
Capacity Analysis of Distributed Computing

Systems with Multiple Resource Types

Pengchao Han∗†, Shiqiang Wang‡, Kin K. Leung†

∗College of Computer Science and Engineering, Northeastern University, China
†Department of Electrical and Electronic Engineering, Imperial College London, UK

‡IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Email: hanpengchao199@gmail.com, wangshiq@us.ibm.com, kin.leung@imperial.ac.uk

Abstract—In cloud and edge computing systems, computation,
communication, and memory resources are distributed across
different physical machines and can be used to execute compu-
tational tasks requested by different users. It is challenging to
characterize the capacity of such a distributed system, because
there exist multiple types of resources and the amount of
resources required by different tasks is random. In this paper,
we define the capacity as the number of tasks that the system
can support with a given overload/outage probability. We derive
theoretical formulas for the capacity of distributed systems with
multiple resource types, where we consider the power of d

choices as the task scheduling strategy in the analysis. Our
analytical results describe the capacity of distributed computing
systems, which can be used for planning purposes or assisting the
scheduling and admission decisions of tasks to various resources
in the system. Simulation results using both synthetic and real-
world data are also presented to validate the capacity bounds.

Index Terms—Capacity analysis, cloud and edge computing,
distributed systems, multiple resource types, power of d choices

I. INTRODUCTION

Cloud computing allows flexible configuration of high-level

services and sharing of resources such as computation, mem-

ory, and communication among users. When the resources

are in close proximity to end users, they can be shared in

a similar manner in an edge computing system [1], [2]. From

the system perspective, the infrastructure of cloud and edge

computing corresponds to a distributed computing network

with different types of servers (machines) and communica-

tion resources for executing computational tasks. These inter-

connected machines may belong to one or multiple owners,

where each owner corresponds to a domain as shown in Fig. 1.

An owner can be a cloud/edge platform provider or any entity

that owns a part of the physical system. Such scenarios exist

in both business/civilian applications as well as in defense

applications involving coalitions [3].

In such a multi-domain distributed computing system, a

natural question to ask is: how many tasks can each domain

P. Han’s contribution to this work was made when she was at Imperial
College London.

This research was sponsored in part by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-
0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

CPU

Memory

Communication

Domain 2Domain 1

Computational tasks

Fig. 1. Distributed computing systems with multiple resource types.

process simultaneously at any time instant? The answer to

this question is important for system planning purposes. For

example, a service provider may need to decide whether to

sign a contract with a domain owner depending on the amount

of resources that the domain can provide in a particular region;

a domain owner may need to pre-compute the number of

servers it needs to deploy depending on the expected demand.

Furthermore, it is often useful to characterize the relationship

between system configuration and the number of tasks that the

system can support, for both theoretical and practical under-

standing. Toward this goal, we analyze the system capacity in

this paper, which is defined as the maximum number of tasks

that a domain can process simultaneously.

Since the capacity of the system depends on the task

assignment strategy, in this paper we consider the power of d
choices (PODC) for assigning tasks, which is widely used in

theoretical analysis and practical systems to achieve the trade-

off between load balancing and communication overhead [4],

[5]. Generally, d ≥ 2 machines1 are selected uniformly and

randomly from N machines for each task and the least-loaded

one among the d selected machines will be chosen to process

the task. The benefit of PODC is that the tradeoff between

system capacity and control overhead is controllable, i.e., a

larger d gives a larger system capacity but also requires higher

control overhead.

Using PODC as the task assignment strategy, we derive an-

alytical expressions of the capacity of distributed systems with

multiple resource types and random resource requirements of

tasks. Because the exact capacity expression is very difficult to

obtain, we present an achievable lower bound and an upper

bound of capacity. Through simulations with both synthetic

1PODC can be generalized to d ≥ 1, we will consider PODC with d ≥ 1

later in this paper.

task arrivals and real-world task arrival traces collected in a

data center, we show that these capacity bounds can closely

approximate the actual capacity of the system when parameters

in the expressions are properly tuned.

The remainder of this paper is organized as follows. In

Section II, we review the related work. Section III presents

the system model. In Section IV, we describe our capacity

analysis with theoretical results. Section V presents numerical

results. Section VI draws conclusion.

II. RELATED WORK

Although many capacity-achieving scheduling mechanisms

exist in the literature [6]–[12], they do not provide an analyt-

ical expression of the capacity value. Instead, they consider a

capacity region of the system that is described with multiple

constraints, which is much more difficult to interpret than

a single value. In this paper, we take a different approach

(and use a slightly different capacity definition) and focus on

obtaining analytical expressions of the capacity value.

Our capacity definition shares some similarity with the

effective capacity [13]–[15] and Erlang capacity [16], [17],

both of which are widely explored in wireless communication

to find the maximum arrival rate that a wireless link can

support with a constrained probability of delay violation or

blocking users. However, the effective and Erlang capacity

notions do not capture the case with multiple resource types.

Literature related to PODC focuses on analyzing the maxi-

mum load among machines for single resource type [18]–[20]

or identical tasks with the same requirement for each kind of

resource [21], [22]. To the best of our knowledge, the scenario

where different tasks can require different (random) amounts

of resources, in the case with multiple resource types, has

not been studied. The capacity notion in this scenario has not

been defined in existing literature either. We fill the gap by

addressing these problems.

III. SYSTEM MODEL AND DEFINITIONS

We consider a system with multiple types of distributed

resources. There are N distributed machines, each has R types

of resources (e.g., computation, communication, and memory).

The available amount of type-r resource at machine n is

normalized to 1 for any n and r. There are T tasks running on

the machines in total. The requirement of task t for resource

type r is a random variable Xt,r ∈ [0, 1]. For each resource

type, we assume that the requirements of all tasks for this

type of resource (i.e., Xt,r, ∀t) are independent and identically

distributed (i.i.d.), while different distributions may apply to

different resource types (i.e., the distributions of Xt,r and Xt,r′

for r 6= r′ may be different). Note that although this i.i.d.

assumption is required for theoretical analysis, the results in

Section V-B empirically validate that our capacity bounds still

hold on real datasets where this assumption may not hold.

In the system, each task is assigned to one machine that

provides resources for this task. Denote ρn,r as the amount

of currently utilized type-r resource at machine n, which is

equal to the total requirements for type-r resource of tasks

allocated to machine n. To facilitate the capacity analysis later,

let ρn := maxr ρn,r denote the maximum resource utilization

among all resources on machine n.

The task allocation follows PODC with d ≥ 1. When

a new task arrives, d ≥ 1 machines are randomly chosen

according to a uniform distribution. The task is assigned to

the machine with the minimum ρn, among the d selected

machines. During the task assignment process, information

on resource utilization is exchanged between the d randomly

selected machines and a controller, so that the controller

can determine which machine is the least-occupied, i.e., has

the smallest ρn. Different values of d have different control

overheads and abilities to balance workload, thus leading to

different numbers of tasks that the system can process.

Definition 1 (Capacity). We define the ε-capacity of a dis-

tributed computing system as the maximum number of tasks,

denoted by M , that the system can serve simultaneously, such

that the overload probability is not higher than ε (ε > 0), i.e.,

Pr

{

R
⋃

r=1

(

N
⋃

n=1

[ρn,r ≥ 1]

)}

≤ ε. (1)

We analyze this capacity in the next section.

IV. CAPACITY ANALYSIS

The goal of our capacity analysis is to obtain upper bounds

of M that serve as sufficient and necessary conditions of (1).

The sufficient and necessary conditions give lower and upper

bounds of capacity, respectively.

A. Preliminary Lemma

The following lemma is used for the approximation of

PODC in the derivation of sufficient and necessary conditions.

Lemma 1. For vector a = (a1, · · · , aN) with an ≥ an+1 for

n ∈ {1, · · · , N − 1} and probability vector p = (p1, · · · , pN)
with pn ≤ pn+1 for i ∈ {1, · · · , N − 1} and

∑N
n=1 pn = 1,

define the weighted average of a as
∑N

n=1 pnan, then

N
∑

n=1

pnan ≤ p̄

N
∑

n=1

an, (2)

where p̄ = 1/N is the mean of all elements in p.

Proof. Assume we have pi such that pi ≤ p̄ ≤ pi+1, the

difference between p̄
∑N

n=1 an and
∑N

n=1 pnan is

p̄

N
∑

n=1

an −

N
∑

n=1

pnan =

i
∑

n=1

(p̄− pn) an −

N
∑

n=i+1

(pn − p̄) an

≥

i
∑

n=1

(p̄− pn) ai −

N
∑

n=i+1

(pn − p̄) ai. (3)

Based on the fact that
∑N

n=1 p̄ =
∑N

n=1 pn, we have

p̄
∑N

n=1 an −
∑N

n=1 pnan ≥ 0, and the claim follows.

B. Markov chain

Define vector ρ (t) := (ρn (t) , ∀n), where ρn (t) :=
maxr ρn,r (t) is the maximum utilization among all resource

types at machine n, after the t-th task has been assigned.

The task assignment process defines a Markov chain over the

vector ρ (t) as follows:

1) Choose the machine i ∈ {1, · · · , N} for the newly

arriving t-th task according to PODC.

2) For all r = 1, 2, ..., R:

a) Sample Xt+1,r as the requirement of type-r re-

source of the t-th task, from a given probability

distribution.

b) Set ρn,r (t+ 1) = ρn,r (t) + Xt+1,r for n = i
(i.e., machine i is chosen for the t-th task) and

ρn,r (t+ 1) = ρn,r (t) for n 6= i.

We also define a probability vector p := (p1, · · · , pN), where

pi denotes the probability that the new task t+ 1 is assigned

to the i-th most loaded machine in terms of {ρn (t) : ∀n}.

If we rank ρ (t) in a non-increasing order such that ρ1 (t) ≥
ρ2 (t) ≥ · · · ≥ ρN (t), we have p1 ≤ p2 ≤ · · · ≤ pN due to

the use of PODC strategy. Whenever the context is clear, we

write ρ, ρn and ρn,r instead of ρ (t), ρn (t) and ρn,r (t).

C. Sufficient Condition for (1)

We first provide the following lemma that serves as an

intermediate sufficient condition for further analysis.

Lemma 2. For any task assignment strategies, if

N
∑

n=1

E
(

eθρn
)

≤
εeθ

R
(4)

for some θ > 0, then the overload probability less than ε in

(1) is guaranteed.

Proof. We note that E
(

eθρn
)

is the moment generating func-

tion (MGF) of ρn for θ > 0, Chernoff’s bound can be applied.

Thus, we have

Pr (ρn ≥ 1) ≤
E
(

eθρn
)

eθ
, θ > 0. (5)

Substituting (5) into (4) gives

R
∑N

n=1 Pr (ρn ≥ 1) ≤ ε.

Applying Boole’s inequality to the left side of above, we have

ε ≥ R

N
∑

n=1

Pr (ρn ≥ 1) ≥

N
∑

n=1

R
∑

r=1

Pr (ρn,r ≥ 1)

≥ Pr

{

R
⋃

r=1

(

N
⋃

n=1

[ρn,r ≥ 1]

)}

.

Thus, the overload probability in (1) is confirmed.

Denote G (θ) := E
(

eθmaxr Xt,r
)

with θ > 0 for any task t
and resource type r as the MGF of maxr Xt,r, which can be

calculated based on the probability density functions (PDFs)

of Xt,r for all r (recall that the PDFs of Xt,r for different t
values are the same, for some given r). Using Lemma 2, we

obtain the following sufficient condition for (1).

Theorem 1. For the PODC strategy with d ≥ 1, if the number

of tasks is less than or equal to

Tl :=
log ε

NR
+ θ

log (ωG (θ) +N − ω)− logN
, (6)

for some θ > 0 and 0 < ω ≤ 1, then the overload probability

in (1) is guaranteed.

Proof. We first define Φ(t) :=
∑N

n=1 e
θρn(t) and calculate the

mean of Φ(t). Rank ρ (t) in the non-increasing order such that

p1 ≤ p2 ≤ · · · ≤ pN for task t + 1. The mean increment of

Φ(t) can be calculated as follows:

E [Φ (t+ 1)− Φ(t) |ρ (t)]

= E

[

N
∑

n=1

(

eθρn(t+1) − eθρn(t)
)

∣

∣

∣

∣

∣

ρ (t)

]

≤

N
∑

i=1

piE
[

eθ(ρi(t)+maxr Xt+1,r) − eθρi(t)
∣

∣

∣
ρ (t)

]

(7)

= (G (θ)− 1)

N
∑

i=1

pi

(

eθρi(t)
)

≤
ωG (θ)− ω

N
Φ(t) .

In the above, with probability pi a newly arrived task is

allocated to machine i, whose utilization will increase by

Xt+1,r for each resource type r. The change of eθρn(t) on

other machines is 0, i.e., eθρn(t+1) − eθρn(t) = 0 for n 6= i,
which gives (7), where the inequality is because ρi(t + 1) ≤
ρi (t) + maxr Xt+1,r. Moreover, since

∑N
i=1

(

pie
θρi(t)

)

is a

weighted average of eθρi with higher weights for smaller ele-

ments and
∑N

i=1 pi = 1, we have
∑N

i=1

(

pie
θρi(t)

)

≤ Φ(t)/N
according to Lemma 1. This gives the last inequality for ω = 1.

Because E [E (X|Y)] = E [X], from the above we have

E [Φ (t+ 1)− Φ(t)] = E [E [Φ (t+ 1)− Φ(t) |ρ (t)]]

≤
ωG (θ)− ω

N
E [Φ (t)] .

That is,

E [Φ (t+ 1)] ≤
ωG (θ) +N − ω

N
E [Φ (t)] .

For T tasks in total (T ≤ Tl), because E [Φ (0)] = Φ (0) =
∑N

n=1 e
θ0 = N , we have

N
∑

n=1

E
[

eθρn(T)
]

= E [Φ (Tl)] ≤ N

(

ωG (θ) +N − ω

N

)T

≤ N

(

ωG (θ) +N − ω

N

)Tl

=
εeθ

R

for some properly chosen ω, where the first equality is due

to the linearity of expectation, the last inequality is because

T ≤ Tl and
ωG(θ)+N−ω

N
≥ 1 for ω = 1, and the last equality

is from the definition of Tl in (6). The above is equivalent to

(4) in Lemma 2, hence we have proved the theorem.

D. Necessary Condition for (1)

We provide the following lemma that serves as an interme-

diate necessary condition for further analysis.

0 200 400 600 800 1000

N (=0.05, =0.01)

0

0.5

1

1.5

2

2.5
C

ap
ac

it
y

 f
o

r
P

O
D

C
10

4

Simulation (d=1)

Simulation (d=2)

Simulation (d=3)

Simulation (d=4)

Simulation (d=N)

Analytical_Suf (=1)

Analytical_Nec (v=1)

Fig. 2. Performance of capacity bounds for
Gaussian resources with ω = v = 1.

Fig. 3. Comparison of capacity bounds with
different µ and σ for a single resource type (i.e.,
R = 1) and tuned ω and v.

Fig. 4. Comparison of capacity bounds with
different R (R = 1 for µ = 0.05, σ = 0.01
and R = 2 elsewhere) and tuned ω and v.

Lemma 3. For any task assignment that satisfies (1) with some

given ε, we have

1

N

N
∑

n=1

E
(

e−θρn
)

≥
1− ε

eθ
(8)

for any θ > 0.

Proof. A necessary condition for (1) is

1

N

N
∑

n=1

Pr (ρn ≥ 1) ≤ max
n

Pr (ρn ≥ 1) (9)

≤ Pr

{

R
⋃

r=1

(

N
⋃

n=1

[ρn,r ≥ 1]

)}

≤ ε.

Using Chernoff’s bound with θ > 0, we have

1− E
[

e−θρn
]

eθ ≤ Pr (ρn ≥ 1) . (10)

We then apply (10) to the left-hand side of (9) to prove the

lemma.

Denote H(θ) := E
(

e−θminr Xt,r
)

with θ > 0 for any task t
and resource type r as the MGF (with negative parameter) of

minr Xt,r, which can be obtained with the PDFs of Xm,r for

all r. Note that although we take the minimum of {Xm,r : ∀r}
here, ρn is still defined as the maximum of {ρn,r : ∀r} (see

Section III). We have the following result.

Theorem 2. For the PODC strategy with d ≥ 1 that satisfies

(1) with some given ε, the system capacity M satisfies

M ≤ Tu :=
log (1− ε)− θ

log (vH(θ) +N − v)− logN
(11)

for any θ > 0 and some v ≥ 1.

Proof. Define Ψn (t) := e−θρn(t) for machine n and rank ρ (t)
in non-increasing order such that p1 ≤ p2 ≤ · · · ≤ pN for task

t+ 1. The mean increment of Ψn (t) for machine n is

E [Ψn (t+ 1)−Ψn (t) |ρ (t)]

≤ pne
−θ(ρn(t)+minr Xt+1,r) + (1− pn) e

−θρn(t) − e−θρn(t)

= (H(θ)− 1) pnΨn (t) .

Define Ψ(t) := 1
N

∑N
n=1 Ψn (t), we have

E [Ψ (t+ 1)−Ψ(t) |ρ (t)]

=
1

N

N
∑

n=1

E [Ψn (t+ 1)−Ψn (t) |ρ (t)]

≤
1

N

N
∑

n=1

(H(θ)− 1) pnΨn (t) ≤ (H(θ)− 1)
v

N
Ψ(t) ,

where Lemma 1 is used in the last step by considering that

(H(θ)− 1) pn decreases with n (note that H(θ)−1 < 0) and

Ψn (t) increases with n, hence the result holds for v = 1.

Using E [E (X|Y)] = E [X], we have

E [Ψ (t+ 1)] = E [E [Ψ (t+ 1)−Ψ(t) |ρ (t)]] + E [Ψ (t)]

≤
(

(H(θ)− 1)
v

N
+ 1
)

E [Ψ (t)] .

For M tasks in total, based on the above and using E [Ψ (0)] =
∑N

n=1 e
−θ0/N = 1, we have

(

vH(θ)+N−v

N

)M

≥E [Ψ(M)]=
1

N

N
∑

n=1

E
[

e−θρn(M)
]

≥
1−ε

eθ

where the equality is due to the linearity of expectation and

the last inequality is from Lemma 3. Rearranging the above

to solve for M proves the theorem.

E. Discussion

The sufficient condition for (1) given by Theorem 1 rep-

resents a lower bound of capacity, because the system is

guaranteed to support less than or equal to Tl tasks with an

overload probability of ε, where we recall that the capacity

is defined as the maximum number of tasks the system can

support. The necessary condition for (1) given by Theorem 2

gives an upper bound of capacity. Hence, the actual capacity

M is bounded by Tl ≤ M ≤ Tu. We note that Theorems 1

and 2 always hold when ω = v = 1, but the parameters ω and

v can be tuned to obtain a tighter bound.

V. NUMERICAL RESULTS

We compare our analytical lower and upper bounds of

capacity with the actual capacity obtained from simulation,

where both Gaussian-distributed and real-world task resource

requirements are considered. The MGFs G(θ) and H(θ) are

computed numerically according to the distribution in each

case (the distribution is explained in further details below). The

parameter θ in the MGF used in the computation of capacity

bounds is also determined numerically via linear search, where

0 100 200 300 400 500 600 700 800 900 1000 1100

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

el
at

iv
e

g
ap

Suf (=0.1, =0.01)

Nec (=0.1, =0.01)

Suf (=0.05, =0.01)

Nec (=0.05, =0.01)

Suf (=0.05, =0.005)

Nec (=0.05, =0.005)

Suf (
1
=

2
=0.05,

1
=

2
=0.01)

Nec (
1
=

2
=0.05,

1
=

2
=0.01)

Suf (
1
=0.05,

1
=0.01;

2
=0.02,

2
=0.004)

Nec (
1
=0.05,

1
=0.01;

2
=0.02,

2
=0.004)

0 500 1000
0

0.02

0.04

0.06

0.08

0.1

Fig. 5. Relative gaps of capacity bounds for Gaussian resource requirements
with tuned ω and v.

TABLE I
VALUES OF w AND v FOR GAUSSIAN RESOURCE REQUIREMENTS

Parameter settings ω v

R = 1, µ = 0.1, σ = 0.01 0.28 1.33

R = 1, µ = 0.05, σ = 0.01 0.41 1.16

R = 1, µ = 0.05, σ = 0.005 0.41 1.14

R = 2, µ1 = µ2 = 0.05, σ1 = σ2 = 0.001 0.34 1.34

R = 2, µ1 = 0.05, σ1 = 0.01, µ2 = 0.01, σ2 = 0.004 0.28 2.84

we choose θ that gives the largest lower bound and smallest

upper bound, so that the bound remains as tight as possible.

In all simulations, we fix ε = 0.01.

For simplicity, we use “simulation” to denote the simulated

capacity and “analytical” as the results of analytical bounds in

the figures presented in the following. We also use “Suf” and

“Nec” to denote the sufficient condition (lower bound) and the

necessary condition (upper bound) of capacity, respectively.

A. Performance of Gaussian Resource Requirements

We first consider a single resource type where the amount of

resource requested by each task follows a Gaussian distribution

with parameters µ and σ2. Fixing µ = 0.05 and σ = 0.01,

Fig. 2 shows the capacity for different d in PODC, when the

number of machines varies. We see that d = N performs

the best and d = 2 outperforms d = 1 significantly, which

is consistent with known results [4]. Moreover, for this case

where ω = v = 1, the theoretical upper and lower capacity

bounds hold for all d values with 1 ≤ d ≤ N .

The parameters ω and v in the capacity bounds can be tuned

empirically so that the theoretical bounds provide a better

approximation for the actual capacity values. For example, we

can find the appropriate values of ω and v by minimizing the

gaps between the simulation results and the analytical bounds

when the number of machines N ∈ {20, 40, 60, 80, 100} (a set

of settings with small number of machines) . The best ω and

v values found with this approach are shown in Table I, for

different resource requirement distributions, where we recall

that R denotes the number of resource types. We use these

tuned ω and v parameters in cases with much larger N in our

simulations presented next.

Fig. 6. GMM distribution fitting results for CPU resource.

Fig. 7. GMM distribution fitting results for memory resource.

Fig. 3 shows the results with different values of µ and σ for

d = 2, where a lower value of mean (µ) and standard deviation

(σ) in the amount of resource required by each task leads to a

larger capacity (i.e., more tasks can be served), as one would

intuitively expect. The comparison of single and multiple (two)

resource types for d = 2 is shown in Fig. 4. We can see that

when there are multiple types of resources, the capacity of is

dominated by the resource type with larger µ (i.e., the most

heavily utilized resource). However, it is uncertain whether

multiple resource types will cause higher or lower capacity

compared to the case with a single resource type, when the

maximum mean value is the same.

We also see that our analytical bounds are close to the

simulation results in Figs. 3 and 4. The relative gaps (defined

as the difference between the simulated capacity and analytical

bounds, divided by the simulated capacity), as shown in Fig. 5,

are around 0.2 for sufficient conditions (lower bounds) and

below 0.1 for necessary conditions (upper bounds). In addition,

the analytical bounds can capture the capacity differences

when the parameters µ, σ, R, and N are different.

B. Performance of Real-World Resource Requirements

The Google cluster dataset [23] captures the task re-

quest dynamics in a real-world computing cluster. It includes

the requirements for CPU and memory resources of over

45, 000, 000 tasks. To predict the capacity of a distributed

system with such task resource requirements, we fit a Gaussian

mixture model (GMM) using the dataset and use the MGF of

this GMM. Figs. 6 and 7 show the results of GMM fitting

for CPU and memory resources respectively. We see that the

GMM closely captures the underlying data distribution.

Based on the fitted GMM, Figs. 8 and 9 show the per-

formance of the analytical bounds without or with parameter

Fig. 8. Performance of capacity bounds for real data with ω = v = 1.

0 200 400 600 800 1000

N

0

1

2

3

C
ap

ac
it

y
 f

o
r

P
O

D
C

10
4

0

0.2

0.4

0.6

R
el

at
iv

e
g
ap

Simulation

Analytical_Suf

Analytical_Nec

Relative gap_Suf

Relative gap_Nec

Fig. 9. Performance and relative gaps of capacity bounds for real data with
tuned parameters ω and v.

tuning as well as the relative gaps. In the case where ω
and v are tuned, their values are empirically determined as

ω = 0.14, v = 2.42, where the tuning follows the same

approach as in Section V-A. The comparison between different

capacity results follow a similar trend as in the Gaussian case

in Section V-A. We anticipate that this GMM fitting approach

can be applied to other real-world datasets too.

VI. CONCLUSION

We have derived theoretical bounds of the capacity of

distributed computing systems with multiple resources types.

The lower and upper bounds correspond to the sufficient and

necessary conditions for the overload probability, respectively.

The PODC task assignment strategy has been considered,

where the trade-off between control overhead and system

capacity can be adjusted using the parameter d. The numerical

results have shown that our proposed capacity bounds can

capture the key characteristics of system capacity.

Our results in this paper are useful for describing the ca-

pacity of distributed computing systems with multiple resource

types, which can be helpful for system planning, analysis, and

resource allocation, where our analytical capacity bounds can

be used for approximating the actual system capacity. Future

work can study the derivation of tighter capacity bounds with

less limiting assumptions, and specific ways of applying such

bounds to planning and allocation problems.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.
[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey

on mobile edge computing: The communication perspective,” IEEE

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
[3] “International technology alliance in distributed analytics and informa-

tion sciences (dais-ita).” https://en.wikipedia.org/wiki/DAIS-ITA.
[4] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two

random choices: A survey of techniques and results,” in Handbook of

Randomized Computing, pp. 255–312, 2000.
[5] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than

one sample in randomized load balancing,” Mathematics of Operations

Research, vol. 42, no. 3, pp. 692–722, 2017.
[6] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load

balancing and scheduling in cloud computing clusters,” in IEEE INFO-

COM, pp. 702–710, 2012.
[7] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic

control for heterogeneous networks,” IEEE/ACM Transactions on Net-

working, vol. 16, no. 2, pp. 396–409, 2008.
[8] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation

and routing for time-varying wireless networks,” IEEE Journal on

Selected Areas in Communications, vol. 23, no. 1, pp. 89–103, 2005.
[9] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource

allocation algorithms for cloud computing clusters,” Performance Eval-

uation, vol. 81, pp. 20–39, 2014.
[10] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,

“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, 2015.

[11] C.-K. Huang, S.-H. Shen, C.-Y. Huang, T.-L. Chin, and C.-A. Shen,
“S-cache: Toward an low latency service caching for edge clouds,” in
Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in

the IoT Era, pp. 49–54, 2019.
[12] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and

offloading decision in mobile edge computing,” IEEE Communications

Letters, vol. 23, no. 4, pp. 684–687, 2019.
[13] D. Wu and R. Negi, “Effective capacity: a wireless link model for

support of quality of service,” IEEE Transactions on Wireless Com-

munications, vol. 2, no. 4, pp. 630–643, 2003.
[14] A. Helmy, L. Musavian, and T. Le-Ngoc, “Energy-efficient power

adaptation over a frequency-selective fading channel with delay and
power constraints,” IEEE Transactions on Wireless Communications,
vol. 12, no. 9, pp. 4529–4541, 2013.

[15] X. Zhang and Q. Zhu, “Statistical QoS provisioning over D2D-offloading
based 5G multimedia big-data mobile wireless networks,” in IEEE

INFOCOM WKSHPS, pp. 742–747, 2018.
[16] S. Thaherbasha and S. N. parveen, “Erlang capacity estimation of ofdma-

based cellular systems under co-channel interference,” in International

Conference on Wireless Communications, Signal Processing and Net-

working (WiSPNET), 2016.
[17] R. Framjee, Some Considerations of Performance and Capacity of Voice

Over IP High Bit Rate Wireless Reverse Links. PhD thesis, University
of Texas at Arlington, 2014.

[18] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin, “On weighted
balls-into-bins games,” Theoretical Computer Science, vol. 409, no. 3,
pp. 511–520, 2008.

[19] Y. Peres, K. Talwar, and U. Wieder, “The (1 + β)-choice process and
weighted balls-into-bins,” in Proceedings of ACM-SIAM Symposium on

Discrete Algorithms, pp. 1613–1619, 2010.
[20] U. Wieder, “Hashing, load balancing and multiple choice,” Foundations

and Trends in Theoretical Computer Science, vol. 12, no. 3-4, pp. 275–
379, 2017.

[21] Q. Xie, X. Dong, Y. Lu, and R. Srikant, “Power of d choices for large-
scale bin packing: A loss model,” SIGMETRICS Perform. Eval. Rev.,
vol. 43, no. 1, pp. 321–334, 2015.

[22] Y. Azar, I. R. Cohen, and D. Panigrahi, “Randomized algorithms for
online vector load balancing,” in Proceedings of ACM-SIAM Symposium

on Discrete Algorithms, pp. 980–991, 2018.
[23] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:

format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

