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Abstract

Edge-clouds provide a promising new approach to significantly reduce network operational costs by moving computation

closer to the edge. A key challenge in such systems is to decide where and when services should be migrated in response to

user mobility and demand variation. The objective is to optimize operational costs while providing rigorous performance

guarantees. In this paper, we model this as a sequential decision making Markov Decision Problem (MDP). However,

departing from traditional solution methods (such as dynamic programming) that require extensive statistical knowledge

and are computationally prohibitive, we develop a novel alternate methodology. First, we establish an interesting decoupling

property of the MDP that reduces it to two independent MDPs on disjoint state spaces. Then, using the technique of Lyapunov

optimization over renewals, we design an online control algorithm for the decoupled problem that is provably cost-optimal.

This algorithm does not require any statistical knowledge of the system parameters and can be implemented efficiently. We

validate the performance of our algorithm using extensive trace-driven simulations. Our overall approach is general and can

be applied to other MDPs that possess a similar decoupling property.

I. INTRODUCTION

The increasing popularity of mobile applications (such as social networking, photo sharing, etc.) running on handheld

devices is putting a significant burden on the capacity of cellular and backhaul networks. These applications are generally

comprised of a front-end component running on the handheld and a back-end component (that performs data processing

and computation) that typically runs on the cloud. While this architecture enables applications to take advantage of the

on-demand feature of cloud computing, it also introduces new challenges in the form of increased network overhead and

latency. A promising approach to address these challenges is to move such computation closer to the network edge. Here,

it is envisioned that entities (such as basestations in a cellular network) closer to the network edge would host smaller-

sized cloud-like infrastructure distributed across the network. This idea has been variously termed as Cloudlets [1], Fog

Computing [2], Edge Computing [3], and Follow Me Cloud [4], to name a few. The trend towards edge-clouds is expected

to accelerate as more users perform a majority of their computations on handhelds and as newer mobile applications get

adopted.

One of the key design issues in edge-clouds is service migration: Should a service currently running in one of the

edge-clouds be migrated as the user locations change, and if yes, where? This question stems from the basic tradeoff
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between the cost of service migration vs. the reduction in network overhead and latency for users that can be achieved

after migration. While conceptually simple, it is challenging to make this decision in an optimal manner because of the

uncertainty in user mobility and request patterns. Because edge-clouds are distributed at the edge of the network, their

performance is closely related to user dynamics. These decisions get even more complicated when the number of users

and applications is large and there is heterogeneity across edge-clouds. Note that the service migration decisions affect

workload scheduling as well (and vice versa), so that in principle these decisions must be made jointly.

The overall problem of dynamic service migration and workload scheduling to optimize system cost while providing

end-user performance guarantees can be formulated as a sequential decision making problem in the framework of MDPs

[5], [6]. This approach, although very general, suffers from several drawbacks. First, it requires extensive knowledge of

the statistics of the user mobility and request arrival processes that can be impractical to obtain in a dynamic network.

Second, even when this is known, the resulting problem can be computationally challenging to solve. Finally, any change

in the statistics would make the previous solution suboptimal and require recomputing the optimal solution.

In this paper, we present a new methodology that overcomes these drawbacks. Our approach is inspired by the technique

of Lyapunov optimization [7], [8] which is a general framework for designing optimal control algorithms for non-MDP

problems without requiring any knowledge of the transition probabilities. Specifically, these are problems where the cost

functions and control decisions are functionals of states that evolve independently of the control actions. However, as we

will show later, this condition does not hold for the joint service migration and workload scheduling problem studied in this

paper. A key contribution of this work is to develop a methodology that enables us to still apply the Lyapunov optimization

technique to this MDP while preserving its attractive features.

II. RELATED WORK

The general problem of resource allocation and workload scheduling in cloud computing systems using the framework

of stochastic optimization has been considered in several recent works. Specifically, [9] considers a stochastic model for

a cloud computing cluster, where requests for virtual machines (VMs) arrive according to a stochastic process. Each VM

request is specified in terms of a vector of resources (such as CPU, memory and storage space) and its duration and must

be placed on physical machines (PMs) subject to a set of vector packing constraints. Reference [9] defines the notion of

the capacity region of the cloud system and shows that the MaxWeight algorithm is throughput optimal. Virtual machine

placement utilizing shadow routing is studied in [10] and [11], where virtual queues are introduced to capture more

complicated packing constraints. Reference [12] considers a joint VM placement and route selection problem where in

addition to packing constraints, the traffic load between the VMs is also considered. All these works consider a traditional

cloud model where the issue of user mobility and resulting dynamics is not considered. As discussed before, this issue

becomes crucial in edge-clouds and introduces the need for dynamic service migration that incurs reconfiguration costs.

The presence of these costs fundamentally changes the underlying resource allocation problem from a non-MDP to an

MDP for which the techniques used in these works are no longer optimal.

The impact of reconfiguration or switching cost has been considered in some works recently. Specifically, [13] considers

the problem of dynamic “right-sizing” of data centers where the servers are turned ON/OFF in response to the time-varying

workloads. However, such switching incurs cost in terms of the delay associated with switching as well the impact on server

life. Reference [13] proposes an online algorithm that is shown to have a 3-competitive ratio while explicitly considering
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Fig. 1. Illustration of our edge-cloud model showing the collection of edge-clouds, back-end cloud, and mobile users.

switching costs. A similar problem involving geographic load balancing is considered in [14] using a receding horizon

control framework. Reference [15] focuses on a wireless scheduling problem with reconfiguration delay while [16] studies

the reconfiguration problem from a queuing theory perspective and derives analytical expressions for the performance. All

the approaches in [14]–[16] assume knowledge of the statistics of the underlying system while [13] considers a single data

center with homogeneous servers. Our work differs from all these because we explicitly consider the reconfiguration costs

associated with service migrations while treating a very general model for a distributed edge-cloud system.

The methodology used in this paper is inspired by the framework of Lyapunov optimization over renewals proposed in

[17]. This framework extends the Lyapunov optimization approach of [7], [8] to treat constrained MDPs. The basic idea

involves converting a constrained MDP into a sequence of unconstrained stochastic shortest path problems (SSPs) [5], [6]

that are solved over consecutive renewal frames. However, solving the resulting SSPs typically still requires knowledge of

the underlying probability distributions and can be computationally prohibitive for large state spaces.

In this work, we also make use of the framework of Lyapunov optimization over renewals. However, instead of directly

applying the technique of [17], we first establish a novel decoupling property of our MDP which shows that it can be

decoupled into two independent MDPs that evolve on disjoint state spaces. This crucial property enables us to apply

the framework of [17] in such a way that the resulting algorithms are simple deterministic optimization problems (rather

than stochastic shortest path problems) that can be solved efficiently without any knowledge of the underlying probability

distributions. For example, one of the components of our overall algorithm involves solving a deterministic shortest path

problem instead of an SSP every renewal frame. As such, the resulting solution is markedly different from classical dynamic

programming based approaches and does not suffer from the associated “curse of dimensionality” or convergence issues.

III. PROBLEM FORMULATION

We consider an edge-cloud system comprised of M distributed edge-clouds and one back-end cloud that together host K

applications (see Fig. 1). The system also consists of N users that generate application requests over time. The collection

of edge and back-end clouds supports these applications by providing the computational resources needed to serve user

requests. The users are assumed to be mobile while the edge and back-end clouds are static. We assume a time-slotted

model and use the notion of “service” and “application” interchangeably in this paper.
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A. System Model

Mobility Model: Let Ln(t) denote the location of user n in slot t. The collection of all user locations in slot t is denoted

by vector l(t). We assume that l(t) takes values from a finite (but potentially arbitrarily large) set L. Further, l(t) is assumed

to evolve according to an ergodic discrete time Markov chain (DTMC) over the states in L with transition probabilities

denoted by pll′ for all l, l′ ∈ L.

Application Request Model: Denote the number of requests for application k generated by user n in slot t by Akn(t)

and the collection {Akn(t)} for all k, n by vector a(t). Similar to l(t), we assume that a(t) takes values from a finite

(but potentially arbitrarily large) set A. We further assume that for all k, n there exist finite constants Amax
kn such that

Akn(t) ≤ Amax
kn for all t. The process a(t) is also assumed to evolve according to an ergodic DTMC over the states

in A with transition probabilities qaa′ for all a,a′ ∈ A. All application requests generated at each user are routed to a

selected subset of the edge-clouds for servicing. These routing decisions incur transmission costs and are subject to certain

constraints as discussed below.

User-to-Edge-Cloud Request Routing: Let rknm(t) denote the number of application k requests from user n that are

routed to edge-cloud m in slot t and let r(t) denote the collection {rknm(t)} for all k, n,m. Routing of these requests

incurs a transmission cost of rknm(t)cknm(t) where cknm(t) is the unit transmission cost that can depend on the current

location of the user Ln(t), the application index k, as well as the edge-cloud index m. More generally, it could also depend

on other “uncontrollable” factors such as background backhaul traffic, wireless fading, etc., but we do not consider these

for simplicity. Denote the sum total transmission cost incurred in slot t by C(t), i.e., C(t) =
∑
knm rknm(t)cknm(t). For

each (k,m), we denote by Rkm(t) the total number of application k requests received by edge-cloud m in slot t, i.e.,

Rkm(t) =
∑N
n=1 rknm(t). We assume that the maximum number of requests for an application k that can be routed to

edge-cloud m in any slot is upper bounded by Rmax
km . Given these assumptions, the routing decisions r(t) are subject to

the following constraints

Akn(t) =
M∑
m=1

rknm(t) ∀k, n (1)

0 ≤
N∑
n=1

rknm(t) ≤ Rmax
km ∀k,m (2)

where (1) captures the assumption that no request buffering happens at the users. In addition to (1) and (2), there can

be other location-based constraints that limit the set of edge-clouds where requests from user n can be routed given its

location Ln(t). Given l(t) = l,a(t) = a, denote the feasible request routing set by R(l, a). We assume that R(l, a) 6= ∅

for all l ∈ L, a ∈ A.

Application Configuration of Edge-Clouds: For all k,m, define application placement variables Hkm(t) as

Hkm(t) =

 1 if edge-cloud m hosts application k in slot t,

0 else.
(3)

The collection {Hkm(t)} is denoted by the vector h(t). This defines the application configuration of the edge-clouds in

slot t and determines the local service rates {µkm(t)} offered by them in that slot. An application’s requests can only be

serviced by an edge-cloud if it hosts this application in that slot. Thus, µkm(t) = 0 if Hkm(t) = 0. When Hkm(t) = 1,
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then µkm(t) is assumed to be a general non-negative function ϕkm(·) of the vector h(t), i.e., µkm(t) = ϕkm(h(t)). This

results in a very general model that can capture correlations between the service rates of co-located applications. A special

case is where µkm(t) depends only on Hkm(t). For simplicity, we assume that µkm(t) is a deterministic function of h(t)

and use µkm(t) to mean ϕkm(h(t)). Further, we assume that there exist finite constants µmax
km such that µkm(t) ≤ µmax

km

for all t.

An edge-cloud is typically resource constrained and may not be able to host all applications. In general, hosting an

application involves creating a set of virtual machines (VMs) or execution containers (e.g., Docker) and assigning them a

vector of computing resources (such as CPU, memory, storage, etc.) from the physical machines (PMs) in the edge-cloud.

We say that an application configuration h(t) is feasible if there exists a VM-to-PM mapping that does not violate any

resource constraints. The set of all feasible application configurations is denoted by H and is assumed to be finite. We

also assume that there is a system-wide controller that can observe the state of the system and change the application

configuration over time by using techniques such as VM migration and replication. This enables the controller to adapt in

response to the system dynamics induced by user mobility as well as demand variations. However, such reconfiguration

incurs a cost that is a function of the degree of reconfiguration. Given any two configurations a, b ∈ H, the cost of switching

from a to b is denoted by Wab. For simplicity, we assume that it is possible to switch between any two configurations

a, b ∈ H and that Wab is upper bounded by a finite constant Wmax. We further assume, without loss of generality, that

Wab ≤Wac +Wcb ∀a, b, c ∈ H. (4)

The last assumption is valid if Wab is the minimum cost required to switch from a to b, This is because if Wab >

Wac +Wcb, then we could carry out the reconfiguration from a to b by switching from a to c and then to b, achieving

lower cost. Denote the switching cost incurred in slot t by W (t). For simplicity, we assume that switching incurs no delay

while noting that our model can be extended to consider such delays (for example, by setting the local service rates to

zero during those slots when a reconfiguration is underway).

Request Queues at the Edge-Clouds: As illustrated in Fig. 1, every edge-cloud m maintains a request queue Ukm(t)

per application k that buffers application k requests from all users that are routed to edge-cloud m. Requests in Ukm(t)

can get serviced locally in a slot by edge-cloud m if it hosts application k in that slot. In addition, buffered requests in

Ukm(t) can also be routed to the back-end cloud which is assumed to host all applications at all times. However, this

incurs additional back-end transmission cost as discussed later. The queueing dynamics for Ukm(t) is given by

Ukm(t+ 1) = max[Ukm(t)− µkm(t)− υkm(t) +Rkm(t), 0] (5)

where υkm(t) denotes the number of requests from Ukm(t) that are transmitted to the back-end cloud in slot t and µkm(t)

is the local service rate. It is assumed that the requests in Ukm(t) are serviced in a FIFO manner. The collection of all

queue backlogs {Ukm(t)} is denoted by the vector U(t). From (5), note that requests generated in a slot can get service

in the same slot. It should also be noted that requests can be routed to Ukm(t) in a slot even if Hkm(t) = 0.

Edge-Cloud to Back-End Cloud Request Routing: The back-end cloud is assumed to host all applications at all times.

However, transmitting requests to the back-end may incur very high costs and therefore it is desirable to maximize the

fraction of requests that can be serviced locally by the edge-clouds. Let υkm(t) denote the number of number of requests
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from Ukm(t) that are transmitted to the back-end cloud in slot t and let υ(t) denote the collection {υkm(t)} for all k,m.

Routing of υkm(t) incurs a transmission cost of υkm(t)ekm(t) where ekm(t) is the unit back-end transmission cost that can

depend on the application index as well as the edge-cloud index. Similar to request routing costs cknm(t), ekm(t) can also

depend on other “uncontrollable” factors (such as background backhaul traffic), but we only consider the average impact

of these for simplicity. Since both the edge-clouds and the back-end cloud are static, we have ekm(t) = ekm for all t. We

assume that there exist finite constants υmax
km such that υkm(t) ≤ υmax

km for all t. Further, Rmax
km ≤ υmax

km which models the

baseline scenario where all requests are serviced only by the back-end cloud. Denote the set of all υ(t) that satisfy these

constraints by V and the sum total back-end transmission cost incurred in slot t by E(t), i.e., E(t) =
∑
km υkm(t)ekm.

We assume that the back-end cloud has sufficient processing capacity such that it can service all requests in υ(t) with

negligible delay. Thus, queueing in the back-end becomes trivial and is ignored. It should be noted that in our model any

user request that is eventually serviced by the back-end cloud is transmitted first to an edge-cloud.

Performance Objective: Given this model, our goal is to design a control algorithm for making request routing decisions

at the users and edge-clouds as well as application reconfiguration decisions across the edge-clouds so that the time-average

overall transmission and reconfiguration costs are minimized while serving all requests with finite delay. Specifically, we

assume that the time-average delay for the requests in each queue Ukm(t) should not exceed davg, where davg is a finite

constant. This can be formulated as a constrained Markov Decision Problem (MDP) [5], [6] as shown in Section III-B.

Timing of Events in a Slot: We assume the following sequence of events in a slot. At the start of slot t, the controller

observes the queue backlogs U(t), new arrivals a(t), user locations l(t), and the last configuration h(t−1). Then it makes

a reconfiguration decision that transitions the configuration state to h(t) and this determines the local service rates offered

in slot t. Then the controller makes user to edge-cloud and edge-cloud to back-end cloud routing decisions. The queue

backlogs U(t+ 1) at the start of the next slot evolve according to (5).

B. MDP Formulation

The control problem described in Section III-A can be formulated as a constrained MDP over the joint state space

(l(t),a(t),h(t),U(t)). It is well-known that if this problem is feasible, then an optimal control policy for this MDP can

be obtained by searching over the class of stationary, randomized control algorithms that take control actions purely as a

function of the system states [5], [6]. Specifically, consider a control algorithm that operates as follows.

First, given last state φ′ = (l(t− 1) = l′,a(t− 1) = a′,h(t− 1) = h′,U(t− 1) = u′) and current location, arrival, and

queue backlog states l(t) = l,a(t) = a and U(t) = u, the control algorithm chooses current configuration h(t) = h with

probability zφ′φ, thereby transitioning the state to φ = (l(t) = l,a(t) = a,h(t) = h,U(t) = u). Note that the routing

decisions taken in the last slot together with its configuration h′ determine U(t) through the queueing equations in (5).

Denote the resulting transition probability from U(t−1) = u′ to U(t) = u by sφ
′

u′u. Then the total expected reconfiguration

cost incurred when transitioning from state φ′ is given by

Wφ′ =
∑
φ

pl′lqa′as
φ′

u′uzφ′φWh′h. (6)

Next, given current state φ = (l(t) = l,a(t) = a,h(t) = h,U(t) = u), the control algorithm chooses routing vector
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r(t) = r with probability xφ(r) subject to r ∈ R(l, a). This incurs a total expected transmission cost given by

Cφ =
∑

r∈R(l,a)

xφ(r)
∑
knm

rknmcknm (7)

Finally, given current state φ = (l(t) = l,a(t) = a,h(t) = h,U(t) = u), it chooses back-end routing vector υ(t) = υ

with probability yφ(υ) subject to υ ∈ V and this incurs a total expected back-end transmission cost given by

Eφ =
∑
υ∈V

yφ(υ)
∑
km

υkmekm (8)

Let us denote the steady state probability of being in state φ under this policy by πφ. Then, the overall time-average

expected transmission plus reconfiguration cost is given by

C + E +W =
∑
φ

πφCφ +
∑
φ

πφEφ +
∑
φ

πφWφ (9)

Let Ukm and Rkm denote the time-average expected values of Ukm(t) and Rkm(t) under this control algorithm. By

Little’s Theorem, we have that the average delay Dkm for the requests in queue Ukm(t) satisfies Ukm = RkmDkm. In

order to meet the average delay constraint, we need that Dkm = Ukm
Rkm

≤ davg∀k,m.

The constrained MDP optimization searches for an optimal policy that minimizes C + E + W subject to meeting the

average delay constraint. Assuming that the problem is feasible, let c∗, e∗, and w∗ denote the optimal time-average user-to-

edge-cloud transmission cost, edge-cloud-to-back-end cloud transmission cost, and total reconfiguration cost respectively.

Solving this optimization is extremely challenging and quickly becomes intractable due to the complexity of the state space

under traditional solution methods (such as value iteration [5], [6]). Further, these techniques require knowledge of the

transition probabilities of the user mobility and request arrival processes that may not be known a-priori. In the following,

we develop an alternate methodology for tackling this problem that overcomes these challenges. Specifically, we take the

following approach.

1) We first relax this MDP by replacing the time-average delay constraints by queue stability constraints. This results in

an MDP whose state space involves only (l(t),a(t),h(t)).

2) For this relaxed MDP, we prove a novel decoupling property which shows that it can be decoupled into two independent

MDPs that evolve on disjoint state spaces.

3) This decoupling property enables us to develop an online control algorithm that does not require any knowledge

of the probability distributions, yet can achieve (arbitrarily) close to optimal cost while providing worst-case delay

guarantees.

Before proceeding, we make the following assumption about the above (non-relaxed) MDP. Let R∗km, µ
∗
km and υ∗km

respectively denote the time-average request arrival rate, local service rate, and back-end routing rate for queue Ukm(t)

under the optimal control policy. For all k,m for which R∗km > 0, define εkm = µ∗km+υ∗km−R∗km and let ε = minkm εkm.

Then we assume that ε is strictly positive, i.e., ε > 0. Note that, in general, in a queue with stochastic arrivals and service

rates, if the average arrival rate is not smaller than the service rate, then the average delay becomes unbounded. Therefore

this assumption is not very restrictive.
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IV. MDP RELAXATION AND DECOUPLING

Consider a relaxation of the original MDP discussed in Section III-B where we replace the average delay constraints by

the following queue stability constraints ∀k,m.

µkm + υkm −Rkm ≥ ε if Rkm > 0 (10)

where Rkm, µkm and υkm respectively denote the time-average expected arrival rate, local service rate and back-end routing

rate under any control algorithm. It can be shown that meeting these constraints ensures that all queues are rate stable [8].

Further, we add the constraints that C = c∗, E = e∗, and W = w∗. That is, we enforce the time-average transmission

and switching costs under the relaxed problem to match those under the optimal solution to the original MDP. It is clear

that this problem is a relaxation of the original MDP since the solution to the original MDP is feasible for this problem.

However, a solution to the relaxed problem will not necessarily satisfy the average delay constraints. An optimal stationary,

randomized control algorithm for the relaxed problem can be defined similarly to the original MDP and is described in

Appendix A. The motivation for considering this relaxation is that, unlike the original MDP, it suffices to consider the

reduced state space defined by (l(t),a(t),h(t)) for this problem. This follows by noting that none of the constraints

involve the queue backlogs. Further, the relaxed problem has an interesting decoupling property (discussed next) that can

be leveraged to design an online control algorithm that can achieve close to optimal cost while providing explicit worst-case

delay guarantees (as shown in Section V).

A. Decoupling the Relaxed MDP

We now show that a decoupled control algorithm is optimal for the relaxed MDP defined above. Specifically, under this

decoupled algorithm, the control decisions for user request routing are taken purely as a function of (l(t),a(t)), those for

application reconfiguration are taken purely as a function of h(t), and the back-end routing decisions are taken in i.i.d.

manner every slot, independent of all states. As a result, under this algorithm, the states (l(t),a(t)) and h(t) become

decoupled and evolve independently of each other. Note that, in general, when searching for the optimal policy for the

relaxed MDP, one must consider the class of algorithms where the control decisions are taken as a function of the joint

state (l(t),a(t),h(t)). Under such algorithms, the states (l(t),a(t)) and h(t) would be coupled and their evolution would

not be independent. Thus, it is noteworthy that such a decoupled policy exists.

We next specify the decoupled control algorithm and show that it achieves the same time-average cost as the relaxed

MDP (and hence the original MDP). The decoupled algorithm is defined in terms of the control decision probabilities (and

resulting steady-state values) of the optimal solution to the relaxed MDP. We use the superscript “xdp” to indicate the

control actions and resulting steady state probabilities of the optimal solution to the relaxed MDP while the superscript

“dec” is used for the decoupled control algorithm. We use the shorthand notation φ = (l(t) = l,a(t) = a,h(t) = h) and

φ′ = (l(t− 1) = l′,a(t− 1) = a′,h(t− 1) = h′). Let πxdp
φ denote the steady-state probability of state φ under the optimal

solution to the relaxed MDP and
∑
la π

xdp
φ sums this over all states φ for a given configuration h. Define H′ as the set of

all configuration states h for which
∑
la π

xdp
φ > 0. The decoupled algorithm has the following components:

Reconfiguration Policy: The reconfiguration policy is defined by probabilities θdec
h′h which denotes the probability of
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switching to configuration h given that the configuration in the last slot was h′. These probabilities are given by

θdec
h′h =


∑
l′a′ π

xdp
φ′

(∑
la pl′lqa′az

xdp
φ′φ

)
∑
l′a′ π

xdp
φ′

if h, h′ ∈ H′,

0 else.

(11)

Routing Policy: Given l(t) = l,a(t) = a, choose a routing vector r ∈ R(l, a) with probability ζdec
la (r) given by

ζdec
la (r) =


∑
h π

xdp
φ xxdp

φ (r)∑
h π

xdp
φ

if
∑
h π

xdp
φ > 0,

0 else.
(12)

where
∑
h π

xdp
φ sums πxdp

φ over all states φ for which l(t) = l and a(t) = a.

Back-End Routing Policy: In each slot t, choose a back-end routing vector υ ∈ V with probability ϑdec(υ) given by

ϑdec(υ) =
∑
φ

πxdp
φ yxdp

φ (υ) (13)

Let us denote the time-average arrival and service rates for queue Ukm(t) under the decoupled algorithm by Rdec
km, µ

dec
km

and υdec
km respectively. Then we have the following.

Theorem 1: For the decoupled control algorithm defined by (11), (12), and (13), the following hold:

1) The time-average reconfiguration cost is equal to w∗.

2) The time-average transmission cost is equal to c∗.

3) The time-average back-end routing cost is equal to e∗.

4) For each queue Ukm(t), the time-average arrival and service rates Rdec
km, µ

dec
km and υdec

km are equal to those under the

relaxed MDP and satisfy (10), i.e., µdec
km + υdec

km −Rdec
km ≥ ε if Rdec

km > 0.

Proof: See Appendix B.

We emphasize that the time-average arrival and service rates Rdec
km, µ

dec
km, and υdec

km need not be equal to the corresponding

values for the original MDP, i.e., R∗km, µ
∗
km and υ∗km. Theorem 1 can be intuitively explained by noting that the probability

θdec
h′h is chosen to be equal to the fraction of time that the relaxed MDP chooses to switch to configuration h′ given that the

last configuration was h, in steady state. Similarly, ζdec
la (r) is chosen to be equal to the fraction of time the relaxed MDP

chooses routing vector r ∈ R(l, a) given that the current user location and request arrival states are (l, a), in steady state,

and the same applies to the back-end routing decisions. Thus, it can be seen that the decoupled control algorithm tries

to match the time-average costs of the relaxed policy while meeting the queue stability constraints. Note that under the

decoupled control algorithm, the reconfiguration and local servicing decisions are a function only of the configuration state

h while the routing is only a function of the user location and arrival states (l, a). It should also be noted that in our model,

the latter states (l, a) evolve on their own, independent of the control actions of this algorithm. On the other hand, the

evolution of the configuration state is completely governed by this control algorithm. Finally, we note that the decoupled

control algorithm is expressed in terms of the steady state probabilities and control actions of the optimal solution of the

relaxed MDP which is itself hard to calculate and requires knowledge of the statistics of the mobility or arrival processes

that may not be available. However, our objective is not to calculate this control algorithm explicitly. Rather, we will use its

existence to obtain an alternate online control algorithm that will track the performance of this control algorithm. The online
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algorithm does not require any knowledge of the statistics of the mobility or arrival processes and can be implemented

efficiently. Further, the online algorithm stabilizes all queues and provides worst-case delay bounds for all requests. Recall

that H′ is the set of all configuration states h′ for which
∑
l′a′ π

xdp
φ′ > 0. It can be shown that the reconfiguration policy

(11) of the decoupled algorithm results in a finite state Markov chain M over the states in H′ (see Lemma 2 in Appendix

B). Further, all states h ∈ H′ are positive recurrent. Suppose the Markov chain M is in configuration h at time t and let

T dec
h denote the time spent in other configurations before returning to h (recurrence time). Then, by basic renewal theory

[18], the following holds for all t.

E
{∑t+T dec

h −1
τ=t µdec

km(τ)
}

E
{
T dec
h

} = µdec
km,

E
{∑t+T dec

h −1
τ=t W dec(τ)

}
E
{
T dec
h

} = w∗ (14)

Further, the first and second moments of the recurrence times, i.e., E
{
T dec
h

}
and E

{
(T dec
h )2

}
are bounded.

V. ONLINE CONTROL ALGORITHM

We now present an online control algorithm that makes joint request routing and application configuration decisions as a

function of the system state (l(t),a(t),h(t),U(t)). However, unlike traditional MDP solution approaches such as dynamic

programming [5], [6], this algorithm does not require any knowledge of the transition probabilities that govern the system

dynamics. In addition to the request queues Ukm(t), for each (k,m) this algorithm maintains the following “delay-aware”

queues that are used to provide worst-case delay guarantees for user requests (as shown later in Theorem 3) and are similar

to the delay-aware queues used in [8].

Zkm(t+ 1) =

 max[Zkm(t)− µkm(t)− υkm(t) + σkm, 0] if Ukm(t) > µkm(t) + υkm(t),

0 if Ukm(t) ≤ µkm(t) + υkm(t)
(15)

where 0 ≤ σkm ≤ υmax
km are control parameters that affect the delay guarantees offered by this algorithm. Our algorithm

also uses a control parameter V > 0 that affects a cost-delay tradeoff made precise in Theorem 3. Denote the collection

{Zkm(t)} by Z(t) and the collection {σkm} by σ. We assume that all request queues Ukm(t) and delay-aware queues

Zkm(t) are initialized to 0 at t = 0. As shown in the following, our online algorithm is designed to ensure that all request

and delay-aware queues remain bounded for all t and this guarantees a deterministic worst-case delay bound for each

request. Similar to the decoupled control algorithm defined by (11), (12), and (13), this algorithm consists of decoupled

components for routing and reconfiguration decisions. The control decisions in each component are made independently

but they are weakly coupled through the queue backlogs U(t) and Z(t). In the following, we describe each of these

components in detail. The performance guarantees provided by our algorithm are presented in Section VI.

A. User-to-Edge-Cloud Request Routing

We first describe the user-to-edge-cloud routing component of the algorithm. In each slot t, the routing decisions

{rknm(t)} are obtained by solving the following optimization problem.

Minimize
∑
k,m

∑
n

(
Ukm(t) + V cknm(t)

)
rknm(t)

subject to {rknm(t)} ∈ R(l, a) (16)
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where R(l, a) is defined by constraints (1), (2), rknm(t) ∈ Z≥0∀k, n,m, and other location-based constraints as discussed

in Sec. III-A. The resulting problem is an integer linear program (ILP) in the variables rknm(t). Further, the problem

is separable across k, i.e., it is optimal to solve K such problems separately, one per application k. When Rmax
km ≥∑N

n=1Akn(t) for all k,m, the above optimization has a particularly simple solution that can be obtained independently

for each user n and can be calculated in closed-form as follows. For each (k, n), set rknm∗(t) = Akn(t) for the particular

edge-cloud m∗ that user n can route to (given its current location Ln(t)) and that minimizes Ukm(t) + V cknm(t). Set

rknm(t) = 0 for all m 6= m∗. Note that cknm(t) depends on the current user location (Ln(t)) as well as the indices of the

application (k) and the edge-cloud (m). This algorithm can be viewed as a more general version of the “Join the Shortest

Queue” policy which uses only queue lengths. In contrast, here a weighted sum of queue length and transmission cost is

used to determine the “shortest” queue.

More generally, (16) can be mapped to variants of matching problems on bipartite graphs. For example, consider the case

where Amax
kn = 1 for all k, n, Rmax

km = 1 for all k,m, and N ≤M . Then (16) becomes an instance of the minimum weight

matching problem on a bipartite graph formed between the N users and M edge-clouds. This can be solved in polynomial

time using well-known methods (such as in [19]). For more general cases, (16) becomes a generalized assignment problem

that is NP-hard. However, efficient constant factor approximation algorithms are known for such problems [20]. As we

show in Theorem 3, using any such approximation algorithm instead of the optimal solution to (16) ensures that the overall

cost of the online algorithm is within the same approximation factor of the optimal cost. It should be noted that the routing

component of the control algorithm considers only the current user location, request arrival, and queue backlog states to

make decisions and is therefore myopic. Further, it does not require any knowledge of the mobility/arrival model. We also

note that it does not depend on the application configuration state.

B. Edge-Cloud to Back-End Cloud Request Routing

The back-end routing decisions {υkm(t)} are obtained by solving the following optimization problem every slot.

Minimize
∑
km

(
V ekm − Ukm(t)− Zkm(t)

)
υkm(t)

subject to 0 ≤ υkm(t) ≤ min[Ukm(t), υmax
km ] ∀k,m (17)

This problem is separable across (k,m) and has a simple solution given by υkm(t) = min[Ukm(t), υmax
km ] when Ukm(t) +

Zkm(t) > V ekm and υkm(t) = 0 else. Similar to request routing, the back-end routing algorithm considers only current

queue backlogs (as ekm is a constant) and does not require any knowledge of the user mobility or request arrival model.

Further, it does not depend on the application configuration state. The structure of the back-end routing decisions results

in the following bounds on Ukm(t) and Zkm(t).

Lemma 1: Suppose υmax
km ≥ Rmax

km for all k,m. Then, under the back-end routing decisions resulting from (17), the

following hold for all t.

Ukm(t) ≤ Umax
km = V ekm +Rmax

km (18)

Zkm(t) ≤ Zmax
km = V ekm + σkm (19)
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Proof: We show that (18) holds using induction. First, (18) holds for t = 0 since all queues are initialized to 0.

Now suppose Ukm(t) ≤ Umax
km for some t > 0. Then, we show that Ukm(t + 1) ≤ Umax

km . We have two cases. First,

suppose Ukm(t) ≤ V ekm. Then, from queueing equation (5), it follows that the maximum value that Ukm(t + 1) can

have is Ukm(t) + Rmax
km ≤ V ekm + Rmax

km = Umax
km . Next, suppose V ekm < Ukm(t) ≤ Umax

km . Then, we have that

Ukm(t) + Zkm(t) > V ekm and the solution to (17) chooses υkm(t) = min[Ukm(t), υmax
km ]. Since υmax

km ≥ Rmax
km , from

queueing equation (5) it follows that Ukm(t + 1) ≤ Ukm(t) ≤ Umax
km . The bound (19) follows similarly and its proof is

omitted for brevity.

In Theorem 3, we show that for any σkm > 0, the above bounds result in deterministic worst case delay bounds for any

request that gets routed to Ukm(t).

C. Application Reconfiguration

The third component of the online algorithm performs application reconfigurations over time. We first define the notion

of a renewal state under this reconfiguration algorithm. Consider any specific state h0 ∈ H′ and designate it as the renewal

state. The application reconfiguration algorithm presented in this section is designed to operate over variable length renewal

frames where each frame starts with the initial configuration h0 (excluded from the current frame) and ends when it returns

to the state h0 (included in the current frame). All application configuration decisions for a frame are made at the start of

the frame and are recalculated for each new frame as a function of the queue backlogs at the start of the frame. Note that the

system configuration in the last slot of each frame is h0. Each visit to h0 defines a renewal event and initiates a new frame

that starts from the next slot and lasts until (and including) the slot when the next renewal event happens as illustrated by

an example in Fig. 2. The renewal event and the resulting frame length are fully determined by the configuration decisions

of the reconfiguration algorithm, i.e., they are deterministic functions of the configuration decisions. In the following,

we denote the length of the f th renewal frame by Tf and the starting slot of the f th renewal frame by tf . Note that

Tf = tf+1 − tf . For simplicity, we assume t0 = 0.

Recall that H′ is the set of all configuration states h′ for which
∑
l′a′ π

xdp
φ′ > 0. In principle, any state in H′ can be

chosen to be the renewal state h0. However, H′ itself may not be known apriori. Further, in practice, h0 should be chosen

as the configuration that is likely to be used frequently by the optimal policy for the relaxed MDP presented in Section

IV. Here, we assume that the reconfiguration algorithm can select a renewal state h0 ∈ H′ and leave the determination of

optimal selection of h0 for future work.

Let the collection of queue backlogs at the start of renewal frame f be denoted by {Ukm(tf )} and {Zkm(tf )}. Then

the reconfiguration algorithm makes decisions on the frame length Tf and the application configurations [h(tf ), h(tf +

1), . . . , h(tf + Tf − 1)] by solving the following optimization at tf .

Minimize
1

Tf

Tf−1∑
τ=0

(
Jτ + VW (tf + τ)−

∑
km

Gkm(tf , τ)
)

subject to h(tf + Tf − 1) = h0

h(tf + τ) ∈ H \ h0 ∀τ ∈ {0, . . . , Tf − 2}

Tf ≥ 1 (20)
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Fig. 2. Illustration of the directed acyclic graph on the application configuration states over a renewal frame. Frame f starts at slot tf with the
configuration changing from h0 to one of h1, h2, h3 and ends at slot tf + 4 when the configuration becomes h0 again.

where Gkm(τ, tf ) =
(
Ukm(tf ) + Zkm(tf )

)
µkm(tf + τ) denotes the queue-length weighted service rate, W (tf + τ)

denotes the reconfiguration cost incurred in slot (tf + τ), and J =
∑
km Jkm where Jkm is a constant defined as

Jkm
M
=2(µmax

km + υmax
km )2 + σ2

km + (Rmax
km )2. Note that the constraint h(tf + Tf − 1) = h0 enforces the renewal condition.

Note also that when the frame starts (τ = 0), the configuration in the previous slot tf − 1 was h0. The problem above

minimizes the ratio of the sum total “penalty” earned in the frame (given by the summation multiplying 1/Tf above) to

the length of the frame. The penalty term is a sum of V times the reconfiguration costs (VW (tf + τ)) and the Jτ terms

minus the queue-length weighted service rates (
∑
kmGkm(tf , τ)).

Since the sum of the Jτ terms grows quadratically with frame size, this discourages the use of longer frames. Note also

that since the overall objective only uses the queue backlog values at the start of the frame and since all the other terms

are deterministic functions of the sequence of configurations [h(tf ), . . . , h(tf + Tf − 1)], the optimization problem (20)

can be mapped to a deterministic shortest path problem involving Tf stages. Specifically, as illustrated in Fig. 2, consider

a directed acyclic graph with Tf + 1 stages, one node each in the first and last stage (corresponding to configuration h0),

and |H| − 1 nodes per stage in all other stages. For a fixed Tf , the objective in (20) corresponds to finding the minimum

cost path from the first to the last node, where the weight of each directed edge (hi, hj) that is τ + 1 hops away from the

first node is equal to the terms Jτ + VW (tf + τ) −
∑
kmGkm(tf , τ). Here, W (tf + τ) is the switching cost between

the configurations hi and hj while
∑
kmGkm(tf , τ) corresponds to the queue-length weighted service rate achieved using

configuration hj . Given a Tf , this has a complexity O(|H|2Tf ) and optimally solving (20) would require searching over

all Tf ≥ 1 since Tf itself is an optimization variable in this problem. We next characterize an important property of the

optimal solution to (20) that results in a significantly lower complexity.

1) Complexity Reduction: Consider any solution to (20) that results in a frame length of Tf and a configuration sequence

given by [h(tf ), . . . , h(tf + Tf − 2), h0]. Then we have the following.

Theorem 2: An optimal solution to (20) can be obtained by restricting to the class of policies that perform either two

or no reconfigurations per frame. Further, the reconfigurations (if any) happen only in the first slot and the last slot of the

frame.

Proof: First consider the case 1 ≤ Tf ≤ 2. By definition the last configuration in the frame must be h0. Similarly, the

configuration in the previous slot before the start of the frame is h0. There can be at most one more configuration between

these. Thus, there can be at most two reconfigurations in the frame.



14

Next, consider the case Tf > 2. Let the queue backlogs at the start of frame be U(tf ),Z(tf ) and suppose the optimal

configuration sequence is given by [h(tf ), . . . , h(tf + Tf − 2), h0]. Denote the set of configurations in this sequence by

Ω(U(tf ),Z(tf )) and define hopt(U(tf ),Z(tf )) as the configuration from this sequence that minimizes the following:

hopt(U(tf ),Z(tf )) = arg min
h∈Ω(U(tf ),Z(tf ))

∑
km

(
Ukm(tf ) + Zkm(tf )

)
µkm(tf + τ) (21)

Now consider an alternate configuration sequence given by [hopt(uf ), . . . , hopt(uf ), h0]. The value of the summation in

the objective of (20) under this sequence cannot be larger than that under the sequence [h(tf ), . . . , h(tf + Tf − 2), h0].

This is because hopt(U(tf ),Z(tf )) minimizes the terms −
∑
kmGkm(tf , τ) by (21) while the total reconfiguration cost∑Tf−1

τ=0 VW (tf + τ) in the alternate sequence cannot exceed the total reconfiguration cost under [h(tf ), . . . , h(tf + Tf −

2), h0] by property (4). The theorem follows by noting that at most two reconfigurations are needed in the alternate

sequence, one at the beginning and one at the end of the frame.

For a given frame length Tf , Theorem 2 reduces the complexity of solving (20) from O(|H|2Tf ) to O(|H|) since we

only need to search for one configuration per frame. In Section V-C2, we show that the reconfiguration algorithm can be

further simplified by finding a closed-form expression for the optimal frame length given a configuration h. This frame

length is O
(√∑

km Ukm(tf ) + Zkm(tf )
)

which shows that the frame length is always bounded, given that {Ukm(tf )}

and {Zkm(tf )} are bounded (see Lemma 1). We also discuss special cases where (20) can be mapped to bipartite graph

matching problems. We will show that similar to the routing component, using any approximation algorithm instead of

the optimal solution to (20) still ensures that the overall cost of the reconfiguration algorithm is within the same constant

factor of the optimal cost (Theorem 3, part 3).

We analyze the performance of the overall control algorithm, including the components for request routing (Sections

V-A and V-B) and the component for application reconfiguration in Section VI. Before proceeding, we note that similar

to the routing components, the reconfiguration algorithm does not require any statistical knowledge of the request arrival

or user mobility processes. Further, it depends only on the queue backlog at the start of the frame, thereby decoupling it

from the routing decisions in that frame. However, unlike the routing components that make decisions on a per slot basis

(using current system states), the reconfiguration algorithm computes the sequence of configurations once per frame (at

the start of the frame) and implements it over the course of the frame.

2) Calculating the Optimal Frame Length: Given that a configuration state h is used in a frame, we show that the optimal

frame length Topt(h) can be easily calculated, thereby further reducing complexity. Specifically, let us denote the values

of various terms in the objective of (20) when configuration h0 or h are used as follows: Θ(h0) = −
∑
kmG

h0

km(tf , τ) =

−
∑
km(Ukm(tf ) + Zkm(tf ))µh0

km,Θ(h) = −
∑
kmG

h
km(tf , τ) = −

∑
km(Ukm(tf ) + Zkm(tf ))µhkm,Wsum = Wh0h +

Whh0 , where µh0

km, µ
h
km denote the service rate µkm when configurations h0 and h are used. Also, let B̂ =

∑
km Jkm/2.

Then, in order to calculate the optimal frame length, we have two cases. If no reconfiguration is done, then frame length

is 1 and the objective of (20) becomes Θ(h0). Else, if a reconfiguration is done, the frame length is at least 2 and the

objective of (20) can rewritten as

min
Tf≥2

Θ(h0) + Θ(h)(Tf − 1) + B̂Tf (Tf − 1) + VWsum

Tf
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Ignoring the constant terms, the above can be simplified to

min
Tf≥2

B̂Tf +
VWsum + Θ(h0)−Θ(h)

Tf

If VWsum + Θ(h0) − Θ(h) ≤ 0, then the optimal frame length is Tf = 2. Else, by taking derivative, we get that the

optimal Tf is one of the two integers closest to
√

VWsum+Θ(h0)−Θ(h)

B̂
. Define T ∗f (h) as the optimal frame length given that

a switching to configuration h is done. Then, to calculate the overall optimal frame length Topt(h), we compare the value

of the objective of (20) under T ∗f (h) with that under frame length one (i.e., Θ(h0)) and select the one that results in a

smaller objective.

3) Bipartite Matching: Note that a complexity of O(|H|) can still be high if there are a large number of possible

configurations. For example, consider the case where at most one application can be hosted by any edge-cloud and

where exactly one instance of each application is allowed per slot across the edge-clouds. Assume M ≥ K. In this

case, |H| = M !
(M−K)! which is exponential in M,K. Now assume that the total reconfiguration cost is separable across

applications, the service rate of each edge-cloud is independent of configurations at the other edge-clouds, and the other

settings are the same as in the above example. Then (20) can be reduced to a maximum weight matching problem on a

bipartite graph formed between K applications and M edge-clouds. Let m′k denote the edge-cloud hosting application k in

the renewal state h0. Then in the bipartite graph, the weight for any edge (k,m) (when m 6= m′k) for a given frame length

Tf becomes (Ukm′k(tf ) +Zkm′k(tf ))µkm′k + (Tf −1)(Ukm(tf ) +Zkm(tf ))µkm−V (Wk,m′k,m
+Wk,m,m′k

)− JkmTf (Tf−1)
2

where Wk,m′k,m
(Wk,m,m′k

) denotes the reconfiguration cost associated with moving application k from edge-cloud m′k

(m) to edge-cloud m (m′k). When m = m′k, the weight for the edge (k,m) is simply (Ukm′k(tf ) + Zkm′k(tf ))µkm′k .

For a given Tf , the optimal configuration that solves (20) can be obtained by finding the maximum weight matching

on this bipartite graph and this is polynomial in M,K [19]. This is in contrast to simply searching over all H that is

exponential in M,K. For more general cases where each application can have multiple instances and multiple application

instances are allowed on each edge-cloud, the problem becomes a generalized assignment problem and constant factor

approximation algorithms exist [20], as long as different application instances can be considered separately.

VI. PERFORMANCE ANALYSIS

We now analyze the performance of the online control algorithm presented in Section V. This is based on the technique

of Lyapunov optimization over renewal periods [8], [17] where we compare the ratio of a weighted combination of the

Lyapunov drift and costs over a renewal period and the length of the period under the online algorithm with the same

ratio under a stationary algorithm that is queue backlog independent. This stationary algorithm is defined similarly to the

decoupled control algorithm given by (11), (12) and (13) and we use the subscript “stat” to denote its control actions and the

resulting service rates and costs. Then the reconfiguration and routing decisions are defined by probabilities θstat
hh′ , ζ

stat
la (r), and

ϑstat(υ) that are chosen to be equal to θdec
hh′ , ζ

dec
la (r), and ϑdec(υ) respectively. If the resulting expected total service rate of any

delay-aware queue Zkm(t) is less than σkm, then its back-end request routing is augmented by choosing additional υkm(t)

in an i.i.d. manner such that the expected total service rate becomes σkm. It can be shown that the resulting time-average

back-end routing cost under this algorithm is at most e∗ + φ(σ) where φ(σ) =
∑
km max[σkm − µdec

km − υdec
km, 0]ekm. By

comparing the Lyapunov drift plus cost of the online control algorithm over renewal frames with this stationary algorithm,
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we have the following.

Theorem 3: Suppose the online control algorithm defined by (16), (17), and (20) is implemented with a renewal state

h0 ∈ H′ using control parameters V > 0 and 0 ≤ σkm ≤ υmax
km for all k,m. Denote the resulting sequence of renewal

times by tf where f ∈ {0, 1, 2, . . .} and let Tf = tf+1 − tf denote the length of frame f . Assume t0 = 0 and that

Ukm(t0) = 0, Zkm(t0) = 0 for all k,m. Then the following bounds hold.

1) The time-average expected transmission plus reconfiguration costs satisfy

lim
F→∞

∑F−1
f=0 E

{∑tf+1−1
τ=tf

C(τ) +W (τ) + E(τ)
}

∑F−1
f=0 E {Tf}

≤ c∗ + w∗ + e∗ + φ(σ) +
1 +

∑
kmBkm
V

(22)

where Bkm = (1 + Υdec
h0

)Jkm/2 + δ(Rmax
km )2, Υdec

h0
=

E{T dec
h0

(T dec
h0
−1)}

E
{
T dec
h0

} , φ(σ) =
∑
km max[σkm − µdec

km − υdec
km, 0]ekm

and δ is an O(log V ) parameter that is a function of the mixing time of the Markov chain defined by the user location

and request arrival processes while all other terms are constants (independent of V ).

2) For all k,m, the worst-case delay dmax
km for any request routed to queue Ukm(t) is upper bounded by

dmax
km ≤

Umax
km + Zmax

km

σkm
=

2V ekm +Rmax
km + σkm

σkm
(23)

3) Suppose we implement an algorithm that approximately solves (16) and (20) resulting in the following bound for all

slots for some ρ ≥ 1

∑
km

∑
n

(
Ukm(t) + V cknm(t)

)
rapx
knm(t) ≤ ρ

∑
km

∑
n

(
Ukm(t) + V cknm(t)

)
ropt
knm(t) (24)

and the following bound every renewal frame

1

T apx
f

T apx
f −1∑
τ=0

(∑
km

ρJkmτ −
(
Ukm(tf ) + Zkm(tf )

)
µapx
km(tf + τ)

)
+ VW apx(tf + τ)

≤ B′ + ρ

T opt
f

T opt
f −1∑
τ=0

(∑
km

Jkmτ −
(
Ukm(tf ) + Zkm(tf )

)
µopt
km(tf + τ)

)
+ VW opt(tf + τ) (25)

for some constant B′ where the subscripts “apx” and “opt” denote the control decisions and resulting costs under

the approximate algorithm and the optimal solution to (16) and (20) respectively. Then the time-average expected

transmission plus reconfiguration costs under this approximation algorithm is at most

ρ
(
c∗ + w∗ + e∗ + φ(σ) +

1 +
∑
kmBkm + (Rmax

km + σkm)υmax
km

V

)
+
B′ −

∑
km(Rmax

km + σkm)υmax
km

V
(26)

while the delay bounds remain the same as (23).

Proof: See Appendix C.

Discussion on Performance Tradeoffs: Our control algorithm offers tradeoffs between cost and delay performance

guarantees through the control parameters V and σ. For a given V and σ, the bound in (22) implies that the time-

average expected transmission plus reconfiguration costs are within an additive term φ(σ) + O(log V/V ) term of the

optimal cost while (23) bounds the worst case delay by O(V/σkm). This shows that by increasing V and decreasing σ,

the time-average cost can be pushed arbitrarily close to optimal at the cost of an increase in delay. This cost-delay tradeoff
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is similar to the results in [7], [8] for non-MDP problems. Thus, it is noteworthy that we can achieve similar tradeoff in

an MDP setting. Note that if there exist σkm > 0 ∀k,m such that σkm ≤ µdec
km + υdec

km, then φ(σ) = 0 and the tradeoff

can be expressed purely in terms of V . Also note that since the average delay is upper bounded by the worst case delay,

our algorithm provides an additive approximation with respect to the cost c∗+w∗+ e∗ and a multiplicative approximation

with respect to the average delay davg of the optimal solution to the original MDP defined in Section III-B.

In practice, setting σkm = 0 ∀k,m should yield good delay performance even though (23) becomes unbounded. This is

because our control algorithm ensures that all queues remain bounded even when σkm = 0 (see Lemma 1). This hypothesis

is confirmed by the simulation results in the next section.

VII. EVALUATIONS

We evaluate the performance of our control algorithm using simulations. To show both the theoretical and real-world

behaviors of the algorithm, we consider two types of user mobility traces. The first is a set of synthetic traces obtained

from a random-walk user mobility model while the second is a set of real-world traces of San Francisco taxis [21]. We

assume that the edge-clouds are co-located with a subset of the basestations of a cellular network. A hexagonal symmetric

cellular structure is assumed with 91 cells in total as shown in Fig. 3. Out of the 91 basestations, 10 host edge-clouds

and there are 5 applications in total. For simplicity, each edge-cloud can host at most one application in any slot in the

simulation. Further, there can be only one active instance of any application in a slot.

The transmission and reconfiguration costs are defined as a function of the distance (measured by the smallest number

of hops) between different cells. When a user n in cell l routes its request to the edge-cloud in cell l′, we define its

transmission cost as

transn(l, l′) =

1 + 0.1 · dist(l, l′), if l 6= l′

0, if l = l′
(27)

where dist(l, l′) is the number of hops between cells l and l′. The reconfiguration cost of different applications is assumed

to be independent. For any application k that is moved from the edge-cloud in cell l to the edge-cloud in cell l′, the

reconfiguration cost for this specific application is defined as

reconk(l, l′) =

κ(1 + 0.1 · dist(l, l′)), if l 6= l′

0, if l = l′
(28)

where κ is a weighting factor to compare the reconfiguration cost to the transmission cost. The total reconfiguration cost is

the sum of reconfiguration costs across all k. In the simulations, we consider two cases in which κ takes the values 0.5 and

1.5 respectively, to represent cases where the reconfiguration cost is smaller/larger than the transmission cost. Both cases

can occur in practice depending on the amount of state information the application has to transfer during reconfiguration.

The back-end routing cost is fixed as a constant 2 for each request.

Each user generates requests for an application according to a fixed probability λ per slot. However, the number of active

users in the system can change over time. Thus, the aggregate request arrival rate across all users for an application varies

as a function of the number of active users in a slot. In our study of synthetic mobility traces, we assume that the number

of users is fixed to 10 and all of them are active. However, the real-world mobility trace has a time-varying number of
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A

B

Fig. 3. Illustration of the hexagonal cellular structure showing distance between 2 cells.

active users. In both cases, λ is the time-average (over the simulation duration) aggregate arrival rate per application per

slot, while the edge cloud service rate for an active application instance is 1 per slot, and the back-end cloud service rate

for each application is 2 per slot. The request arrivals are assumed to be independent and identically distributed among

different users, and they are also independent of the past arrivals and user locations.

We note that optimally solving the original or even relaxed MDP for this network is highly challenging. Therefore,

we compare the performance of our algorithm with three alternate approaches that include never/always migrate policies

and a myopic policy. In the never migrate policy, each application is initially placed at one particular edge-cloud and

reconfiguration never happens. User requests are always routed to the edge-cloud that hosts the corresponding application.

In the always migrate policy, user requests are always routed to the edge-cloud that is closest to the user and reconfiguration

is performed in such a way that the queues with the largest backlogs are served first (subject to the constraint that each

edge-cloud can only host one application). We also assume that the request arrival rate λ is known in the never and

always migrate policies. If λ > 1, the arrival rate exceeds the edge-cloud capacity, and the requests that are queued in

edge-clouds are probabilistically routed to the back-end cloud, where the probability is chosen such that the average arrival

rate to edge-clouds does not exceed the service rate at edge clouds. Finally, the myopic policy considers the transmission,

reconfiguration, and back-end routing costs jointly in every slot. Specifically, in each slot, it calculates a routing and

configuration option that minimizes the sum of these three types of costs in a single slot, where it is assumed that a user

routes its request either to the back-end cloud or to the edge-cloud that hosts the application after possible reconfiguration.

The online algorithm itself is implemented by making use of the structure of the optimal solution as discussed in Section

V. Specifically, we implement the request routing part (16) by solving the bipartite max-weight matching problem as

discussed in Section V-A while the application reconfiguration part (20) uses the techniques in Section V-C3 and Section

V-C2. Because the proposed online algorithm is obtained using a (loose) upper bound on the drift-plus-penalty terms, the

actual drift-plus-penalty value can be much smaller than the upper bound. We take into account this fact by adjusting

the constant terms Jkm in (20). We set Jkm = 0.2 in the simulation which is a reasonably good number that we found

experimentally.

A. Synthetic Traces

We first evaluate the performance of our algorithm along with the three alternate approaches on synthetic mobility traces.

The synthetic traces are obtained assuming random-walk user mobility. Specifically, at the beginning of each slot, a user
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Fig. 4. Average queue lengths and costs for synthetic user mobility with different V and σ values. Subfigures (a) and (b) are results for κ = 0.5, and
subfigures (c) and (d) are results for κ = 1.5.

moves to one of its neighboring cells with probability 1/7 for each cell, and it stays in the same cell with probability 1/7.

When the number of neighboring cells is less than six, the corresponding probability is added to the probability of staying

in the same cell. Such a mobility model can be described as a Markov chain and therefore our theoretical analysis applies.

There are 10 users in this simulation, and we simulate the system for 100, 000 slots. The average queue length and the

average transmission plus reconfiguration plus back-end routing costs over the entire simulation duration are first studied

for different values of the control parameters V as well as {σkm}. Specifically, we set all σkm to the same value σ which

is chosen from σ ∈ {0, 0.1, 0.5}. The performance results for all four algorithms under these scenarios are shown in Fig. 4

for both values of κ, where we set λ = 0.95.

We can see from the results that, for each fixed σ, the queue lengths and cost values under the Lyapunov algorithm

follow the O(V, log V/V ) trend as suggested by the bounds (22) and (23). The impact of the value of σ is also as predicted

by these bounds. Namely, a smaller value of σ yields larger queue lengths and lower costs, while a larger value of σ yields

smaller queue lengths and higher costs. When comparing all four algorithms in Fig. 4(a), (b) where κ = 0.5, it can be

seen that while the never/always migrate policies have smaller queue backlogs, they incur more cost than the Lyapunov

algorithm. Note that, unlike the Lyapunov algorithm, none of the alternate approaches offers a mechanism to trade off

queue backlog (and hence average delay) performance for a reduction in cost. For the case κ = 1.5, similar behavior is

seen as illustrated by Fig. 4(c), (d).

We next study the queue lengths and costs under different values of the arrival rate λ, where we fix V = 100 and σ = 0.

Results are shown in Fig. 5. We can see that with the myopic policy, the queue lengths are very large and in fact become

unbounded. This is because the myopic policy does not try to match the edge-cloud arrival rate with its service rate, and

it is also independent of the queue backlog. Because the one-slot cost of routing to an edge-cloud is usually lower than

routing to the back-end cloud, an excessive amount of requests are routed to edge-clouds exceeding their service capacity.

The never and always migrate policies have low queue backlogs because we matched the request routing with the service

rate of edge-clouds, as explained earlier. However, they incur higher costs as shown in Fig. 5(b), (d). More importantly,

they require prior knowledge on the arrival rate, which it is usually difficult to obtain in practice.

B. Real-World Mobility

To study the performance under more realistic user mobility, we use real-world traces of San Francisco taxis [21] that

is a collection of GPS coordinates of approximately 500 taxis collected over 24 days in the San Francisco Bay Area. In

our simulation, we select a subset of this data that corresponds to a period of 5 consecutive days. We set the distance
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Fig. 5. Average queue lengths and costs for synthetic user mobility with different λ values. Subfigures (a) and (b) are results for κ = 0.5, and subfigures
(c) and (d) are results for κ = 1.5.

between basestations (center of cell) to 1000 meters, and the hexagon structure is placed onto the geographical location.

User locations are then mapped to the cell location by considering which cell the user lies in. In this dataset, there are 536

unique users in total, and not all of them are active at a given time. The number of active users at any time ranges from

0 to 409, and 278 users are active on average. We assume that only active users generate requests such that the average

arrival rate over the entire duration is λ = 0.95 for each application. With this model, when the number of active users is

large (small), the instantaneous arrival rate can be higher (lower) than the edge-cloud service rate. The underlying mobility

pattern in this scenario can be quite different from a stationary Markov model and exhibits non-stationary behavior.

We set the timeslot length as 1 second and fix V = 100, σ = 0 for the Lyapunov algorithm. The purpose of this

simulation is to study the temporal behavior of queue lengths and cost values under our algorithm and compare with the

alternate approaches. We find that while the queue lengths change relatively slowly, the per slot costs fluctuate rapidly.

Therefore, we measure the moving average of the costs over an interval of size 6000 seconds for all algorithms. Figs. 6

and 7 show the results respectively for the case κ = 0.5 and κ = 1.5, and the average values across the entire time duration

are given in Table I.

There are several noteworthy observations. From Table I, we can see that even though σ = 0, the average queue length

under the Lyapunov approach is significantly lower than all other approaches, while the cost of the Lyapunov approach is

lower than all other approaches when κ = 0.5 and only slightly higher than the never migrate and myopic policies when

κ = 1.5. This confirms that the proposed Lyapunov algorithm has promising performance with real-world user traces. As

shown in Figs. 6 and 7, the cost results show a noticeable diurnal behavior with 5 peaks and valleys that matches with the

5 day simulation period. The cost of the Lyapunov algorithm becomes higher than some other approaches at peaks, which

is mainly due to the presence of back-end routing. At the same time, however, the difference between the queue length

of the Lyapunov algorithm and the other approaches is also larger at such peaks. We see that the Lyapunov approach has

the lowest variation in its queue length, which is a consequence of our design goal of bounding the worst-case delay. The

queue lengths of the other approaches fluctuate more, and the always migrate policy appears to be unstable as the queue

backlogs grow unbounded.

TABLE I. AVERAGE VALUES FOR TRACE-DRIVEN SIMULATION

Policy Queue lengths (κ = 0.5) Costs (κ = 0.5) Queue lengths (κ = 1.5) Costs (κ = 1.5)
Lyapunov 106.5 5.954 160.2 6.446

Never migrate 268.7 6.414 268.7 6.414
Always migrate 3117 7.983 3117 14.15

Myopic 437.4 6.228 851 6.268
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Fig. 6. Instantaneous queue lengths and moving average of costs for trace-driven simulation with κ = 0.5.\kappa=1.5, \sigma=0 
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Fig. 7. Instantaneous queue lengths and moving average of costs for trace-driven simulation with κ = 1.5.

VIII. CONCLUSIONS

In this paper, we have developed a new approach for solving a class of constrained MDPs that possess a decoupling

property. When this property holds, our approach enables the design of simple online control algorithms that do not require

any knowledge of the underlying statistics of the MDPs, yet are provably optimal. The resulting solution is markedly different

from classical dynamic programming based approaches and does not suffer from the associated “curse of dimensionality”

or convergence issues. We applied this technique to the problem of dynamic service migration and workload scheduling in

the emerging area of edge-clouds and showed how it results in an efficient control algorithm for this problem. Our overall

approach is promising and could be useful in a variety of other contexts.
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APPENDIX A

RELAXED MDP FORMULATION

An optimal stationary, randomized control algorithm for the relaxed MDP can be defined as follows. First, given last

state φ′ = (l(t − 1) = l′,a(t − 1) = a′,h(t − 1) = h′) and current states l(t) = l,a(t) = a, it chooses configuration

h(t) = h with probability zφ′φ where φ = (l(t) = l,a(t) = a,h(t) = h). The total expected reconfiguration cost incurred

when transitioning from state φ′ is given by

Wφ′ =
∑
φ

pl′lqa′azφ′φWh′h. (29)

Next, given current state φ = (l(t) = l,a(t) = a,h(t) = h), it chooses a routing vector r(t) = r with probability xφ(r)

subject to the constraint that r ∈ R(l, a) and incurs a total expected transmission cost of

Cφ =
∑

r∈R(l,a)

xφ(r)
∑
knm

rknmcknm (30)

Finally, given current state φ = (l(t) = l,a(t) = a,h(t) = h), it chooses a back-end routing vector υ(t) = υ with

probability yφ(υ) subject to υ ∈ V and this incurs a total expected back-end transmission cost given by

Eφ =
∑
υ∈V

yφ(υ)
∑
km

υkmekm (31)

Let us denote the steady state probability of being in state φ under this policy by πφ. Then, the overall time-average

expected transmission plus reconfiguration cost satisfies

C + E +W =
∑
φ

πφCφ +
∑
φ

πφEφ +
∑
φ

πφWφ = c∗ + e∗ + w∗ (32)

Note that the relaxed MDP still has a high-dimensional state space making it impractical to solve using standard techniques.

Further, we still need knowledge of all transition probabilities.

APPENDIX B

COST OPTIMALITY OF DECOUPLED MDP

Here we prove Theorem 1 through a series of lemmas. For notational convenience, we use φ and lah interchangeably

throughout this section. Recall that H′ is the set of all configuration states h′ for which
∑
l′a′ π

xdp
φ′ > 0. Then for all

h′, h ∈ H′, we define matrix F = (θdec
h′h) where θdec

h′h is given by (11).

Lemma 2: F is a stochastic matrix.

Proof: In order for F = (θdec
h′h) to be a stochastic matrix, we need

∑
h∈H′ θ

dec
h′h = 1 for all h′ ∈ H′. Fix an h′ ∈ H′.

Using (11), we have

∑
h∈H′

θdec
h′h =

∑
h∈H

θdec
h′h =

∑
h∈H

∑
l′a′ π

xdp
φ′

(∑
la pl′lqa′az

xdp
φ′φ

)
∑
l′a′ π

xdp
φ′

=

∑
l′a′ π

xdp
φ′

(∑
φ pl′lqa′az

xdp
φ′φ

)
∑
l′a′ π

xdp
φ′

=

∑
la π

xdp
φ∑

la π
xdp
φ

= 1

Since this holds for all h′ ∈ H′, the lemma follows.
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From Lemma 2, it follows that F can be thought of as the transition probability matrix for the Markov chain over the

set H′ of configuration states that results from the reconfiguration policy (11) of the decoupled control algorithm.

Lemma 3: For all h ∈ H, the fraction of time spent in configuration h under the reconfiguration policy (11) of the

decoupled control algorithm is equal to the fraction of time in configuration h under the relaxed MDP.

Proof: First, consider any state h ∈ H′. Let πFh denote the steady state probability for state h in the Markov chain

defined by transition probability matrix F . This is well-defined and exists according to Lemma 2. It is well known that

these steady state probabilities can be obtained as the unique solution to the system of equations πFh =
∑
h′∈H′ π

F
h′θ

dec
h′h for

all h. We now show that choosing πFh′ =
∑
l′a′ π

xdp
l′a′h′ for all h′ ∈ H′ satisfies this system of equations. Upon substituting

πFh′ =
∑
l′a′ π

xdp
l′a′h′ , the RHS

∑
h′∈H′ π

F
h′θ

dec
h′h becomes

∑
h′∈H′

πFh′θ
dec
h′h =

∑
h′∈H′

(∑
l′a′

πxdp
l′a′h′

)
θdec
h′h =

∑
h′∈H′

(∑
l′a′

πxdp
l′a′h′

)∑
l′a′ π

xdp
l′a′h′

(∑
la pl′lqa′az

xdp
l′a′h′,lah

)
∑
l′a′ π

xdp
l′a′h′

=
∑
h′∈H′

∑
l′a′

πxdp
l′a′h′

(∑
la

pl′lqa′az
xdp
l′a′h′,lah

)
=
∑
la

∑
l′a′

∑
h′∈H′

πxdp
l′a′h′pl′lqa′az

xdp
l′a′h′,lah =

∑
la

πxdp
lah

where we used (11) in the second step. Similarly, upon substituting πFh′ =
∑
l′a′ π

xdp
l′a′h′ , the LHS πFh′ becomes: πFh′ =∑

l′a′ π
xdp
l′a′h′ =

∑
la π

xdp
lah. This implies that πFh =

∑
la π

xdp
lah for all h ∈ H′. This shows that the fraction of time spent

in configuration h under the reconfiguration policy (11) of the decoupled control algorithm, i.e., πFh is equal to
∑
la π

xdp
lah

which is the fraction of time in configuration h under the relaxed MDP. For the case when h ∈ H \H′, Lemma 3 follows

by noting that the fraction of time spent in configuration h in both cases is 0.

Lemma 4: The time-average expected reconfiguration cost under the decoupled control algorithm is equal to the time-

average expected reconfiguration cost of the relaxed MDP, i.e., w∗.

Proof: The time-average expected reconfiguration cost under policy (11) is
∑
h∈H π

F
h

∑
h′∈H θ

dec
hh′Whh′ . Substituting

πFh =
∑
la π

xdp
lah (from Lemma 3) and using (11), we have:

∑
h∈H

πFh
∑
h′∈H

θdec
hh′Whh′ =

∑
h∈H

(∑
la

πxdp
lah

) ∑
h′∈H

∑
la π

xdp
lah

(∑
l′a′ pll′qaa′z

xdp
lah,l′a′h′

)
∑
la π

xdp
lah

Whh′

=
∑
h∈H

∑
h′∈H

∑
la

πxdp
lah

(∑
l′a′

pll′qaa′z
xdp
lah,l′a′h′

)
Whh′ =

∑
lah

πxdp
lah

( ∑
l′a′h′

pll′qaa′z
xdp
lah,l′a′h′Whh′

)
=
∑
lah

πxdp
lahW

xdp
φ = w∗

where the last step follows from (29) and (32).

Theorem 1 part 1 follows from Lemma 4.

Lemma 5: Under the routing policy defined by (12), the time-average transmission cost of the decoupled algorithm is

equal to that under the relaxed MDP, i.e., c∗.

Proof: Let πla denote the fraction of time the decoupled MDP is in state (l(t) = l,a(t) = a). The time-average

transmission cost under the routing policy defined by the probabilities in (12) is given by

∑
la

πla
∑

r∈R(l,a)

ζdec
la (r)

∑
knm

rknmcknm =
∑
la

πla
∑

r∈R(l,a)

∑
h π

xdp
φ xxdp

φ (r)
(∑

knm rknmcknm
)∑

h π
xdp
φ

=
∑
la

πla

∑
h π

xdp
φ

∑
r∈R(l,a) x

xdp
φ (r)

(∑
knm rknmcknm

)∑
h π

xdp
φ

=
∑
la

πla

∑
h π

xdp
φ Cxdp

φ∑
h π

xdp
φ

=
∑
la

∑
h

πxdp
φ Cxdp

φ = c∗
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where in the second step we sum over only those (l, a) for which πla > 0. In the second last step above, we used the fact

that πla =
∑
h∈H π

xdp
φ , i.e., the fraction of time the relaxed MDP is in state (l(t) = l,a(t) = a) is equal to πla. This is

because these states evolve independent of the control actions of either control algorithms.

This shows Theorem 1 part 2.

Lemma 6: Under the back-end routing policy defined by (13), the time-average back-end transmission cost of the

decoupled algorithm is equal to that under the relaxed MDP, i.e., e∗.

Proof: The time-average transmission cost under the back-end routing policy defined by (13) is given by

∑
υ∈V

ϑdec(υ)
∑
km

υkmekm =
∑
υ∈V

(∑
φ

πxdp
φ yxdp

φ (υ)
)∑
km

υkmekm =
∑
φ

πxdp
φ

∑
υ∈V

yxdp
φ (υ)

∑
km

υkmekm =
∑
φ

πxdp
φ Exdp

φ = e∗

where we used (31) in the second last step.

This shows Theorem 1 part 3.

Finally, we show that time-average arrival and service rates are equal to those under the relaxed MDP.

Lemma 7: The time-average arrival and service rates for each queue Ukm(t) under the decoupled MDP are equal to

those under the relaxed MDP.

Proof: The fraction of time a routing vector r ∈ R(l, a) is chosen under the relaxed MDP is given by
∑
h π

xdp
φ xxdp

φ (r).

Under the decoupled MDP, this becomes

πlaζ
dec
la (r) = πla ×

∑
h π

xdp
φ xxdp

φ (r)∑
h π

xdp
φ

=
∑
h

πxdp
φ xxdp

φ (r)

This shows that the time-average arrival rate to any queue is the same under both algorithms. A similar result holds for

average local service rates since these are only a function of the fraction of time spent in any configuration h which is the

same under both MDPs. Finally, the fraction of time a back-end routing vector υ ∈ V is chosen under the relaxed MDP

is given by
∑
φ π

xdp
φ yxdp

φ (υ). Under the decoupled MDP, this is equal to ϑdec(υ) =
∑
φ π

xdp
φ yxdp

φ (υ) by definition (13).

Theorem 1 part 4 follows by noting that the time-average arrival and service rates to each queue Ukm(t) under the decoupled

MDP satisfy (10).

APPENDIX C

PROOF OF THEOREM 3

Let Q(t) = (U(t),Z(t)) denote the collection of queue backlogs in slot t. Define L(Q(t))M
=

1
2

∑
km

(
U2
km(t)+Z2

km(t)
)

as a Lyapunov function of Q(t). Using (5) and (15), we can bound the one-slot difference L(Q(t+ 1))− L(Q(t)) as

L(Q(t+ 1))− L(Q(t)) ≤
∑
km

(
Bukm +Bzkm − Ukm(t)

(
µkm(t) + υkm(t)−Rkm(t)

)
− Zkm(t)

(
µkm(t) + υkm(t)− σkm

))
where Bukm = ((µmax

km + υmax
km )2 + (Rmax

km )2)/2 and Bzkm = ((µmax
km + υmax

km )2 + σ2
km)/2. Note that at any renewal time

tf , the application configuration h(tf ) = h0. For ease of notation, we denote the collection of all queue backlogs,

user locations, and arrival vectors at the start of renewal frame f by Ψ(tf ). Define the frame-based conditional Lya-

punov drift ∆(tf ) as the expected change in the value of L(Q(t)) over the f th frame given initial state Ψ(tf ), i.e.,

∆(tf )M
=E {L(Q(tf+1))− L(Q(tf ))|Ψ(tf )}. In the following, we use the shorthand notation Ec {.} to represent the

conditional expectation E {.|Ψ(tf )}.
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Following the methodology in [8], [17] and using the one-slot difference bound along with delayed queueing equations,

we can obtain the following upper bound on the frame-based conditional Lyapunov drift plus V times the conditional

expected transmission plus reconfiguration cost, i.e., ∆(tf ) + V Ec
{∑tf+1−1

τ=tf
C(τ) +W (τ) + E(τ)

}
in terms of the

control decisions under any algorithm (see Appendix D).

∑
km

Ec {Xkm(Tf )} −
∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+1−1∑
τ=tf

µkm(τ)

−∑
km

Ec


tf+1−1∑
τ=tf

(
Ukm(τ) + Zkm(τ)

)
υkm(τ)


+
∑
km

Ec


tf+1−1∑
τ=tf

Zkm(τ)σkm

+
∑
km

Ec


tf+1−1∑
τ=tf

Ukm(τ)Rkm(τ)

+ V Ec


tf+1−1∑
τ=tf

C(τ) +W (τ) + E(τ)

 (33)

where Xkm(Tf )M
=(Bukm + Bzkm)Tf + Tf (Tf − 1)(µmax

km + υmax
km )µmax

km . Given any location and arrival states and queue

backlogs, the routing decisions under the online control algorithm minimize V C(t) +
∑
km Ukm(t)Rkm(t) in every

slot over all other algorithms, including the backlog independent stationary algorithm. Similarly, the back-end routing

decisions under the online control algorithm minimize V E(t) −
∑
km(Ukm(t) + Zkm(t))υkm(t) in every slot over all

other algorithms, including the stationary algorithm. Denoting these decisions under the stationary algorithm by Rstat
km(t)

and υstat
km(t) and the resulting costs by Cstat(t) and Estat(t), it follows that we can upper bound the value of ∆(tf ) +

V Ec
{∑tf+1−1

τ=tf
C(τ) +W (τ) + E(τ)

}
under the online control algorithm by

∑
km

Ec {Xkm(Tf )} −
∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+1−1∑
τ=tf

µkm(τ)

−∑
km

Ec


tf+1−1∑
τ=tf

(
Ukm(τ) + Zkm(τ)

)
υstat
km(τ)

+

∑
km

Ec


tf+1−1∑
τ=tf

Zkm(τ)σkm

+
∑
km

Ec


tf+1−1∑
τ=tf

Ukm(τ)Rstat
km(τ)

+ V Ec


tf+1−1∑
τ=tf

Cstat(τ) +W (τ) + Estat(τ)

 (34)

Next, we use the following bounds obtained using delayed queue equations (details in Appendix E):

−
∑
km

Ec


tf+1−1∑
τ=tf

Ukm(τ)υstat
km(τ)

 ≤ −∑
km

Ukm(tf )υstat
kmEc {Tf}+

∑
km

Ec
{
Tf (Tf − 1)

2
(µmax
km + υmax

km )υmax
km

}
(35)

−
∑
km

Ec


tf+1−1∑
τ=tf

Zkm(τ)υstat
km(τ)

 ≤ −∑
km

Zkm(tf )υstat
kmEc {Tf}+

∑
km

Ec
{
Tf (Tf − 1)

2
(µmax
km + υmax

km )υmax
km

}
(36)

∑
km

Ec


tf+1−1∑
τ=tf

Zkm(τ)σkm

 ≤∑
km

Zkm(tf )σkmEc {Tf}+
∑
km

Ec
{
Tf (Tf − 1)

2
σ2
km

}
(37)

∑
km

Ec


tf+1−1∑
τ=tf

Ukm(τ)Rstat
km(τ)

 ≤∑
km

Ukm(tf )(Rstat
km + αγδ)Ec {Tf}+

∑
km

Ec
{
δTf (Rmax

km )2 +
Tf (Tf − 1)

2
(Rmax

km )2

}
+
∑
km

Ec {xkm(tf , tf+1)} (38)

Ec


tf+1−1∑
τ=tf

Cstat(τ)

 ≤ (c∗ + βγδ)Ec {Tf}+ Ec {y(tf , tf+1)} (39)

Ec


tf+1−1∑
τ=tf

Estat(τ)

 ≤ (e∗ + φ(σ))Ec {Tf} (40)
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where xkm(tf , tf+1) and y(tf , tf+1) are defined as

xkm(tf , tf+1) =

tf+δ−1∑
τ=tf

Ukm(τ)Rstat
km(τ)−

tf+1+δ−1∑
τ=tf+1

Ukm(τ)Rstat
km(τ), y(tf , tf+1) =

tf+δ−1∑
τ=tf

Cstat(τ)−
tf+1+δ−1∑
τ=tf+1

Cstat(τ)

and α ≥ 0, β ≥ 0, 0 < γ < 1 are constants that characterize how fast the Markov chain defined by the user location and

request arrival processes mixes to its steady-state distribution and δ ≥ 0 is an integer whose value will be specified in the

following. Substituting these, we get

∆(tf ) + V Ec


tf+1−1∑
τ=tf

C(τ) +W (τ) + E(τ)

 ≤∑
km

Ec {X ′km(Tf )} −
∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+1−1∑
τ=tf

µkm(τ)


−
∑
km

(
Ukm(tf ) + Zkm(tf )

)
υstat
kmEc {Tf}+

∑
km

Zkm(tf )σkmEc {Tf}+
∑
km

Ukm(tf )(Rstat
km + αγδ)Ec {Tf}

+ V (c∗ + e∗ + βγδ + φ(σ))Ec {Tf}+ V Ec


tf+1−1∑
τ=tf

W (τ)

+
∑
km

Ec {xkm(tf , tf+1)}+ V Ec {y(tf , tf+1)} (41)

where X ′km(Tf ) =
(
Tf + Tf (Tf − 1)

)
Jkm/2 + δTf (Rmax

km )2. Next, note that under the application reconfiguration and

servicing decisions of the online control algorithm (20), the following holds for any Ψ(tf ).

∑
km

Ec {X ′km(Tf )} −
∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+1−1∑
τ=tf

µkm(τ)

+ V Ec


tf+1−1∑
τ=tf

W (τ)


≤ η

∑
km

Ec
{
X ′km(T stat

f )
}
− η

∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+T stat

f −1∑
τ=tf

µstat
km(τ)

+ ηV Ec


tf+T stat

f −1∑
τ=tf

W stat(τ)

 (42)

where η =
Ec{Tf}
Ec{T stat

f }
. Here, µstat

km(τ),W stat(τ), T stat
f represent the control decisions and the resulting reconfiguration cost and

frame length under the backlog independent stationary algorithm defined earlier. This follows by noting that the online

control algorithm is designed to minimize the ratio of the left hand side to the frame length over all possible algorithms.

Next, note that the reconfiguration policy of the stationary algorithm is dependent only on the configuration state and

is independent of all states in Ψ(tf ). Thus, the conditional expectation can be replaced by regular expectation and the

relationships in (14) can be used since the reconfiguration policies of the decoupled control algorithm and the stationary

algorithm are identical. Plugging these, the above can be rewritten as

∑
km

Ec {X ′km(Tf )} −
∑
km

(
Ukm(tf ) + Zkm(tf )

)
Ec


tf+1−1∑
τ=tf

µkm(τ)

+ V Ec


tf+1−1∑
τ=tf

W (τ)


≤ η

∑
km

Ec
{
X ′km(T stat

f )
}
−
∑
km

(
Ukm(tf ) + Zkm(tf )

)
µstat
kmEc {Tf}+ V w∗Ec {Tf} (43)

Using this, the right hand side of (41) can be bounded as

η
∑
km

Ec
{
X ′km(T stat

f )
}
−
∑
km

Ukm(tf )(µstat
km + υstat

km −Rstat
km − αγδ)Ec {Tf} −

∑
km

Zkm(tf )(µstat
km + υstat

km − σkm)Ec {Tf}

+ V (c∗ + e∗ + w∗ + βγδ + φ(σ))Ec {Tf}+
∑
km

Ec {xkm(tf , tf+1)}+ V Ec {y(tf , tf+1)} (44)

Note that the frame length T stat
f under the stationary algorithm is independent of the initial state Ψ(tf ). Further, the recon-
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figuration policy for the stationary algorithm and the decoupled algorithm are identical. Thus, the conditional expectation

can been removed and the first term can be rewritten as

η
∑
km

Ec
{
X ′km(T stat

f )
}

=
∑
km

E
{
X ′km(T stat

f )
}

E
{
T stat
f

} Ec {Tf} =
∑
km

E
{
X ′km(T dec

h0
)
}

E
{
T dec
h0

} Ec {Tf}

=
∑
km

(
(1 + Υdec

h0
)Jkm/2 + δ(Rmax

km )2
)
Ec {Tf} (45)

where Υdec
h0

=
E{T dec

h0
(T dec
h0
−1)}

E
{
T dec
h0

} . Denoting Bkm = (1 + Υdec
h0

)Jkm/2 + δ(Rmax
km )2, (44) can be rewritten as

∑
km

BkmEc {Tf} −
∑
km

Ukm(tf )(µstat
km + υstat

km −Rstat
km − αγδ)Ec {Tf} −

∑
km

Zkm(tf )(µstat
km + υstat

km − σkm)Ec {Tf}

+ V (c∗ + e∗ + w∗ + βγδ + φ(σ))Ec {Tf}+
∑
km

Ec {xkm(tf , tf+1)}+ V Ec {y(tf , tf+1)} (46)

Note that under the stationary algorithm, if Rstat
km > 0, then µstat

km+υstat
km−Rstat

km ≥ µdec
km+υdec

km−Rdec
km ≥ ε > 0. This follows

from Theorem 1 part 4 and the fact that υstat
km ≥ υdec

km. Thus, by choosing δ ≥ log 2α/ε
1/γ , we have that µstat

km−Rstat
km−αγδ ≥ ε/2

if Rstat
km > 0. For those k,m for which µstat

km = Rstat
km = 0, the α can be set to 0. Also, the stationary algorithm is designed

such that µstat
km + υstat

km ≥ σkm. Thus, we have

∆(tf ) + V Ec


tf+1−1∑
τ=tf

C(τ) +W (τ) + E(τ)

 ≤∑
km

BkmEc {Tf}+ V (c∗ + e∗ + w∗ + βγδ + φ(σ))Ec {Tf}

+
∑
km

Ec {xkm(tf , tf+1)}+ V Ec {y(tf , tf+1)} (47)

Taking the expectation of both sides and summing over f ∈ {0, 1, 2, ..., F − 1} yields

E {Φ(U(tF ))}+ V
F−1∑
f=0

E


tf+1−1∑
τ=tf

C(τ) +W (τ) + E(τ)

 ≤∑
km

F−1∑
f=0

BkmE {Tf}

+ V (c∗ + e∗ + w∗ + βγδ + φ(σ))
F−1∑
f=0

E {Tf}+
∑
km

F−1∑
f=0

E {xkm(tf , tf+1)}+ V
F−1∑
f=0

E {y(tf , tf+1)} (48)

This can be rearranged to get

F−1∑
f=0

E


tf+1−1∑
τ=tf

C(τ) +W (τ) + E(τ)

 ≤ (c∗ + e∗ + w∗ + βγδ + φ(σ))
F−1∑
f=0

E {Tf}+
∑
km

Bkm
V

F−1∑
f=0

E {Tf}

+
∑
km

F−1∑
f=0

E {xkm(tf , tf+1)}
V

+
F−1∑
f=0

E {y(tf , tf+1)}

The last two terms vanish when we divide both sides by
∑F−1
f=0 E {Tf} and take limit F →∞. The bound in Theorem 3

part 1 follows by choosing δ ≥ log V β
log 1/γ . It can be seen that this term is O(log V ).

Part 2 of Theorem 3 follows by a direct application of Lemma 5.5 from [8].

Finally, part 3 of Theorem 3 is obtained by performing a frame-based conditional Lyapunov drift analysis for the

approximate algorithm similar to the analysis above while using the relations (24), (25) and is omitted for brevity.
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APPENDIX D

FRAME-BASED LYAPUNOV DRIFT BOUND

The one-slot difference L(Q(τ + 1))− L(Q(τ)) is upper bounded by

∑
km

(
Bukm +Bzkm − Ukm(t)

(
µkm(t) + υkm(t)−Rkm(t)

)
− Zkm(t)

(
µkm(t) + υkm(t)− σkm

))
Summing over t ∈ {tf , . . . , tf+1 − 1} yields the following bound on the frame-level difference L(Q(tf+1))− L(Q(tf )):

∑
km

(
(Bukm +Bzkm)Tf −

tf+1−1∑
τ=tf

(Ukm(τ) + Zkm(τ))µkm(τ) +

tf+1−1∑
τ=tf

Ukm(τ)Rkm(τ)

−
tf+1−1∑
τ=tf

(Ukm(τ) + Zkm(τ))υkm(τ) +

tf+1−1∑
τ=tf

Zkm(τ)σkm

)
(49)

From (5), it follows that Ukm(τ) ≥ Ukm(tf )− (τ − tf )(µmax
km + υmax

km ) for all τ ≥ tf . Similarly from (15), it follows that

Zkm(τ) ≥ Zkm(tf )− (τ − tf )(µmax
km + υmax

km ) for all τ ≥ tf . Using this, the second term above can be lower bounded as

tf+1−1∑
τ=tf

(Ukm(τ) + Zkm(τ))µkm(τ) ≥
tf+1−1∑
τ=tf

(Ukm(tf ) + Zkm(tf ))µkm(τ)−
tf+1−1∑
τ=tf

(τ − tf )(µmax
km + υmax

km )µkm(τ)

≥
tf+1−1∑
τ=tf

(Ukm(tf ) + Zkm(tf ))µkm(τ)− Tf (Tf − 1)(µmax
km + υmax

km )µmax
km

(33) follows by using the above in (49), adding the V
∑tf+1−1
τ=tf

(C(τ) + W (τ) + E(τ)) term to both sides, and taking

conditional expectation given Ψ(tf ).

APPENDIX E

DELAYED BACKLOG BOUNDS

We first show (35). From (5), it follows that Ukm(τ) ≥ Ukm(tf )− (τ − tf )(µmax
km + υmax

km ) for all τ ≥ tf . Using this,

−
tf+1−1∑
τ=tf

Ukm(τ)υstat
km(τ) ≤ −

tf+1−1∑
τ=tf

Ukm(tf )υstat
km(τ) +

tf+1−1∑
τ=tf

(τ − tf )(µmax
km + υmax

km )υstat
km(τ)

≤ −
tf+1−1∑
τ=tf

Ukm(tf )υstat
km(τ) +

Tf (Tf − 1)

2
(µmax
km + υmax

km )υmax
km (50)

The bound in (35) is obtained by summing (50) over all k,m, taking the conditional expectation of both sides and using

the fact that the back-end routing decisions under the stationary algorithm are i.i.d. every slot. The bounds (36) and (37)

can be shown using a similar procedure and we omit the details for brevity.

Next, we show (38). For any integer δ ≥ 0, we can express
∑tf+1−1
τ=tf

Ukm(τ)Rstat
km(τ) in terms of δ-shifted terms as

tf+1−1∑
τ=tf

Ukm(τ)Rstat
km(τ) =

tf+δ−1∑
τ=tf

Ukm(τ)Rstat
km(τ) +

tf+1+δ−1∑
τ=tf+δ

Ukm(τ)Rstat
km(τ)−

tf+1+δ−1∑
τ=tf+1

Ukm(τ)Rstat
km(τ)

= xkm(tf , tf+1) +

tf+1+δ−1∑
τ=tf+δ

Ukm(τ)Rstat
km(τ) (51)
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From (5), it follows that Ukm(τ) ≤ Ukm(tf ) + (τ − tf )Rmax
km for all τ ≥ tf . Using this, the second term above can be

upper bounded as

tf+1+δ−1∑
τ=tf+δ

Ukm(tf )Rstat
km(τ) +

tf+1+δ−1∑
τ=tf+δ

(τ − tf )Rmax
km Rstat

km(τ) ≤
tf+1+δ−1∑
τ=tf+δ

Ukm(tf )Rstat
km(τ) +

(
δTf +

Tf (Tf − 1)

2

)
(Rmax

km )2

Now consider the conditional expectation of the first term on the RHS above, i.e.,
∑tf+1+δ−1
τ=tf+δ Ukm(tf )Rstat

km(τ). We have

for any integer δ ≥ 0

Ec


tf+1+δ−1∑
τ=tf+δ

Ukm(tf )Rstat
km(τ)

 = Ukm(tf )Ec


tf+1+δ−1∑
τ=tf+δ

Rstat
km(τ)

 ≤ Ukm(tf )(Rstat
km + αγδ)Ec {Tf} (52)

where the last step follows from the application of Lemma 8 (below) and using the fact that the control decisions Rstat
km(τ)

under the routing policy of the stationary algorithm are functions purely of the Markov chain defined by the user location

and request arrival processes. (38) is obtained by summing (51) over all k,m, taking the conditional expectation, and

applying the bound in (52). A similar approach can be used to show (39). Finally, (40) follows by noting that the back-end

routing decisions under the stationary algorithm are taken in an i.i.d. manner every slot and the resulting time-average

back-end routing cost is at most e∗ + φ(σ).

Lemma 8: (Markov chain Convergence) [22] Let Z(t) be a finite state, discrete time ergodic Markov chain. Let S denote

its state space and let {πs}s∈S be the steady state probability distribution. Let f(Z(t)) be a positive random function of

Z(t). Define f =
∑
j∈S πjmj where mj

M
=E {f(Z(t))|Z(t) = j}. Then there exist constants α, γ such that for all integers

d ≥ 0, we have

E {f(Z(t))|Z(t− d) = i} ≤ f + smmaxαγ
d

where mmax
M
= maxj∈S mj and s = card{S}.




