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Abstract—Physical-layer network coding (PNC) is a promising
technique to improve the performance of wireless networks. In a
traditional setting, two packets are encoded with PNC. However,
encoding three or more packets with PNC may further enhance
the performance. A straightforward method to achieve multiple
packet encoding is to further process the superposed signal
from different source node-pairs at the relay, and broadcast a
jointly encoded packet to the destinations. After receiving the
jointly encoded packet, each destination can decode the packet
it intends to receive, based on the packet transmitted by itself
and overheard packets from other node-pairs. An important
issue that arises is how to determine which node-pairs should
be encoded together and how to jointly encode these packets.
This paper aims to solve this issue. We first propose a joint
encoding method for multiple node-pairs, and then propose a
method to determine the grouping of different node-pairs so
that node-pairs in the same group can perform joint encoding.
The proposed scheme is not restricted to a particular signal
constellation, and, in principle, it can be applied to any type of
signal constellations. Simulation results show that the proposed
scheme can bring throughput improvement compared to schemes
which only encode two packets together, the resulting throughput
is also close to the optimum.

Index Terms—Constellation mapping, denoise-and-forward
(DNF), physical-layer network coding (PNC), quadrature am-
plitude modulation (QAM), wireless networks.

I. INTRODUCTION

Wireless physical-layer network coding (PNC) makes use of
the superposition nature of electromagnetic fields to improve
the throughput of wireless networks [1], [2]. The source nodes
transmit their packets simultaneously to the relay, the relay
processes the superposed signal and sends an encoded version
of the superposed signal to the destinations. Then, from the
encoded packet, each destination decodes the packet it intends
to receive, based on its knowledge of the other simultaneously
transmitted packet(s) that is obtained either from overhearing
or because itself is the source of the packet. The process of
PNC can be divided into two communication phases, namely,
the multiple access (MA) phase where the involved source
nodes transmit their packets to the relay at the same time, and
the broadcast (BC) phase where the relay sends the encoded
packet to the destinations.

In a traditional setting of PNC, two source nodes, two des-
tination nodes, and one relay are involved in the PNC process.

§ The corresponding author of this paper is Qingyang Song.

Fig. 1. Example network topology with three node-pairs, the solid lines
represent links connected to the relay, the dotted lines represent overhearing
links: (a) when two node-pairs can be grouped together, (b) when three node-
pairs can be grouped together.

The destination nodes may or may not be source nodes at the
same time. As discussed in [3], the involvement of three or
more source nodes that transmit at the same time generally
requires full-duplex transceivers or interference cancellation
techniques. A recent study [4] has proposed a mechanism to
pre-rotate the signal constellations at the source nodes before
transmitting, so that the superposed signals at the relay can still
be effectively separated when three source nodes transmit at
the same time, which is similar with interference cancellation.
On the other hand, when we only consider the involvement of
three or more destinations, a more straightforward approach
applies. As in the approach proposed in [5], only two source
nodes transmit simultaneously to the relay in each timeslot,
these two source nodes that transmit at the same time form up
a source node-pair, and all source node-pairs transmit to the
relay sequentially. Then, the relay performs a joint encoding
on all received superposed signals and broadcasts the encoded
packet to all destinations, and the destinations extract their
intended packets. By this means, the number of necessary BC
timeslots is reduced.

In the example as shown in Fig. 1 and also in the remaining
discussions, nodes N i

1 and N i
2 form up a node-pair, and we

denote the node-pair by N i
1 ↔ N i

2, where i ∈ {1, 2, ...,K}
and K is the total number of node-pairs under consideration.
For each i, nodes N i

1 and N i
2 exchange packets with each

other, i.e. there is a bidirectional flow among N i
1 and N i

2. All
the packets are relayed by the relay R. To accomplish data
transmission for all nodes, every scheduling round consists of
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Fig. 2. Example timing diagram of packet transmission in one scheduling
round with three node-pairs: (a) when no node-pair can be grouped together,
(b) when two node-pairs can be grouped together, (c) when three node-pairs
can be grouped together.

K MA timeslots to serve each of the K node-pairs once, and
a specific number of BC timeslots, which depends on the joint
encoding opportunity and is at least one and at most K.

In Fig. 1(a). we have a total of K = 3 node-pairs. When
using conventional PNC, we need a total of 2K = 6 timeslots
to accomplish data exchange, as shown in Fig. 2(a). If there
exist overhearing links between the nodes in a certain node-
pair (e.g. N1

1 ↔ N1
2 ) and nodes that belong to other node-

pairs (e.g. N3
1 ↔ N3

2 ), when the nodes N1
1 and N1

2 transmit
simultaneously in the MA phase, both the relay R and the
nodes in the node-pair N3

1 ↔ N3
2 can receive/overhear a

superposed signal. If we schedule the node-pair N3
1 ↔ N3

2 to
transmit in the next timeslot instead of letting R broadcast the
encoded packet, both the relay R and the nodes in the node-
pair N1

1 ↔ N1
2 can receive/overhear a superposed signal from

the node-pair N3
1 ↔ N3

2 . In this case, the relay R may jointly
encode the two superposed signals with a specific method so
that the four involved nodes can extract the intended packets
after receiving the encoded packet. As a result, the number
of BC timeslots is reduced, as shown in Fig. 2(b). For the
above case, in this paper, we say that node-pairs N1

1 ↔ N1
2

and N3
1 ↔ N3

2 can be grouped together. When all the three
node-pairs can be grouped together as in Fig. 1(b), we only
need 2K − 2 = 4 timeslots (Fig. 2(c)).

Note that in Fig. 1(b), the relay R is not really necessary
when judging from the network topology, because all nodes
can communicate with each other. However, without the relay,
we still need 2K = 6 timeslots to transmit all data packets
to their destinations when using half-duplex communication
systems. After adding a relay, we can reduce the number of
necessary timeslots and therefore improve average throughput.
It follows that, when combining with node-pair grouping
and joint encoding, PNC can still be beneficial when nodes
are reachable within single hop. When K is large and the
signal qualities among nodes are good enough, the number
of necessary timeslots to accomplish one round of packet
exchange approaches K, which is the same with full-duplex
communication systems. The inclusion of a relay even when
source and destination nodes are within their communication
range can also be found in many practical systems, such as
wireless local area networks (WLAN) with access points (AP)
or cellular networks with base-stations. The relay also acts as
a coordinator in most of these networks.

Given the importance of node-pair grouping and joint en-
coding, it is desirable to develop a mechanism to adaptively
decide which node-pairs should be grouped together and

what encoding function should be selected. To the best of
our knowledge, [5] is the only work which considered this
issue in the literature, where the joint encoding of binary
phase-shift keying (BPSK) signals were studied. However,
[5] did not consider how to adaptively determine the node-
pair groups and also did not discuss how to encode signals
with higher level modulations, e.g. quadrature phase-shift
keying (QPSK) or general multi-level quadrature amplitude
modulation (MQAM). For high level modulations, the con-
ventional XOR-mapping is not applicable due to ambiguity
[6]. Furthermore, it is impractical to synchronize the signals
both at the relay and at the overhearing nodes. Hence, a
more sophisticated constellation mapping scheme that supports
asynchronous signals, such as [7], is necessary and it needs to
be extended to support joint encoding.

To tackle these issues, in this paper, we first discuss the
requirements of the encoding functions to support joint en-
coding. Based on this discussion, we propose a joint encoding
and node-pair grouping scheme, which adaptively selects the
encoding functions and node-pair groups according to the
channel coefficients. The goal of this paper is to determine the
grouping of node-pairs and the encoding method within each
group, to minimize the number of timeslots that is needed to
accomplish one round of data exchange for all K node-pairs,
subject to a given bit-error rate (BER) constraint.

The remainder of the paper is organized as follows. Section
II describes the system model. Section III discusses the
encoding function design. The node-pair grouping method is
discussed in Section IV. Section V shows simulation results
and Section VI draws conclusions.

II. SYSTEM MODEL

We consider a network topology with one relay and an
arbitrary number of node-pairs that are connected to the
relay, as in Fig. 1. We assume that a central scheduler is
present which is aware of all channel gains between nodes and
schedules the transmission and encoding of different nodes.
In practice, the functions of this central scheduler can be
performed by the relay R, such as in [8]. The design of
an explicit scheduling mechanism is beyond the scope of
this paper, but we consider a scheduling mechanism where
each node-pair is served once in each scheduling round, as
in Fig. 2. BC timeslots in which the relay R broadcasts to
a set of node-pairs always comes after all MA timeslots for
the involved node-pairs. There may be different number of
BC timeslots in each scheduling round due to different joint
encoding opportunities. We consider flat fading channels in
this paper.

Define an index set G ⊆ {1, 2, ...,K} which represents a
group of node-pairs. For any g ∈ G, we say that node-pair
Ng

1 ↔ Ng
2 belongs to group G, and the set G contains the

indexes of all node-pairs in the group. The number of node-
pairs in group G is denoted by |G|. Let SNi

j
∈ M (j =

1, 2) denote the symbol from node N i
j , where M is the set

of possible symbols, and let XNi
j

denote the corresponding
signal. When a particular node-pair Ngt

1 ↔ Ngt
2 (gt ∈ G) that

belongs to group G transmit signals, the relay R and each node
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Ngr
j (gr 6= gt,∀gr ∈ G) in each of the remaining node-pairs

that belongs to G receive a superposed signal1. The received
signals are respectively:

Y MA
R =HN

gt
1 ,RXN

gt
1
+HN

gt
2 ,RXN

gt
2
+Zn , (1)

Y MA
Ngr

j
=HN

gt
1 ,Ngr

j
XN

gt
1
+HN

gt
2 ,Ngr

j
XN

gt
2
+Zn , (2)

where HN
gt
j ,R (or HN

gt
j ,Ngr

j
) is the channel coefficient from

node Ngt
j to R (or Ngr

j ), and Zn is the noise.
After receiving the superposed signal, each of the relay

R and node Ngr
j estimate the originally transmitted symbols

(SN
gt
1
, SN

gt
2
) as (ŜN

gt
1
, ŜN

gt
2
)R or (ŜN

gt
1
, ŜN

gt
2
)Ngr

j
. We con-

sider the case where the original symbols are equiprobable and
the noise is Gaussian, hence we use the minimum distance
criterion [9] for estimation. It is not always possible to
correctly decode the individual symbols SN

gt
1

and SN
gt
2

from
the superposed signal, which is also not necessary as long as
the encoding function is properly designed so that each node
can finally obtain the symbol that it intends to receive.

After all the MA timeslots for group G, the relay R has
received a set of symbols ŜR =

{
(ŜNg

1
, ŜNg

2
)R : ∀g ∈ G

}
;

and similarly, each node Ng
j has overheard a set of symbols

ŜONg
j

=
{
(ŜN

gt
1
, ŜN

gt
2
)Ng

j
: gt 6= g,∀gt ∈ G

}
, i.e. symbols

from nodes excluding its own node-pair. The relay R encodes
the received set of symbols ŜR into a new symbol C

(
ŜR
)

,

where the encoding mapping is C : (M×M)
|G| → MC

and MC is the set of all possible encoded symbols. Then, it
broadcasts the encoded symbol to all nodes in G, and each
node Ng

j receives the signal:

Y BC
Ng

j
= HR,Ng

j
XC + Zn , (3)

where XC denotes the signal that carries the encoded symbol
C
(
ŜR
)

, and HR,Ng
j

is the channel coefficient from node R
to Ng

j . From the received signal, each node Ng
j can estimate

the value of C
(
ŜR
)

, and decode the intended symbol based

on C
(
ŜR
)

and the overheard symbols in ŜONg
j

. The design
of the encoding function C (·) will be discussed in Section III.

To consider the grouping of all K node-pairs, we define a set
P = {G1, . . . ,G|P|}, where 1 ≤ |P| ≤ K, which represents
a partition with |P| groups. All the groups are subsets of
{1, 2, . . . ,K} and should satisfy the following two properties:
G1 ∪ · · · ∪ G|P| = {1, 2, . . . ,K} and G1 ∩ · · · ∩ G|P| = φ.
The node-pair grouping problem is formulated as finding the
most appropriate partition P , which will be further discussed
in Section IV.

III. ENCODING NODE-PAIRS IN THE SAME GROUP

In this section, we focus on designing an appropriate joint
encoding method for node-pairs in the same group.

1Nodes that belong to other groups may also receive the signal, but they
neglect the signal because it is not related to them.

A. Goals for the Encoding Function
The encoding function C (·) must ensure that each node

must be able to obtain the symbol from the other node in its
own node-pair, under the following conditions: it knows the
symbol transmitted by itself, has overheard the transmission
of all other node-pairs in group G, and has also received the
encoded symbol from the relay R. Formally, the design of
C (·) aims to achieve the following: for each Ng

j , given SNg
j

(its own signal), C
(
ŜR
)

, and ŜONg
j

, it must be able to decode

SNg

j
, where j denotes the opposite of j, i.e. if j = 1 then

j = 2, if j = 2 then j = 1.
When there is only one node-pair in group G, in which case

ŜR contains only one pair of symbols, the goal can be achieved
if the encoding function C (·) satisfies the exclusive law as
discussed in [7]. For the general case with multiple node-pairs
in G, the exclusive law can be generalized as Lemma 1.

Lemma 1: To ensure that the intended symbol can be
successfully decoded at the destination, the encoding func-
tion C (·) must satisfy: for any possible set of symbol-
pairs S0 =

{
(sNg

1
, sNg

2
) ∈M×M : ∀g ∈ G

}
and S ′0 ={

(s′
Ng

1
, s′

Ng
2
) ∈M×M : ∀g ∈ G

}
which have the following

properties: 1) there exists j0 ∈ {1, 2} and g0 ∈ G, such that
sNg0

j0

6= s′
N

g0
j0

; 2) for all j 6= j0 or g 6= g0, we have sNg
j
= s′

Ng
j

;

then we must have C (S0) 6= C (S ′0).
Proof: Suppose the condition is not satisfied, then for a

particular node Ng
j , given SNg

j
, C
(
ŜR
)

, and ŜONg
j

, it cannot
determine the value of SNg

j
because different values of SNg

j

may be mapped to the same value of C
(
ŜR
)

. On the other
hand, if the condition is satisfied, Ng

j can determine the value
of SNg

j
because there exists a one-to-one mapping between

SNg

j
and C

(
ŜR
)

, when SNg
j

and ŜONg
j

are given.
The design of C(·) should also attempt to minimize the

BER. A bit error exists at the relay R when the actual transmit-
ted symbols S 6= ŜR and at the same time C (S) 6= C

(
ŜR
)

,

and a bit error exists at node Ng
j when S 6= S(g)∪ŜONg

j
and

at the same time C (S) 6= C
(
S(g) ∪ ŜONg

j

)
, where S(g)

denotes the symbol-pair corresponding to node-pair g in S
(note that ŜONg

j
excludes the symbol-pair from node-pair g).

Therefore, the encoding function C(·) should be designed to
avoid the occurrence of such errors.

Further, the design of C(·) should attempt to minimize the
cardinality |MC | of the set of encoded symbols MC .

B. Encoding Function Design
In Section III-A, we discussed the goals of the joint en-

coding function C(·) which processes over all the involved
symbols. Considering that signals from two nodes in the same
node-pair are simultaneously transmitted and a superposed
signal is received at the relay R and end nodes Ng

j , we need to
focus on the signal level characteristics to consider the encod-
ing of symbols from nodes in the same node-pair. However,
signals from different node-pairs are separately transmitted, so
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we can use a higher level mechanism to encode the symbols
from different node-pairs. It follows that we can decompose
the encoding function C(·) into |G| sub-functions Cg(·), each
of which only processes the symbol-pair (SNg

1
, SNg

2
). Then,

a higher level sub-function C0

(
Cg1(·), Cg2(·), ..., Cg|G|(·)

)
,

where g1, g2, ..., g|G| represent all elements in G, processes
over each Cg(·). For this construction, it can be easily derived
from Lemma 1 that the symbol can be successfully decoded at
the destination when the exclusive law satisfies for each Cg(·)
(with a pair of symbols as arguments) and the generalized
exclusive law satisfies for C0 (·) (with all Cg(·) as arguments).
Also, the goal of minimizing BER is approached if we attempt
to minimize the error probability in the design of each Cg(·),
because the high level sub-function C0 (·) does not deal with
signal level issues, hence it does not affect the BER. To
minimize the BER in the design of Cg(·), we need to consider
the shape of the superposed constellation which may vary
with the channel coefficients. Therefore, Cg(·) needs to be
adaptively determined based on the instant channel condition,
which will be further discussed in Section III-D.

C. High Level Sub-Function

A simple and effective way to design C0 (·) to satisfy the
generalized exclusive law is using modulo operation, i.e.

C0

(
Cg1(·), ..., Cg|G|(·)

)
=

∑
g∈G

Cg(·)

mod
(
max

{∣∣MCg

∣∣ : ∀g ∈ G}) , (4)

where
∣∣MCg

∣∣ denotes the cardinality of the set of
encoded symbols when encoding with Cg(·). The
mod

(
max

{∣∣MCg

∣∣ : ∀g ∈ G}) operation ensures the gener-
alized exclusive law and keeps the cardinality of the encoded
symbol set MC as small as possible, and we have |MC | =
max

{∣∣MCg

∣∣ : ∀g ∈ G}.
With the definition of C0 (·) as in (4), when an end node

Ngt
j wants to decode its intended symbol SN

gt
j

, it can first
obtain

Cgt(·) =

C0(·)−
∑

gr 6=gt,∀gr∈G

Cgr (·)

mod
(
max

{∣∣MCg

∣∣ :∀g∈G}),
(5)

where it calculates the values of Cgr (·) from corresponding
overheard symbols in ŜON

gt
j

, and C0(·) is sent by the relay
R to the end nodes in the BC phase. Note that we assume
that C0(·) and Cg(·),∀g ∈ G are known by the relay R and
all nodes in group G. Then, it can obtain the intended symbol
from Cgt(·).

D. Low Level Sub-Function

In this subsection, we focus on the design of Cg(·). For a
node-pair Ngt

1 ↔ Ngt
2 , gt ∈ G, we consider the sub-function

Cgt(·) which deals with the symbol-pair (SN
gt
1
, SN

gt
2
). As

the minimum distance criterion [9] is adopted for estima-
tion, an erroneously estimated symbol-pair (ŜN

gt
1
, ŜN

gt
2
) 6=

(SN
gt
1
, SN

gt
2
) is generally close to the actual symbol-pair

(SN
gt
1
, SN

gt
2
) in the constellation of the superposed signal.

If all symbols-pairs near to (SN
gt
1
, SN

gt
2
) are mapped to

the same encoded symbol, and satisfy the exclusive law at
the same time, the end nodes can still correctly decode the
intended symbols when (ŜN

gt
1
, ŜN

gt
2
) 6= (SN

gt
1
, SN

gt
2
) and

Cgt(ŜN
gt
1
, ŜN

gt
2
) = Cgt(SN

gt
1
, SN

gt
2
). Therefore, similarly

with [7], we attempt to map symbol-pairs which correspond
to points that are close to each other in the superposed
constellation into identical (encoded) symbols, as long as the
exclusive law is satisfied among these symbol-pairs. We denote
the set of symbol-pairs that are mapped into an identical
symbol as a cluster, and the distances among superposed
constellation points in different clusters are related to the BER.
Different from [7], we consider distances among superposed
constellation points at both the relay and each overhearing
node, because wrong estimation at the overhearing node can
also lead to bit error for the particular node. The superposed
constellations at the relay and overhearing nodes can be known
when the channel coefficients between nodes and the initial
phases of the signals are given.

The algorithm for determining Cgt(·) is shown in Algorithm
1, in which Ngt

1 ↔ Ngt
2 denotes the transmitting node-pair of

group G. The channel coefficient matrix H, modulation type
(determines the possible number |M| of symbols that Ngt

j

may send out), and overhearing nodes Ngr
1 ↔ Ngr

2 , gr 6=
gt,∀gr ∈ G are given. We can know that the number of
superposed constellations under consideration is 2 |G| − 1
(with |G| − 1 node-pairs plus one relay) and the number
of constellation points in each superposed constellation is
|M|2. We use (sNgt

1
, sNgt

2
) to denote a particular pair of

symbols. The algorithm initially forms a cluster for each
symbol-pair independently. After that, it calculates the dis-
tances between any two superposed constellation points at both
the relay R and each overhearing node Ngr

j , gr 6= gt,∀gr ∈
G (which is denoted by dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

,
where n ∈ {R} ∪ {Ngr

1 , Ngr
2 : gr 6= gt,∀gr ∈ G} is

the node under consideration), and stores all the distances
into a distance set D. The “while” loop in Algorithm 1
is used to allocate symbols into different clusters. Sup-
pose that dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

is the minimum
value in D, we check the exclusive law for symbol-pairs
(sNgt

1
, sNgt

2
) and (s′

N
gt
1
, s′

N
gt
2
). If satisfied, the clusters that

contain (sNgt
1
, sNgt

2
) and (s′

N
gt
1
, s′

N
gt
2
) are merged together.

If not, dn
(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

is a distance between
different clusters. We save the distance into dmin at the
first time when the exclusive law is not satisfied. Then, we
compare dmin with a threshold dth (which is decided by
the BER constraint). If dmin < dth, the algorithm returns
FALSE and stops running. It means that node-pairs in this
group cannot be jointly encoded, and we say that group
G is infeasible. If dmin ≥ dth, group G is feasible, and
the algorithm goes through the whole process and finally
returns TRUE. The return value is used in the node-pair
grouping algorithm which will be described in Section IV.
For a particular combination of two symbol-pairs (sNgt

1
, sNgt

2
)
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Algorithm 1 Generating Low Level Sub-function Cgt(·)
1: Given overhearing nodes Ngr

1 ↔ Ngr
2 , gr 6= gt, ∀gr ∈ G

2: Given channel coefficients matrix H and symbol set M
3: Define a variable for shortest distance between clusters: dmin,

and initialize with dmin ←∞
4: Define empty set MCgt

and mapping Cgt :M×M→MCgt

5: for all (sNgt
1
, sNgt

2
) ∈M×M do

6: Generate a cluster set: U(s
N

gt
1

,s
N

gt
2

) ← {(sNgt
1
, sNgt

2
)}

7: for all (s′
N

gt
1
, s′

N
gt
2
) ∈M×M do

8: for all n ∈ {R} ∪ {Ngr
1 , Ngr

2 : gr 6= gt, ∀gr ∈ G} do
9: Compute the distance dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

10: Put it in the distance set:
D ← D ∪ {dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)
}

11: end for
12: end for
13: end for
14: while D 6= φ do
15: Let dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

be the minimum in D
16: Generate a temporal cluster set:

U ← U(s
N

gt
1

,s
N

gt
2

) ∪ U(s′
N

gt
1

,s′
N

gt
2

)

17: Check the satisfaction of exclusive law for all different
members (s̃Ngt

1
, s̃Ngt

2
) 6= (s̃′Ngt

1
, s̃′Ngt

2
) ∈ U

18: if the exclusive law was satisfied then
19: Update the clusters:U(s

N
gt
1

,s
N

gt
2

) ← U , U(s′
N

gt
1

,s′
N

gt
2

) ← U

20: else if dmin =∞ then
21: dmin ← dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

22: if dmin < dth then
23: return FALSE
24: end if
25: end if
26: for all n ∈ {R} ∪ {Ngr

1 , Ngr
2 : gr 6= gt, ∀gr ∈ G} do

27: D ← D \ {dn
(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)
}

28: end for
29: end while
30: for all (sNgt

1
, sNgt

2
) ∈M×M do

31: if rule for symbol-pairs in U(s
N

gt
1

,s
N

gt
2

) does not exist in Cgt

then
32:

∣∣MCgt

∣∣← ∣∣MCgt

∣∣+ 1
33: Add a rule for symbol-pairs in U(s

N
gt
1

,s
N

gt
2

) to Cgt

34: end if
35: end for
36: return TRUE

and (s′
N

gt
1
, s′

N
gt
2
), the algorithm only considers the minimum

distance among all nodes. Afterwards, it removes all distances
that correspond to the same combination from D, as shown in
lines 26–28 in Algorithm 1. After all the symbols are allocated
(i.e. D becomes empty), we remove the repeated clusters to
achieve the mapping Cgt :M×M→MCgt

. The complexity

of this algorithm is O
(
|M|4 |G|

)
.

IV. NODE-PAIR GROUPING

The goal of node-pair grouping is to find the optimal
partition P = {G1, . . . ,G|P|}. An optimal partition has the
following characteristics: 1) node-pair(s) in each group G ∈ P
can perform joint encoding under a certain BER constraint, i.e.
all G ∈ P are feasible for joint encoding; 2) |P| must be the

smallest among all feasible partitions (a feasible partition is a
partition in which all groups are feasible). We also define a
set L = {P1, . . . ,P|L|}, where |L| ≥ 1, which stores different
partitions. From L, an optimal partition can be selected.

A straightforward way of finding the optimal partition is
exhaustive search, which enumerates all the possible partitions,
neglects those partitions that contain infeasible groups, and
chooses one partition with the minimum number of groups.
However, when the total number of node-pairs increases, the
number of possible partitions becomes very large. Hence, we
propose a simplified method for node-pair grouping.

We note the following property.
Proposition 1: If group G is feasible, then any group G′ ⊆
G is also feasible.

Proof: Consider gt ∈ G′ and G′ ⊆ G, according to
the discussion in Section III-D, when constructing the en-
coding sub-function Cgt(·) for group G, the distance set is
D = {dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

: ∀(sNgt
1
, sNgt

2
) ∈

M×M, ∀(s′
N

gt
1
, s′

N
gt
2
) ∈M×M, ∀n ∈ {R} ∪ {Ngr

1 , Ngr
2 :

gr 6= gt,∀gr ∈ G}}; and when constructing Cgt(·) for G′,
the distance set is D′ = {dn

(
(sNgt

1
, sNgt

2
), (s′

N
gt
1
, s′

N
gt
2
)
)

:

∀(sNgt
1
, sNgt

2
) ∈ M ×M,∀(s′

N
gt
1
, s′

N
gt
2
) ∈ M ×M,∀n ∈

{R} ∪ {Ngr
1 , Ngr

2 : gr 6= gt,∀gr ∈ G′}}. Because G′ ⊆ G, it
is easy to see that D′ ⊆ D. If group G is feasible, then the
minimum distance dmin ∈ D between different clusters must
be greater than or equal to the threshold dth. Because the
clustering procedure in Algorithm 1 starts with the minimum
member in D (or, correspondingly, D′) and attempts to arrange
symbol-pairs into the same cluster when the exclusive law can
be satisfied, if we remove some elements from D yielding D′

(i.e. D′ ⊆ D), we must have d′min ≥ dmin ≥ dth, where
d′min is the minimum distance among different clusters when
considering the distance set D′ and the group G′. Hence G′ is
also feasible.

Based on Proposition 1, we start the partitioning with
finding a set of small-size feasible groups and then extend
some of them by group splitting and re-combining in order to
reduce the total number of the feasible groups in the partition.
The process of partitioning includes two steps. In the first
step, we attempt to find a basic partition, in which each group
only contains one or two node-pair(s). In the second step, we
attempt to reduce the number of the groups in the partition
obtained in the first step, via group splitting and re-combining.

The partitioning in the first step can be formulated by
a graph model, where vertices in the graph represent the
node-pairs. If two node-pairs can constitute a feasible group,
we connect the two corresponding vertices with an edge.
This checking process requires running Algorithm 1 with
|G| = 2 among all possible node-pairs, hence its complexity is
O
(
|M|4K2

)
. Then, finding the optimal partition, in which

the maximum number of node-pairs in each group is two,
is equivalent to finding the maximum matching of the graph,
which can be solved by the blossom algorithm with complexity
O
(
K2.5

)
[10]. Based on the matching result, the two node-

pairs that are connected by an edge in the matching are
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allocated into the same group, and we get our desired partition
which includes multiple groups of one or two node-pair(s).

In the second step, we try to further reduce the number of
groups by multiple group splitting and re-combining rounds,
as shown in Algorithm 2. We save the optimal partition in
each round (including the result from the first step) in PT .
In each round, we first select the group(s) with the minimum
number of node-pair(s), and save such group(s) in P ′T . We
split each group G in P ′T and merge each node-pair in G
into the remaining groups PT \ {G} to form new feasible
partitions. All the new partitions have the same number of
groups, which is one less than that in the last round, i.e. |PT |−
1, and we save all the feasible new partitions in L. Because a
group containing larger number of node-pairs also has larger
probability of decoding error (due to error propagation when
using network coding), we select the partition in which the
number of node-pairs are relatively evenly distributed across
each group. This can be achieved by calculating the variances
σ2 of the number of node-pairs in each group of each partition
in L and choosing the partition with the minimum σ2. Then,
PT is updated to store the new partition with minimum σ2.
The same operation of group splitting and re-combining will
be executed on the selected partition PT in the next round.
The second step is finished when no more new partition is
produced or only one group is included in the selected partition
PT . If we assume that the minimum group found in Line 6
has at most K ′ node-pairs, the complexity of the algorithm is
O
(
K3 |M|4

(
K
K′ − 1

)K′)
. If we allow only a limited number

of node-pairs in each group, then K ′ is a constant.

V. SIMULATION RESULTS

We evaluate the performance of our proposed scheme in a
network with one relay and K node-pairs. All the end nodes
are randomly distributed in a 200× 200 m2 square region and
the relay is placed in the center. We use Rician flat-fading
channel with Rician factor 5 dB. The noise power density
is –174 dBm/Hz and the receiver bandwidth is 1 MHz. The
channel power gain is calculated by 1/d4nanb

, where dnanb

is the physical distance between nodes na and nb in meters.
We consider QPSK and 16QAM modulations with different
number of node-pairs or different transmission power. Each
setting is run with 50 different random seeds and the overall
performance is plotted. The maximum BER threshold is set
to 10−3, and the corresponding dth is evaluated according to
digital communication theory [9], by considering the worst-
case BER between closest neighboring constellation points.
We compare the performance with the exhaustive search
method for node grouping.

Figs. 3 and 4 show the average throughputs for node-
pairs which can perform PNC (i.e., in throughput calculation,
we neglect those node-pairs which happen to be in bad
channel status and cannot perform PNC within the BER
requirement). The throughput is expressed as the number
of packets transmitted in each timeslot. We also show the
percentage of node-pairs for which PNC can be performed
(denoted as PNC ratio), which is the same for different
methods because it only depends on the channel condition. In

Algorithm 2 Node-Pair Grouping
1: Define three temporal sets: PT , P ′

T and LT
2: Generate a partition in which each group only contains one or

two node-pair(s) using maximum matching, and save it in PT
3: do
4: Delete all the partitions in L: L ← φ
5: if |PT | > 1 then
6: Find P ′

T ⊆ PT where P ′
T contains the group(s) of

least number of node-pairs
7: for all G ∈ P ′

T do
8: Put node-pairs in G into groups in PT \ {G},

achieve (|PT | − 1)|G| new partitions saved in LT
9: for all P ∈ LT do

10: if P is not feasible for joint encoding then
11: LT ← LT \ {P}
12: end if
13: end for
14: L ← L ∪ LT
15: end for
16: if L 6= φ then
17: for all P ∈ L do
18: Compute the variance σ2

P = 1
|P|
∑|P|

i=1(|Gi| − µ)
2

where µ = 1
|P| (|G1|+ · · ·+ |G|P||)

19: Put it in the set: V ← V ∪ σ2
P

20: end for
21: Let σ2

P be the minimum member in V , put the
corresponding partition in temporal set PT ← P

22: end if
23: end if
24: while L 6= φ

25: return PT
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Fig. 3. Average throughput for node-pairs which can perform PNC and PNC
ratio versus number of node-pairs.
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Fig. 4. Average throughput for node-pairs which can perform PNC and PNC
ratio versus transmission power.
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Fig. 6. Average cardinality of encoded symbol set versus transmission power.

Fig. 3, we consider scenarios with different number of node-
pairs, and the transmission powers are respectively set to 20
dBm and 25 dBm for QPSK and 16QAM. We can observe
that the performance of our proposed scheme is close to the
exhaustive search method which returns the optimal value.
When the number of node-pairs is large, the proposed scheme
slightly underperforms the exhaustive search scheme, because
we use a heuristic (suboptimal) node-pair grouping method
when the number of node-pairs in the group exceeds two. The
minimum throughput is 1 packet/slot, and is achieved when
all the feasible groups contain only one node-pair, which is
the same as conventional PNC without joint encoding. The
throughput increases with the number of node-pairs because
the joint encoding opportunity increases. When using 16QAM,
the throughput stops increasing when the number of node-pairs
is larger than four, because it has reached the upper limit of the
number of jointly encoded node-pairs at 25 dBm transmission
power, and therefore we did not simulate cases with more
than five node-pairs. In Fig. 4, the throughput is evaluated
when transmission power varies from 0 dBm to 35 dBm. The
number of node-pairs is set to 6 for QPSK modulation, and 4
for 16QAM. When the transmission power is high, the average
throughput with QPSK approximately reaches the upper bound
of 1.714 packets/slot, which is achieved when all the six node-
pairs compose one single feasible group. It can be observed
that in all cases, PNC with joint encoding outperforms PNC
without joint encoding (which corresponds to the bottom-line
throughput of 1 packet/slot).

When executing joint encoding, the encoded symbol set
MC may be larger than the original symbol set M. Figs.
5 and 6 show the average cardinality of the encoded symbol
set. We can observe that the average cardinality ranges from 4
to 7 (with the majority close to 5) for QPSK and from 20 to 30
(with the majority close to 25) for 16QAM. Note that such an

increase in the cardinality is also common for PNC without
joint encoding, and sphere packing can be used to generate
constellations for irregular symbol sets, as discussed in [7].

VI. CONCLUSIONS

In this paper, we have proposed a joint encoding and
node-pair grouping scheme. Joint encoding is achieved with
a two-level encoding function. The low-level sub-function
processes the simultaneously transmitted symbol-pair and
maps them into an encoded symbol, and the high-level sub-
function further encodes these symbols digitally. The node-
pair grouping process attempts to find the feasible partition
with the least number of groups, thereby minimizing the
number of necessary timeslots. It first finds the partitions with
a maximum of two node-pairs in each group, using maximum
matching in a graph. Then, it attempts to split and re-combine
groups, starting from the smallest group, to further reduce
the total number of groups. Simulation results show that the
proposed scheme can improve the throughput compared with
conventional PNC without joint encoding, and the results when
using the proposed scheme are close to the optimum. Future
work can focus on reducing the complexity of algorithms as
well as reducing the cardinality of the encoded symbol set.
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