale networks.

C. Time-­‐varying	
 Communication	
 Links	

Another challenge for the application placement in mobile
micro-clouds is the dynamically changing communication
links. This is particularly obvious for nodes that are connected
via wireless links, due to the random fading in the wireless
environment and the mobility of nodes. Therefore, the
application placement algorithm also needs to consider such
dynamics, and performs the application placement
accordingly. The application placement algorithm may exploit
the application requirements classification described in III in
order to place the application appropriately.

1) Link Performance Monitoring
The first step towards the solution to link dynamics is to

develop an efficient mechanism to monitor link variations.
Depending on the traffic load of the link, the monitoring can
be performed either by inserting additional probing packets or
by observing the actual data packets that are sent via the link.
To fully utilize the available information, a cross-layered
approach may be used, which considers information from

multiple layers from the physical layer to the application layer.
Mobility information that contains nodes’ speeds and locations
can also be gathered, because the mobility of nodes can impact
the variation of link states.

2) Future Performance Prediction
After gathering historical information that reflects link

dynamics, a mechanism needs to be developed to predict the
future link performance. This could be done using techniques
in time-series analysis. The challenge here is to develop an
appropriate model to capture information from multiple
domains and perform prediction accordingly.

3) Decision on Application Placement
Based on the prediction result, the application placement

algorithm needs to decide where to place the logical nodes and
edges. Link stability issues need to be considered in addition
to other factors. Upon a link failure, the algorithm also needs
to decide whether to migrate the affected logical nodes to
other physical nodes or to wait for link recovery. A related
problem has been studied in [6].

D. Distributed	
 Application	
 Placement	

Because different micro-clouds may belong to different
teams in the coalition, for a large workload which needs to be
run across different micro-clouds, all the involved micro-
clouds need to cooperate in application placement. However,
they may not wish to reveal their complete information to each
other. Therefore, in this case, we need to have a distributed
algorithm. Some existing distributed optimization techniques
may be used to tackle this case. In cases where the shared
information is very limited or only a limited number of
iterations is allowed, the distributed solution may not achieve
the same performance as the global solution. In such cases, we
need to study how well the distributed solution can
approximate the global solution, as well as what is the best
trade-off between information exchange and performance of
application placement.

V. DEVELOPMENT OF A MICRO CLOUD EXPERIMINTATION
FACILITY

In this section, we discuss the various options for

development of a micro-cloud prototype and
experimentation facility. There are several “programming
models” that can be adopted to deploy applications in the
micro-cloud environment, which consist of (a) VM –
providing a full scale operating system for execution of
applications at the edge, (b) Remote procedure execution,
and (c) Web services, these different models are further
described in [7]. We note that each of these models
provides varying degrees of flexibility (VMs being the most
flexible). In contrast, higher flexibility implies heavyweight
execution units (e.g., VMs require entire state migration to
move the execution unit). We argue in this paper for a more
flexible execution unit in the form of Virtual Machines that
are the basis for the generic cloud computing environment.

Virtual Machines (VMs) provide a platform for the
generic execution of applications along with storage,
networking, and other fundamental computing resources.
The natural sandboxing of the virtual machines from each
other enables easy enforcement of security policies in
coalition scenarios. Further, recent work on VM migration
such as SnowFlock [8] shows that state migration of VMs
can be achieved through novel mechanisms that are very
fast (order of few seconds). Given these observations, we
chose to use IBM ASPN (Application Service Platform for
Networks) for the initial prototype development of the
mobile micro-cloud.

ASPN provides a cloud-like virtualization

environment for deployment into distributed resource-
constrained environments. Applications run in distributed
cloud-like containers, isolated from one another but able to
communicate with each other (and the platform) in a secure
manner. The main components of ASPN consist of (i) Base
platform that includes a heartbeat monitor, network
configuration service, and libvirt for low-level
virtualization features, (ii) ASPN platform VM for secure
communication, diagnostic service for collection of
diagnostics, and component service for configuration of the
deployed application VMs, and (iii) Virtual appliance that
are deployed to run on the ASPN base platform (and in
which applications reside). Figure V-1 illustrates the
various components of ASPN architecturally.

1.2 Main components
This section shows the main components of a single ASPN instance.

Base platform
The base platform hosts virtual machines for applications. It also hosts
the ASPN platform virtual machine, and several components provided
by the embedder:

Libvirt
Libvirt provides the low-level virtualization features that are
managed by the ASPN Configuration Service. Libvirt is a
common Linux package.

Heartbeat Monitor
The heartbeat monitor provides supervision of the ASPN
platform virtual machine and the virtual appliances running
on the ASPN platform. The heartbeat monitor is provided in
the ASPN product.

Figure 1. Main components of ASPN

IBM Confidential

2 WebSphere Application Service Platform for Networks: User Guide Draft: 17 March 2013, 14:10

Figure V-1: Architectural components of ASPN

VI. RELATED WORK

A. Existing	
 Approaches	
 to	
 Application	
 Classification	

Existing approaches to application deployment into

commercial cloud assume reliable and homogeneous provision
of cloud resources. Application classification techniques
consider the complete application as there is no need to
partition the application across multiple cloud deployments.

Reference [2] presents an application categorization
specifically applicable to cloud provisioning based on the
Forward and Lethbridge taxonomy [3]. It is anticipated that
this taxonomy, or a similar equivalent, will provide the basis

to the application requirements classification at the broadest
level of classification for this work.

B. Application	
 Placement	

Existing works on the application placement problem

mainly focus on traditional clouds in a wired network
environment [4]. Due to the NP-hardness of the problem,
many heuristics have been proposed. Recently, there is
increasing attention on optimization problem formulation [9]
and approximation algorithms [10] for application placement.
However, there are still many open issues, such as
incorporating the security constraints and communication link
variations into the problem formulation, as well as improving
the performance bounds of approximation algorithms. Some
preliminary work has also been done in the area of mobile
clouds, but mainly focus on cases where there is a single
mobile device and a single cloud, such as [11]. The problem of
partitioning the application graph into multiple clouds (and
each cloud subsequently performs the remaining application
placement individually) has been studied in [12], but no
optimization guarantee was given. Therefore, the challenges
discussed in Section IV follow.

C. Prototype	
 Development	

The concept of mobile micro-cloud in the form of
“cloudlets” was proposed by the Elijah project [13]. This
introduced the idea of a new architectural element arising from
the convergence of mobile computing and cloud computing.
The premise of this project is that in order to enable novel
bandwidth hungry and real-time applications on mobile
devices, “data center in a box” needs to be brought closer to
the device. Four key attributes are identified as part of these
cloudlets: (i) Soft-state maintenance for the mobile device
generated data, (ii) Powerful, well connected, and safe, (iii)
Logical proximity to mobile devices, and (iv) Builds on
standard cloud technology such as Amazon EC2 [14] and
OpenStack [15]. Contrary to these key assumptions, this
mobile micro-cloud project is targeted toward poorly
connected environments with heterogeneous nodes and
varying resource availabilities.

Virtual machines are quite popular as the success of Amazon
EC2 and other cloud computing environments illustrate.
Migration of virtual machines using novel encodings of the
state differences have been proposed in [8] and [16]. We plan
on exploring the applicability of these techniques in the
tactical network scenarios.

VII. CONCLUSIONS
In conclusion, we have described the various key problems

that we are currently exploring to realize the vision of mobile
micro-cloud. The first is to come up with taxonomy of
application characteristics to identify and define a unified
framework to specify application needs, the second is to
examine and quantify scenarios in which applications should
migrate to the edge, where we provided detailed analysis

results from a mobile cellular network. Based on the input
about whether to migrate or not, we then explore the problem
of mapping applications to a set of logical resources in a
dynamic environment taking security and coalition scenarios
into account. Finally, we concluded with the illustration of a
platform prototype for the mobile micro-cloud, its architecture
and characteristics.

Acknowledgments	

This research was sponsored by the U.S. Army Research

Laboratory and the U.K. Ministry of Defence and was
accomplished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are
those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References	

[1] M. Armburst et. al., “Above the Clouds: A Berkeley View of Cloud

Computing”, Technial Report UCB/EECS-2009-28, UC-Berkeley, 2009.
[2] A. Milenkoski, A. Iosup, S. Kounev, K. Sachs, P. Rygeilski, J. Ding, W.

Cirne and F. Rosenberg, “Cloud Usage Patterns: A Formalisation for
Description of Cloud Usage Scenarios”, Technical Report: SPEC-RG-
2013-001 Version 1.0.1, SPEC RG Cloud Working Group, May 2013

[3] A. Forward and T. Lethbridge, “A Taxonomy of Software Types to
Facilitate Search and Evidence-Based Software Engineering” in
Proceedings of the 2008 Conference for Advanced Studies on

Collaborative Research: Meeting of Minds (CASGON), New York, pp.
14:179-14:191, 2008.

[4] A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual
network embedding: A survey,” IEEE Commun. Surveys Tuts., Feb.
2013, accepted.

[5] S. Wang, M. Zafer, K. K. Leung, and T. He, “Security-aware application
placement in a mobile micro-cloud,” in Proc. of Annual Fall Meeting of
ITA (AMITA) 2013.

[6] T. He, S. Chen, H.l Kim, L. Tong, and K. Lee, “To migrate or to wait:
bandwidth-latency tradeoff in opportunistic scheduling of parallel
tasks,” in Proc. of IEEE INFOCOM mini-conference, Orlando, FL,
March 2012.

[7] P. Bahl, R. Han, L. Li, and M. Satyanarayanan, “Advancing the State of
Mobile Cloud Computing”, In Proceedings of MobiSys workshops,
MCS, 2012.

[8] H. Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble, E. Lara, M.
Brudno, and M. Satyanarayana, “SnowFlock: Rapid Virtual Machine
Cloning for Cloud Computing”, In Proceedings of EuroSys, 2009.

[9] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link
mapping,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, 2012.

[10] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion
mapping in a cloud,” in Proc. of PODC 2011.

[11] M. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,
“Odessa: Enabling Interactive Perception Applications on Mobile
Devices,” in Proc. of MobiSys 2011.

[12] A. Leivadeas, C. Papagianni, S. Papavassiliou, “Efficient Resource
Mapping Framework over Networked Clouds via Iterated Local Search-
Based Request Partitioning,” IEEE Transactions on Parallel and
Distributed Systems, vol.24, no.6, pp.1077-1086, June 2013

[13] CMU, Project Elijah, http://elijah.cs.cmu.edu
[14] Amazon EC2 cluster, http://aws.amazon.com/ec2/
[15] OpenStack Cloud Software, http://www.openstack.org/
[16] K. Ha, P. Pillai, W. Richter, Y. Abe , and M. Satyanarayanan, “Just-in-

Time Provisioning for Cyber Foraging”, In Proceedings of MobiSys
2013.

