
PrivacyGuard: Enhancing Smart Home User Privacy
Keyang Yu, Qi Li, Dong Chen, Mohammad

Rahman
Florida International University

Miami, Florida, USA
{kyu009,qli027,dochen,marahman}@�u.edu

Shiqiang Wang
IBM Research

Yorktown Heights, New York, USA
wangshiq@us.ibm.com

ABSTRACT
The Internet of Things (IoT) devices have been increasingly de-
ployed in smart homes and smart buildings to monitor and control
their environments. The Internet tra�c data produced by these IoT
devices are collected by Internet Service Providers (ISPs) and IoT de-
vice manufacturers, and often shared with third-parties to maintain
and enhance user services. Unfortunately, extensive recent research
has shown that on-path adversaries can infer and �ngerprint users’
sensitive privacy information such as occupancy and user in-home
activities by analyzing IoT network tra�c traces. Most recent ap-
proaches that aim at defending against these malicious IoT tra�c
analytics can not su�ciently protect user privacy with reasonable
tra�c overhead. In particular, many approaches did not consider
practical limitations, e.g., network bandwidth, maximum package
injection rate or actual user in-home behavior in their design.

To address this problem, we design a new low-cost, open-source
user “tunable” defense system—PrivacyGuard that enables users
to signi�cantly reduce the private information leaked through IoT
device network tra�c data, while still permitting sophisticated data
analytics or control that is necessary in smart home management.
In essence, our approach employs intelligent deep convolutional
generative adversarial networks (DCGANs)-based IoT device tra�c
signature learning, long short-termmemory (LSTM)-based arti�cial
tra�c signature injection, and partial tra�c reshaping to obfus-
cate private information that can be observed in IoT device tra�c
traces. We evaluate PrivacyGuard using IoT network tra�c traces
of 31 IoT devices from 5 smart homes. We �nd that PrivacyGuard
can e�ectively prevent a wide range of state-of-the-art machine
learning-based and deep learning-based occupancy and other 9 user
in-home activity detection attacks. We release the source code and
datasets of PrivacyGuard to IoT research community.

CCS CONCEPTS
• Security and privacy ! Social network security and privacy;
• Computing methodologies ! Machine learning approaches;
Neural networks; Classi�cation and regression trees.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
IPSN ’21, May 18–21, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8098-0/21/05. . . $15.00
https://doi.org/10.1145/3412382.3458257

KEYWORDS
IoT privacy, Smart Home, Machine Learning, Deep Learning

ACM Reference Format:
Keyang Yu, Qi Li, Dong Chen, Mohammad Rahman and Shiqiang Wang.
2021. PrivacyGuard: Enhancing Smart Home User Privacy. In The 20th
International Conference on Information Processing in Sensor Networks (co-
located with CPS-IoT Week 2021) (IPSN ’21), May 18–21, 2021, Nashville,
TN, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3412382.3458257

1 INTRODUCTION
People are increasingly deploying the Internet of Things (IoT) de-
vices in smart homes and smart buildings to monitor and control
their environment. The total installed base of the IoT devices is
projected to amount to 75.44 billions worldwide by 2025, a �vefold
increase in 10 years [35]. This penetration of IoT devices holds great
promise to transform people’s lives bymaking societymore e�cient
in many areas, including smart home, transportation, manufactur-
ing, e-health, etc. Tra�c data generated by these IoT devices is
recorded by Internet Service Providers (ISPs) to maintain customer
services, such as generating monthly bills, personalizing data plan,
and detecting network outages. “Any service that provides Internet
access can obviously see what resources users are accessing. And
even with encryption, tra�c patterns provide some information
about activity." [22]. Verizon uses “supercookies" to track Internet
user activity, and AT&T charges customers an extra $29 per month
to avoid “the collection and monetization of their browsing his-
tory for targeted ads," Mozilla told Congress [23]. ISPs like AT&T,
Comcast, Time Warner, Sprint, and Verizon are selling personal
network tra�c data without prior user consent to “enhance” user
experience [7]. Also, recent IoT privacy study [19] shows that 72
out of 81 popular IoT devices are sharing data with third-parities
(e.g., Google, Amazon and Akamai) completely unrelated to original
manufacturer and far beyond basic necessary device con�guration,
including voice speakers, smart TVs, and streaming dongles.

In parallel, signi�cant recent research [5, 6, 8, 9, 12, 13, 15, 25,
32, 39, 40] has shown that launching attacks to extract user activi-
ties from IoT tra�c data is surprisingly easy, since user activities
highly correlate with simple time-series data statistical metrics,
such as mean, variance, and range. Thus, IoT device tra�c data has
signi�cant privacy threats. An important example of simple and
private information that IoT tra�c data may leak is occupancy—
whether or not someone is at home and when [18]. The network
tra�c rate trace (in kB/s) of 2 IoT devices from a single apartment
is reported in Figure 1. The tra�c rate trace signals the occupancy
status in this home. Most recent research [16] also demonstrated
that a passive Amazon Alexa attacker can �ngerprint users’ voice



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)

Time (s)

 30

 40

 50

 60

 70

20 22 0 2 4 6 8 10 12

go to bed get up

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)
Time (hours)

(a) Voice Assistants (b) Sleep Sensor

Figure 1: When occupied, IoT device tra�c rate typically be-
comes larger and more variable due to user interactions.

commands and compromise the user privacy of millions of U.S.
consumers. In addition, this IoT tra�c data may also indirectly
reveal privacy information that might be interesting for insurance
companies, marketers, or the government. For instance, signi�cant
tra�c spikes at mealtimes may indicate users are regularly having
meals at home. Another example, consistent amount of TV net-
work tra�c on Saturday night from 7 pm to 9 pm may indicate the
residents are watching NBA games every weekend. Also, a lack of
signi�cant network tra�c may show that occupants are out of town
for vacation. Intuitively, users’ interaction with IoT devices, e.g.,
talking to voice assistants, opening/closing doors, watching smart
TVs, lends itself to straightforward attacks that detect changes in
these metrics and associates them with changes in user activities.

Prior research [5, 8, 11, 24, 37–39, 41] proposes tra�c reshaping-
based prevention techniques to thwart privacy attacks on IoT tra�c
rate traces. Unfortunately, these approaches did not signi�cantly
consider at least one of the following facts: (1) The arti�cial tra�c
“spikes” that are injected to hide user privacy should not con�ict
with the real user behavior; (2) Many IoT devices have bidirectional
network tra�c �ows that should be reshaped concurrently; (3)
Reshaping operations have practical limitations, such as network
bandwidth and maximum injection rate. And these may still allow
adversaries to infer user in-home sensitive private information.
In addition, the native �attening algorithms broadly employed by
many approaches resulted in 3⇠4 times additional tra�c overhead.
Thus, new lost-cost and e�ective techniques are necessary.

To address these issues, we propose a new low-cost, open-source
user “tunable” defense system—PrivacyGuard that enables smart
home users to signi�cantly reduce, the private information leaked
through IoT device network tra�c, while still permitting sophis-
ticated tra�c analytics that is necessary to use IoT devices. This
paper makes the following contributions.
User Privacy Leakage Identi�cation. We explore and highlight
the privacy leakage of user in-home activities from IoT network
tra�c rate traces. We discuss the fundamental privacy concerns
that govern network tra�c rate over time for popular IoT devices.
In doing so, we review, implement, and benchmark a wide range of
sophisticated user activities attack models using machine learning
(ML) and deep learning (DL) approaches, including k-nearest neigh-
bors (k-NNs), Hidden Markov Models (HMMs), Support Vector
Machines (SVMs) and Convolutional Neural Network (CNNs).
PrivacyGuard Design. We present the design of PrivacyGuard,
which enables users the “tunable” control to signi�cantly reduce,

the private information leaked through IoT device network tra�c.
In essence, PrivacyGuard employs intelligent deep convolutional
generative adversarial networks (DCGANs)-based tra�c signature
learning, long short-term memory (LSTM)-based arti�cial tra�c
signature injection, and partial tra�c reshaping to obfuscate user
in-home privacy. We also design optimization techniques to further
reduce PrivacyGuard’s tra�c overhead.
Implementation and Evaluation. We implement PrivacyGuard
both simulator and prototype in python using widely-used open-
source frameworks. We evaluate PrivacyGuard using tra�c rate
traces of 31 IoT devices from 5 smart homes. The results show
that PrivacyGuard e�ectively prevents 9 di�erent state-of-the-art
ML/DL-based user activity attacks. We evaluate PrivacyGuard in
multiple ways: (1) We evaluate PrivacyGuard’s defending perfor-
mance using tra�c traces of 25 IoT devices for 20.5 days fromUSNW
dataset [33]. (2) We then evaluate PrivacyGuard’s accuracy using
tra�c traces of 31 IoT devices in our own on-campus “mock” smart
homes. (3) We validate PrivacyGuard’s accuracy for using IoT tra�c
rate traces of 22 IoT devices from two townhouse apartments. (4)
We also download two Kaggle datasets to evaluate PrivacyGuard.
Releasing Datasets and Code. Our new approaches to analyze
IoT network tra�c traces and prevent user sensitive information
leakage in these traces using machine learning-based and deep
learning-based tra�c reshaping techniques are quite general, and
can be applied to address similar privacy problems in other data
analytics research domains, such as smart grid and medical e-health
system. For instance, our feature selection approach from time-
series data motifs can be applied to extract spike features in smart
grid energy meter reading traces and healthcare device tra�c traces.
Our LSTM-based tra�c reshaping approaches can also applied to
preserve user sensitives information (e.g., occupancy, location, and
daily routine) exposed in the time-series traces of smart meters
and medical devices. We release the source code, datasets, and
attack models that we used to design and evaluate PrivacyGuard to
research communities on our website [2].

2 BACKGROUND AND RELATEDWORK
2.1 Privacy Threat Model
As shown in Figure 2, we are broadly concerned with the ability
of ISPs, on-path network observers, and third-parties to infer user
in-home activities from smart home network tra�c rate metadata.
The network tra�c rate metadata, including inbound/outbound
tra�c rates, network protocols, source, and destination IPs, package
sizes and etc., are accessible to many entities. And these potential
adversaries may be incentives to infer user activities in smart homes
where users do not want to share this privacy-sensitive information
with them. We assume the external adversaries can use any data
analytics techniques, such as data mining, ML/DL, inference, or
other statistical methods to infer certain types of information for
the observed patterns in the recorded tra�c traces. Thus, inferring
or discovering user activities in these homes is considered as an
opposition to the users’ privacy preferences.

In particular, we are concerned with 3 types of privacy attacks:
i) Learning occupancy from the data. This includes whether a home
is occupied and when; ii) Learning user in-home activities from
the tra�c data. User activities may include when users come and



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

Figure 2: Overview of our privacy threat model.

go, when they perform their daily activities, such as going to bed,
waking up, watching TV, listening to music, playing online games,
as well as more complex questions, such as whether a household
has a baby, and whether they go on vacation on weekends; iii)
Learning network tra�c pattern information from the data. This
includes whether a particular IoT device (e.g., Voice Assistant) is
present in a home, what model of an IoT device is present, and how
much tra�c the home consumes on it every month.
Attack Scenario #1: To infer the type of IoT devices and user ac-
tivities at a certain home, an external Internet on-path adversary
intends to acquire the real-time IoT network tra�c traces and lever-
age ML/DL-based statistical learning and data mining approaches.
Then, the external attacker may launch cyberattacks for a speci�c
IoT device when user activities permit.
Attack Scenario #2: An external adversary from ISPs, IoT device
manufacturers or third-parties is actively monitoring the IoT tra�c
traces and then uses data analytic approaches to learn the indirect
user privacy information that might be interesting for insurance
companies, marketers, or the government.

In addition, we assume our smart home users would like to
trust in Amazon AWS (EC2) or Google Cloud services to protect
their in-home user privacy information. Note that evaluating the
e�ectiveness of establishing trust relationship between end users
and cloud servers is outside the scope of this paper.

2.2 Related Work
We outline the design alternatives to preserve smart home user
privacy using pure tra�c injection approach, hybrid tra�c reshap-
ing approach, and random tra�c padding approach. In doing so,
we review a wide range of the most recent sophisticated tra�c
reshaping-based prevention techniques [5, 6, 8, 9, 13–15, 25, 29–
32, 39, 40] to thwart privacy attacks on IoT tra�c rate traces.

To understand the performance of the above existing approaches,
we implemented three di�erent tra�c reshaping approaches. Fig-
ure 3 shows a 3-day tra�c rate (kB/min) traces comparison results
using the three approaches. Table 1 quanti�es the e�ectiveness of
the three approaches and additional three recent approaches by
showing Pearson Correlation Coe�cient (PCC) and Spearman’s
Rank Correlation Coe�cient (SRCC). The PCC [26] is a measure of
the linear correlation between original and modi�ed tra�c. It has a
value between +1 and -1, where 1 is total positive linear correlation,
0 is no linear correlation, and -1 is total negative linear correlation.
The SRCC [34] assesses monotonic relationships between original
tra�c and modi�ed tra�c. If there are no repeated data values,
a perfect SRCC of +1.0 or -1.0 occurs when each of the variables
is a perfect monotone function of the other. Although recent ap-
proaches have been proposed to mitigate the privacy leakage issue,
the modi�ed tra�c rate traces after applying these prior approaches
may still have a very high linear and monotonic correlation with

101

102

103

104

105

09/25 09/26 09/27 09/28

Lo
g 

Tr
af

fic
 R

at
e 

(K
B

/m
in

) Original

101

102

103

104

105

09/25 09/26 09/27 09/28

Lo
g 

T
ra

ffi
c 

R
at

e 
(K

B
/m

in
)

PureInjection

101

102

103

104

105

09/25 09/26 09/27 09/28

Lo
g 

T
ra

ffi
c 

R
at

e 
(K

B
/m

in
)

Hybrid Traffic Reshaping

101

102

103

104

105

09/25 09/26 09/27 09/28

Lo
g 

T
ra

ffi
c 

R
at

e 
(K

B
/m

in
)

Random Traffic Padding

Figure 3: A 3-day tra�c rate comparison of before and after
applying 3 di�erent major tra�c reshaping approaches.

the original tra�c rate traces. We use PCC and SRCC to quantify
the e�ectiveness of the prior approaches on masking user private
information. We also use n-security [25] to describe the probability
of a tra�c reshaping approach can not prevent smart home users
from an external adversary’s in-home activity inferring.
Pure Tra�c Injection. Prior work [8, 20, 25] proposed defense
approaches to inject “fake” tra�c patterns to conceal genuine user
in-home network tra�c patterns. As shown in Table 1, the general
implementation yields additional overhead as ⇠97%. In particular,
Park et al. found that tra�c data encryption cannot prevent privacy
invasions exploiting tra�c pattern analysis and statistical infer-
ence [25]. Park et al. �rst developed empirical models to statistically
learn user behaviors using the transition status of wireless sensors.
Then, cloaking network tra�c patterns are injected to obscure
genuine tra�c patterns. Cai et al. presented a defense against Tor
website �ngerprinting that can reshape tra�c rate traces by con-
trolling the size of the parameter to pad packets [8]. However, these
approaches did not completely hide the genuine network tra�c
patterns, in particular, during higher and lower tra�c rates periods.
This may still allow adversaries to distinguish “fake” tra�c patterns
from genuine tra�c patterns to infer user in-home activities.
Hybrid Tra�c Reshaping. Prior work [6, 9] presented hybrid
reshaping techniques to prevent user privacy leakage in the aggre-
gated sensor or network tra�c data. These approaches are aiming
at combining partial demand �attening and random arti�cial sig-
nature injection to obscure user privacy in the recorded data, and
leveraging activity-aware optimizations to reduce their reshaping
overhead. As shown in Table 1, the general implementation yields



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

PCC SRCC Security
(n)

Additional
Overhead

Pure Tra�c Injection 0.748 0.83 87.15% 97%
Hybrid Tra�c Reshaping 0.462 0.711 72.6% 103.7%
Random Tra�c Padding 0.582 0.686 54.33% 165.9%

Tor [8] 0.805 0.712 77.5% 25%
RepEL [6] 0.361 0.525 33% 100%

Tamarow [8] 0.292 0.473 3.4% 199%

Table 1: The correlation and tra�c overhead comparison of
six major tra�c modi�cation approaches.
additional overhead as ⇠103.7%. Chen et al. proposed to learn the
“noise” injection rate using empirical statistical analytics (e.g., prob-
ability mass function) of smart home device events [9]. Similarly,
Bovornkeeratiroj et al. proposed RepEL which employed an edge
gateway to partially �atten loads and randomly replay loads to hide
private user occupancy information [6]. Shmatikov et al. proposed
adaptive padding algorithms to leverage the intermediate mixes to
inject dummy packets into statistically unlikely gaps in the packet
�ow to destroying timing “�ngerprints” application tra�c by en-
forcing inter-package intervals to match pre-de�ned probability
mass functions [32]. Wang at al. [40] designed a tra�c padding
algorithm that uses matched package schedules to prevent adver-
saries from paring incoming and outgoing tra�c �ows. Signi�cant
work [14, 29–31] proposed to model user in-home activities using
Markov Chain-based approaches. However, due to the empirical
modeling of IoT device events and the nature of the random in-
jecting of IoT tra�c signatures, these approaches may still allow
sophisticated attackers to identify the randomly injected “fake”
signatures, and thus infer the genuine user private information.
Random Tra�c Padding. Recent work [5, 13, 15] proposed ran-
dom tra�c padding approaches, that aims at preventing a passive
network adversary from reliably distinguishing genuine user activ-
ities from “fake” tra�c patterns. As shown in Table 1, the general
implementation yields additional overhead as ⇠165.9%. Dyer et
al. proposed a bu�ered �xed-length obfuscator based on random
padding to prevent website �ngerprinting attacks [13]. Juarez et al.
proposed an adaptive padding approach that can provide a su�cient
level of security against website �ngerprinting [15]. The proposed
approach matched the gaps between tra�c packets with a distribu-
tion of generic network tra�c. When a large gap is identi�ed in the
network tra�c volume data, this approach will inject padding tra�c
in that gap to prevent long gaps from being a distinguishing feature
for attackers. Similar to hybrid reshaping, Apthorpe et al. presented
a stochastic tra�c padding algorithm to �atten real tra�c patterns
and randomly inject fake tra�c patterns that look like the real IoT
tra�c patterns [5]. Rather than using pre-de�ned IoT device traf-
�c pattern distribution, Apthorpe et al. integrated their approach
with Hidden Markov Model (HMM), which can better model user
in-home behavior using IoT tra�c trace. However, HMM-based
user behavior modeling cannot accurately model user activities that
are presented in the interleaved operations of multiple IoT devices
simultaneously.
Observation. Our results in Table 1 shows that random tra�c
padding approach—Tamarow yields the lowest PCC, SRCC, and
n-security as of 0.292, 0.473, and 3.4%, respectively. Unsurprisingly,
pure tra�c injection approach reports the highest PCC, SRCC, and
n-security as of 0.75, 0.83, and 87.15%. This is mainly due to the

fact that pure tra�c injection approach only injects and adjusts
the shape of “fake” tra�c patterns and does not reshape or mod-
ify any real IoT tra�c patterns already presented in IoT tra�c
traces. Hybrid tra�c reshaping approach reports coarser correla-
tion than pure tra�c injection approach. This is because in addition
to injecting “noise” into IoT tra�c traces, hybrid tra�c reshap-
ing approach also makes its best e�orts to partially �atten both
genuine and “fake” tra�c patterns of IoT devices. The di�erent
correlation performance between hybrid tra�c reshaping approach
and random tra�c padding approach is due to the fact that random
tra�c padding approach generally has higher �attening threshold
to pad IoT tra�c patterns, and also consider the bidirectional tra�c
padding for IoT devices (e.g., Amazon Alexa, Google Home). For the
same reason, random tra�c padding approach—Tamarow reports
themaximum tra�c overhead as of 199% additional overhead per de-
vice per day. However, even the best performing approach—random
tra�c padding approach still reports signi�cant value of PCC and
SRCC. This is mainly due to fact that this approach may not con-
sider practical limitations in real smart homes, such as network
bandwidth and maximum tra�c injection rate, and thus the “spikes”
of genuine tra�c patterns can still be observed by adversaries.

2.3 Summary
Prior research proposes signi�cant prevention techniques to thwart
privacy attacks on IoT tra�c rate traces. Unfortunately, these ap-
proaches did not signi�cantly consider at least one of the following
facts: (1) The arti�cial tra�c “spike” that are injected to hide user
privacy should not con�ict with the real user behavior; (2) Many
IoT devices have bidirectional network tra�c �ows that need to
be reshaped currently (not necessarily to be perfectly �attened);
(3) Flattening and injection operations have practical limitations,
such as network bandwidth, maximum package injection rate, and
user behavior permitting. And these may still allow adversaries to
infer user in-home sensitive information by applying time-series
data analytics attacks. In addition, the native �attening algorithms
broadly employed by many approaches actually resulted in 3⇠4
times additional tra�c overhead. Thus, new lost-cost and e�ective
techniques are necessary. These valuable insights will guide the
development of our proposed technique—PrivacyGuard.

3 PRIVACY LEAKAGE IDENTIFICATION
As we discussed in Section 2, we are concerned with user private
sensitive information that may be learned by adversaries from
the externally observed tra�c rate traces of the IoT devices in
smart homes. To explore the severity and extent of this privacy
threat, we design a wide range of Machine Learning (ML)-based
and Deep Learning (DL)-based user activities attack models to
better understand and identify the most common user activities can
be learned by those adversaries. Unlike the existing work mainly
focusing on binary occupancy status detection, we investigate the
multiple-class user activities when a home is occupied. In doing so,
we identify the privacy leakage in the IoT network tra�c rate traces.
In addition, we use all these attack models that are developed in this
section to evaluate our new approach—PrivacyGuard in Section 6.

To benchmark the performance for each attack model as shown
in Table 2, we use the Matthews Correlation Coe�cient (MCC) [21],



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

User Activities Model MCC Cohen’s
Kappa

Talk to Alexa Logistic Regression 0.966 0.983
Control Lights Decision Tree 0.997 1.000
Print Files Logistic Regression 0.931 0.933

Baby Present Random Forest 0.953 0.954
Use Smartphone SVMs (linear) 0.917 0.942

Use Laptop Decision Tree 0.997 0.997
Walk in Home Decision Tree 1.000 1.000

Check Body Weight CNNs 0.909 0.999
Check weather condition Random Forest 0.973 0.999

Play music LSTM 0.957 0.958
Control plugs Decision Tree 0.889 0.999
Make Co�ee SVMs (Linear) 0.969 0.971

Other Activities LSTM 0.917 0.927

Table 2: The best performing attack models to detect 13 dif-
ferent user activities using two datasets.

a standard measure of a binary classi�er’s performance, where
values are in the range �1.0 to 1.0, with 1.0 being perfect user
activities detection, 0.0 being random user activities prediction,
and �1.0 indicating user activities detection is always wrong. The
Cohen’s Kappa [10] is a measure of the agreement between two
classi�ers who each classify # items into ⇠ mutually exclusive
categories. The Cohen’s kappa is widely used to evaluate multi-
class classi�ers. 1.0 indicates a complete agreement, while, ^=0
indicates no agreement among the multi-class classi�ers. We will
discuss more detail about MCC and Cohen’s Kappa in Section 6.

3.1 Feature Selection
To identify principle features of IoT tra�c rate data that we use to
build and train our attack models, we �rst build a large IoT aggre-
gated tra�c rate dataset that has network tra�c rate traces of 31
IoT devices and empirically examine 10 statistical features based on
the time series motifs of each IoT device, including duration, mean,
maximum and minimum values, standard deviations, range, Skew-
ness, variation coe�cient, kurtosis, area under the curve (AUC), etc.
We leverage Principal Component Analysis (PCA) to analyze the
principle features from IoT network tra�c rate traces. As shown in
Table 3, we �nd 8 principle statistical learning features to identify
user activities-talking to voice assistant and taking care of baby
to train our attack models. As show in Table 3, the features of the
two user activities have signi�cantly di�erent values that allow our
attack models to distinguish di�erent user activities.

Many smart home IoT devices generate bidirectional tra�c when
occupants are interactively using them. For instance, a typical tra�c
rate trace of Amazon Echo may present a short burst of outgoing
tra�c and then multiple incoming tra�c �ows. Insteon Dimmer
and Philips Hue Light show sparse bursts in both incoming and
outgoing tra�c traces when users are interactively controlling their
indoor lights. Wink Door Sensor, Wemo Smart Switch, and Wemo
Mini Plug typically generate very short and sparse and discrete “on”
and “o�” tra�c pattern sister pairs. Baby Monitor and Drop Camera
show the combination of periodic tra�c spikes and sparse bursts
of sharp tra�c spikes in their tra�c traces. In addition, di�erent
user activities typically have di�erent length of duration which
may further a�ect the feature extraction accuracy.

Features Amazon Echo Take Care of Baby
IN OUT IN OUT

Total Tra�c 0.000491 0.000399 0.001994 0.001473
Duration 0.142857 0 0.714285 1
Range 0.000490 0.000343 0.001826 0.003503
Mean 0.000142 0.000299 0.001647 0.006664

Standard
Deviation 0.000448 0.000321 0.001735 0.003245

AUC 0.000119 0 0.001332 0.005062
Skewness 0.969411 0.969412 0.556685 0.556685
Variation
Coe�cient 0.730516 0.452877 0.262926 0.318911

Table 3: The selected features for two user activities.

To learn the sequential event characteristics (e.g, Standard Devia-
tion, Skewness, and Variation Coe�cient) exposed in IoT tra�c rate
traces, we leverage the sliding window-based feature extraction
approach to further process the tra�c spikes.

Given a speci�c tra�c rate trace, we extract the whole tra�c into
multiple independent spikes that can be potentially employed to
identify di�erent user activities.We then learn the above-mentioned
statistical time-series metrics using a sliding window =. To ensure
the e�ectiveness of all the attack models on di�erent user activities,
we need to �nd the optimal sliding window= that can accommodate
all the IoT devices in a smart home. Figure 4 shows the derivative
of 2-degree polynomial �tting on our attack model performance (in
MCC) when using di�erent sliding window size—=. As shown in
Figure 4, the sliding window size—= has a signi�cant e�ect on the
accuracy to identify di�erent user activities. We �nd the optimal
sliding window size = = 40 that we can guarantee our attack models
can observe and extract the principle features exposed in IoT tra�c
rate spikes to indicate user in-home activities.

When IoT tra�c traces are aggregated in smart homes, sev-
eral features (e.g, range, mean, standard deviation, and AUC) may
present slight deviations from non-aggregated tra�c feature re-
sults. However, we observe that among 72,370 tra�c spikes, only
15.19% have signi�cant aggregation due to the overlapped or in-
terleaved IoT device usages in 34-day tra�c traces from 4 smart
homes. In addition, our attack models are trained on the most signif-
icant times-series motif features that are extracted on a signi�cant
amount of tra�c spikes. These motifs retain the most signi�cant
patterns and have the least e�ect from the tra�c aggregation. There
is a potential limitation on the performance of our attack models on
non-residential buildings due to a signi�cant higher tra�c aggrega-
tion level. For instance, in a smart commercial building that has a
large number of occupants are interactively using IoT devices, the
features that our attack models are relying on to infer user activity
may be further obscured. A full evaluation of this e�ect is outside
the scope of this paper.

Note that, the granularity of tra�c rate traces also signi�cantly
impacts the performance of our feature extraction. For instance, for
lower/coarser granularity tra�c traces, some features such as dura-
tion, standard deviations, AUC) might be less distinguishable and
hidden, and thus the n-security of the external adversaries’ attack
models will signi�cantly decrease. For example, considering user
activities that have a very short duration, normally at the second-
level (e.g., operating switches), lower/coarser granularity tra�c
traces may hide the tra�c features and signi�cantly lower down



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

-0.008

-0.004

 0

 0.004

 0  10  20  30  40  50  60

D
e

ri
va

tiv
e

 o
f 

M
C

C

Sliding Window Size

Take Care of Baby
Talk to Amazon

Walking in Home
Check Body Condition

Check Weahter

Figure 4: The relationship between sliding window and user
activity inference accuracy using 31 IoT devices.

the performance of attack models. Similarly, for long-lasting activi-
ties that are minute-level or longer, (e.g., checking body condition),
tra�c traces at lower/coarser granularity can preserve tra�c rate
signature and their features better. A fuller evaluation of granularity
on our system’s performance is discussed in Section 6.4.4.

3.2 Machine Learning-based Attacks
We then focus on selecting the optimal ML model that has the best
accuracy to detect user activity. We investigate the most widely
used ML classi�ers in prior IoT tra�c research work, including
Logistic Regression, Support Vector Machines (SVMs), and Random
Forest. In particular, we also benchmark di�erent kernels for SVMs,
including linear, linear passive-aggressive, linear ridge, polynomial
with 1⇠10 degrees, and radial basis function (RBF). Table 2 shows
the results for attacking 13 di�erent user activities. Note that, for
each user activity shown in Table 2, we run all the ML-based attack
models, and report the one that has the best attacking accuracy in
MCC and Cohen’s Kappa.

3.3 Deep Learning-based Attacks
In addition the ML-based attack models, we also design a convo-
lutional neural networks (CNNs)-based deep learning approach to
detect user in-home activities from IoT tra�c rate traces. Below,
we describe the design of our CNNs architecture which is inspired
by the most notable prior CNNs research—VGGnet [36]. As shown
in Figure 5, our CNNs architecture is comprised of input, convolu-
tional layers (ReLU), max pooling, fully-connected layers (with and
without ReLU) and output. In addition, two fully-connected layers
with ReLU and another fully-connected layer (without ReLU) are
added to process the outputs.

3.4 Comparison and Summary
Interestingly, as shown in Table 2, it is surprisingly easy to infer
and learn user in-home activities using their IoT network tra�c
rate traces in a smart home. On average, our ML-based and DL-
based attacking approaches yield the average MCC as 0.952 and
the average Cohen’s Kappa as 0.974. This results show that our
implemented ML-based and DL-based attack approaches are such
e�ective at detecting user’s private sensitive information (e.g., user
activities) in a smart home. Thus, IoT tra�c rate traces expose
a serious threat to user in-home privacy. Therefore, new privacy
preserving techniques are necessary.We employ all the above attack
models to evaluate our new approach—PrivacyGuard in Section 6.

Figure 5: The overview of our CNNs architecture.

4 PRIVACYGUARD DESIGN
In this section, we explain how we design a new defense system—
PrivacyGuard that enables users to enjoy the bene�ts o�ered by
IoT devices while also controlling the privacy of their tra�c data
with a reasonable tra�c overhead.

4.1 Privacy Guarantee
Di�erential privacy is a system that can ensure if an arbitrary
single substitution in the IoT tra�c rate traces is small enough, the
statistical query learning results can not be used to infer accurate
user in-home sensitive information in a smart home, and thus
preserves the user privacy that may be exposed in the smart home
network tra�c rate traces.

We employ (n)-di�erential privacy as a formulated metric to
describe the privacy guarantee of PrivacyGuard. The de�nition for
(n)-di�erential privacy is: An algorithm � is (n)-di�erential private
if for all tra�c trace substitutions )1 and )2 where )1 and )2 di�er
by at most one tra�c rate signature, and for all subsets of possible
answers ( ✓ '0=64 (�):

% [�()1) 2 (]  % [�()2) 2 (] · 4G? (n)

Given a target smart home,)1 and)2 are two substitutions of IoT
network tra�c rate traces in a smart home, and at most one tra�c
rate signature/spike is di�erent. An external attacker is trying to
identify principle network tra�c features which is processed by
applying the algorithm � and thus to predict the associated user
in-home activity. The parameter n is a quantitative measurement
of the strength of our privacy guarantee. Lower values indicate
a stronger guarantee in our system. However, we are not only
focusing on the speci�c levels of di�erential privacy, but also are
interested in understanding the trade-o� between the complexity
of the algorithm � (e.g., overhead) and user privacy.

Our goal is to develop a perfect algorithm � that can ensure if
an arbitrary single substitution in the IoT tra�c rate traces is small
enough, the adversaries can not infer accurate user in-home sensi-
tive information. PrivacyGuard preserves user di�erential privacy
by combining intelligent tra�c rate signature learning, arti�cial
tra�c rate signature injections, and partial tra�c reshaping to
approximate the algorithm �.

4.2 System Design
Figure 6 shows the system structure of our PrivacyGuard. Privacy-
Guard assumes either a software virtual private network (VPN) or
hardware VPN router is deployed in a smart home. PrivacyGuard



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

Figure 6: System model of PrivacyGuard.

is then connected to the Wi-Fi access point, such as home router or
home gateway. Note that, PrivacyGuard can be deployed either on
an IoT hub (shown in Figure 6), home router, or home gateway. A
VPN wraps all smart home tra�c from IoT devices in an additional
transport layer. By doing so, the VPN can aggregate all the tra�c
into a single tra�c �ow with the source and destination addresses
of the VPN endpoints. Our proposed new approach—PrivacyGuard
allows user “tunable” control over what can be learned using data
analytics techniques over tra�c rate traces from a smart home. Pri-
vacyGuard leverages the VPN layer as the �rst defense to prevent
user in-home activity inference, although even if the VPN has been
optimally con�gured, the external adversaries may still be able to
infer user activities due to user sparse activity and dominating IoT
devices [5]. Then, PrivacyGuard takes additional steps to further
obscure user in-home privacy. In essence, PrivacyGuard �rst learns
IoT device tra�c signatures from their historical tra�c data. Then,
PrivacyGuard employs a DL-based user in-home activity modeling
to inject arti�cial tra�c signatures into tra�c rate traces such that
the genuine user tra�c signatures are obscure in the modi�ed traf-
�c rate traces. Next, PrivacyGuard partially reshapes IoT device’
tra�c rate traces by considering practical limitations. In addition,
PrivacyGuard also employs multiple optimization techniques to
further obscure the privacy information that are exposed in the
externally observed tra�c rate traces with lower tra�c overhead.
Figure 7 shows the 3 major operation �ows of PrivacyGuard.

4.3 Intelligent Tra�c Rate Signature Learning
PrivacyGuard �rst learns IoT device tra�c rate signatures that are
used in its later tra�c reshaping algorithms. The goal of this tra�c
rate signature learning is to ensure that it is reliably di�cult for the
external adversaries to distinguish the genuine IoT tra�c rate signa-
tures from the “arti�cial” injected or replayed tra�c rate signatures.
Di�erent IoT devices typically have di�erent tra�c signatures. For
a speci�c IoT device, PrivacyGuard can learn its tra�c rate signa-
tures over time both o�ine and online. Figure 7 (a) shows the tra�c
rate signatures (in KB/s) of Dropcam and Amazon Alexa. We store
all the tra�c signatures for IoT devices in a SQLite database. Priva-
cyGuard also takes additional steps to ensure it is reliably di�cult
for external adversaries to distinguish arti�cial tra�c demand from
real tra�c demand in the SQLite database. For instance, the time
and duration for each tra�c signature, and also other attributes,
e.g., short, long, high, low, medium, and may compute the fraction
of tra�c signatures in each category. Then, we use this fraction
to weight each category’s future tra�c signature selection, such
that the “arti�cial” tra�c demand matches the breakdown of real
tra�c demand. PrivacyGuard uses Pearson Correlation Coe�cient

(PCC) [26], which is a measure of the linear correlation between
current tra�c rate signature and old tra�c rate signatures, to elim-
inate the duplicated tra�c rate signature update. PrivacyGuard
examines the incoming tra�c rate signatures in the same manner,
despite whether they are “old” or “new” tra�c patterns. The major
di�erence is that once a new signature is detected, we keep a copy
in our database for signature learning and future injection usage.
Similarly, PrivacyGuard can also detect and replay the new tra�c
rate signatures generated by the “old” devices. The algorithm for
tra�c rate signature learning is established in Algorithm 1.

In addition, we also observed that some IoT devices, such as body
condition measurement devices and smoke sensors, have much less
frequent daily usages than other intensive user interaction IoT
devices. Thus, to ensure the accuracy and quality of tra�c rate
signature learning for these IoT devices, we leverage Deep Convo-
lutional Generative Adversarial Networks (DCGANs) [28] to build a
new IoT tra�c rate signature generator. Our DCGANs architecture
is comprised of convolutional layers without max pooling or fully
connected layers. We leverage convolutional stride and transposed
convolution for downsampling and upsampling, respectively. The
generator network uses a 100*1 noise vector. Our �rst layer is to
project and reshape inputs, following this layer, we have �ve con-
volutional layers. For generator model, we use the ReLU activation
function for all the layers except the �nal one, where we employ the
Tanh activation function. Our generator and discriminator have al-
most the same architectures, but re�ected. For discriminator model,
we use the Leaky ReLU activation function for all the layers except
the last layer where we use the Sigmoid activation function. By
doing this, we are able to build a rich set of tra�c rate signatures
for these IoT device. Note that, learning a tra�c rate signature does
not necessarily mean that PrivacyGuard will inject it. The injecting
decisions are made by our real user behavior modeling-based tra�c
signature injection process that is explained in the next section.

4.4 Arti�cial Tra�c Signature Injection
PrivacyGuard does not simply inject or replay tra�c signatures
randomly, since an external adversary may be able to identify those
random patterns in smart home tra�c rate traces. And this may
still allow external adversaries to distinguish the injected “fake”
tra�c demand patterns from the real tra�c demands due to their
inconsistency in user in-home behaviors in a speci�c smart home.

Prior approaches have explored the bene�ts of integrating real
user behavior with their privacy preserving approaches using
Bernoulli distribution, Poisson distribution, or Linear Chain Con-
ditional Random Field (LCCRF) into their tra�c “noise” injections
into IoT tra�c traces. PrivacyGuard selects signatures from the
database to inject at an injection rate equal to the rate at which the
home generates tra�c rate traces when occupied. In addition, Pri-
vacyGuard injects realistic tra�c signatures that we learn from real
IoT device traces in Section 4.3. More importantly, PrivacyGuard
considers real user behaviors in a smart home when injecting these
realistic tra�c rate signatures for each IoT device. In doing so, Pri-
vacyGuard can ensure the injected tra�c patterns still �t the tra�c
distributions that represent the regular user in-home behaviors
such that the external adversaries cannot distinguish the injected
tra�c patterns from the genuine tra�c patterns. Next, we will
explain how PrivacyGuard models user in-home activities.



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30

Movement Detected

Photo Captured

Command

Response

(Amazon Echo) (Dropcam)

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)

Time (s)

Incoming
Outgoing

 0

 5

 10

 15

 20

 25

 30

 160  180  200  220  240  260  280  300  320

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)

Time (s)

Injected
Raw Traffic

 0

 5

 10

 15

 20

 25

 30

 35

 160  180  200  220  240  260  280  300  320

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)

Time (s)

Injected
Partial Reshaping

(a) Tra�c Signature Learning (b) Arti�cial Tra�c Signature Injection (c) Partial Tra�c Reshaping

Figure 7: PrivacyGuard’s tra�c signature learning (a), arti�cial tra�c signature injection (b), and partial tra�c reshaping (c).

Algorithm 1: Tra�c Signature Learning
Input: Tra�c Volume V
Output: Tra�c Signature S
Data: Tra�c Volume + , SQLite Signature Database ⇡⌫

1 /* Segment aggregated traffic volume into device
levels */

2 Disaggregate tra�c volume V into device 8’s volume +8
3 for 8+8 2 V do
4 if Duplicated_Signature (+8 ) in ⇡⌫ then
5 /* Similar traffic signature already

exists */
6 Continue
7 else
8 /* New traffic signature found */
9 Insert +8 into ⇡⌫

10 Update index_keys of ⇡⌫

11 /* Learn device appearance pattern */
12 for 8)8 2 T do
13 for ⇡0~8 2 [0, 6] do
14 for �>DA8 2 [0, 23] do
15 )⇠8 = )⇠8 + 1 // Update traffic frequency
16 )+8+ = )+8 // Update traffic rate

Long short-term memory (LSTM)-based user in-home activ-
ities modeling. To address this problem, we present a recurrent
neural network (RNN)-based approach to model real user in-home
behaviors. Speci�cally, we design a LSTM-based approach to model
user in-home behavior using IoT tra�c rate traces. Note that, sim-
ilar to HMM, LSTM-based approach also assumes user activities
behind these IoT device events are hidden and thus can be learned
though the LSTM architecture. Compared with HMM-based ap-
proach, our LSTM-based model can learn user in-home activity
using both single IoT device events and the concurrent events of
multi-IoT devices. The input shape (a.k.a, window size) of our LSTM
model is the status vector size of all the IoT device, and the IoT
devices reported sensor data is associated with 9 di�erent user
in-home activities. The output of the LSTM model is the future
user activities. As shown in Figure 8, the �rst visible layer is LSTM
layer with 10x10 memory blocks. To reduce over�tting and improve
model performance, we apply 20% dropout to the recurrent input
signals on the LSTM units. After that, two fully-connected layers

with ReLU and another fully-connected layer (without Softmax)
are added to process the output. Since PrivacyGuard is perform-
ing multi-class user activity classi�cation, we use the Categorical
Cross-Entropy Loss (a.k.a, Softmax Loss) as model loss function.
In addition, instead of using the classical stochastic gradient de-
scent approach to update the parameter weights, we employ Adam
algorithm as the optimizer for our LSTM model that can better
handle high dimensional parameters and mitigate sparse gradients
problems. To train our LSTM model, we split IoT device traces with
a 70-30% split of training data to test data. PrivacyGuard leverages
the LSTM-based user activity model to select what IoT tra�c rate
signatures to inject and when to inject them.

Note that, user daily routine, user population, and user patterns
may be di�erent in di�erent homes. In addition, in a new home,
user activity, home con�guration, and IoT devices may also vary.
Users can deploy our PrivacyGuard to automatically retrain the
above-mentioned LSTMmodel to learn these user in-home patterns
which we had benchmarked in Table 3.
Bidirectional Tra�c Signature Injection. The way that Priva-
cyGuard leverages to mimic unidirectional communication IoT
devices is trivial. However, there are a signi�cant amount of IoT
devices are user interaction intensive, such as voice assists, IoT
smart plugins, etc. and they have bidirectional tra�c �ows. To
mimic these IoT devices, as shown in Figure 6, PrivacyGuard may
be deployed both locally and on the remote servers using Mas-
ter/slave model. The local PrivacyGuard works regularly as the
master which is very similar to other single directional tra�c IoT
devices, while, the remote PrivacyGuard server acts as the remote
IoT device servers that are responding to local IoT device tra�c
demands. In addition, PrivacyGuard works in a mixed architec-
ture of Master-Slave and Publish-Subscribe. The remote servers
have the same design as the local PrivacyGuard. The mapping re-
lationship between local in-home PrivacyGuard (a.k.a, publishers)
and remote PrivacyGuard servers (a.k.a, subscribers) is N:M. That
says, multiple PrivacyGuards can share a remote PrivacyGuard
server, and a single smart home PrivacyGuard can be paired with
at least one remote server. The remote server is pretending as the
“valid” IoT remote server to respond to arti�cial IoT device bidirec-
tional tra�c demands. To mimic the incoming/inbound tra�c, we
build PrivacyGuard remote server on top of the tra�c and package
editor/generator—Ostinato [1] that supports most common stan-
dard protocols including Ethernet/802.3/LLC, VLAN, ARP, IPv4,
IPv6, TCP, UDP, HTTP, SIP, RTSP and NNTP. In particular, Priva-
cyGuard leverages Ostinato Python API [1] to vary packet �elds



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

Figure 8: Overview of LSTM-based user activity modeling.
across packets at run time, e.g. changing the source IP/MAC ad-
dresses in the packages of PrivacyGuard remote server to the actual
IoT remote server’s (shown in Figure 9). In doing so, PrivacyGuard
is able to generate incoming tra�c from the source “valid” IoT re-
mote server. In addition, using this design, a single point of remote
server failure will not prevent PrivacyGuard from injecting arti�-
cial incoming tra�c that is critical to hide user privacy in tra�c
traces. Note that, the possible extra tra�c from/to cloud servers,
such as copy-cat tra�c pattern injections, may serve as “free” noise
injections and actually can help PrivacyGuard to better hide user
sensitive information in the tra�c rate traces.

Algorithm 2: Arti�cial tra�c signature injection
Input: Tra�c Volume V
Output: Tra�c Signature S
Data: Tra�c Volume + , SQLite Signature Database ⇡⌫

1 /* Inject artificial traffic signatures */
2 for ⇡0~8 [0, 6] do
3 for �>DA8 2 [0, 23] do
4 if )⇠8�0 then
5 )⇠8� = )⇠8 // Update traffic frequency

limit
6 )+8� = )+8 // Update traffic rate limit
7 /* Mimic user activities using LSTM */

8 Select tra�c signature +8 from ⇡⌫ based on our
learned user activity �

9 /* Further obscure privacy in the load
*/

10 Update tra�c volume +8 = +8 + +8

4.5 User Tunable Partial Tra�c Reshaping
After applying the LSTM-based arti�cial tra�c signature injec-
tion, the modi�ed tra�c traces may still expose changes in traf-
�c rate spikes. To hide these remaining spike changes, we de-
sign a new user tunable partial tra�c reshaping approach. Un-
like prior approaches [5, 8, 11, 24, 37–39, 41], simply assuming
their reshaping techniques always have enough or unlimited tra�c
bandwidth to completely �atten the spikes in the externally ob-
served tra�c traces, PrivacyGuard employs a reshaping threshold—
)A4B⌘0?4 = max{)2DAA4=C (C),* (C),)0E4A064 (C)} that only partially
reshapes tra�c demand to a target less than the peak tra�c de-
mand. )2DAA4=C (C), * (C), )0E4A064 (C) denotes the current tra�c
rate demand, user preferred set-point, and the average tra�c

Figure 9: The illustration of PrivacyGuard remote server
modi�ed packages for Amazon Echo.
rate demand, respectively. In order to maintain )A4B⌘0?4 at each C
with current tra�c demand )2DAA4=C (C), PrivacyGuard consumes
)A4B⌘0?4 � )2DAA4=C (C) whenever )2DAA4=C (C) < )A4B⌘0?4 . Since
)A4B⌘0?4 tra�c demand is typically much lower than peak traf-
�c demand, a low reshaping threshold is able to hide the most of
the changes in tra�c rate trace data without using much network
bandwidth. The algorithm for user tunable partial tra�c reshaping
is established in Algorithm 3.

Note that, PrivacyGuard can automatically learn an opti-
mal/default trade-o� point such that users can use the “least” tra�c
overhead to protect their smart home from the “most” privacy leak-
age. In addition, PrivacyGuard supports smart home users, such as
those who require more privacy protection, or are on an unlimited
Internet data plan, to “tune” this learning process such that they
can use more tra�c to hide their privacy information exposed in
their tra�c rate traces.

Algorithm 3: Partial tra�c reshaping
Input: Tra�c Volume V, User Preference U
Output:Modi�ed Tra�c Volume V
Data: Tra�c Volume V

1 /* Segment traffic volume trace into isolated
traffic traces */

2 Separate tra�c volume V into time C ’s volume
3 + (C, C + X) = {+C ,+C+1, . . . ,+C+X } where

Õ+C
C=1 := +

4 for 8+ (C, C + X) 2 V do
5 Set Reshaping_threshold = max{)+C ,* ,⇠DAA4=C_;>03C }

6 if +C � '4B⌘0?8=6_C⌘A4B⌘>;3 then
7 Continue
8 else
9 /* Reshaping traffic load using selected

threshold */
10 +C = '4B⌘0?8=6_C⌘A4B⌘>;3
11 Extend the reshaping for random n seconds
12 + (C, C + n) = '4B⌘0?8=6_C⌘A4B⌘>;3

4.6 Online Optimizations
In addition, PrivacyGuard introduces some optimization techniques
to further obscure the potential privacy leakage in the externally
observed tra�c rate traces, including intelligent tra�c signature
adjustment and random noise injection, and reshaping rate adjust-
ment. We describe the detail of each optimization as follows.
Intelligent Tra�c Signature Injection Adjustment. Privacy-
Guard adjusts the replayed signature by raising or lowering each
point by a small random amount, e.g., 0%⇠5% of tra�c demand. In
addition, for each tra�c rate demand reshaping, PrivacyGuard also
extends its duration by a small random amount, e.g., 0%⇠5% of the



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

Raspberry Pi
Equipped with
Touchscreen

PrivacyGuard on 
Raspberry Pi

Lamp Controlled
by Smart Plug

Figure 10: The overview of our PrivacyGuard prototype.

regular duration, such that the starting and ending points in the
tra�c rate signature of the sleep sensor like IoT devices are hidden.
PrivacyGuard only injects tra�c rate signatures when the home
user behaviors permit. For instance, in night time when most of
smart home users are sleeping, PrivacyGuard needs to ensure tra�c
traces have signi�cant less interactive IoT device tra�c demands.
Tra�c Injection Rate Adjustment. Finally, PrivacyGuard also
dynamically adjusts its reshaping threshold and rate of arti�cial
tra�c rate signature injection over time to match the expected rate
each period. Our insight is there is no need to make lower-tra�c
nighttime periods look like high-demand tra�c daytime periods.
Instead, PrivacyGuard only ensures these time periods look the
same with respect to each other, regardless of whether a home is
occupied or not. In addition, PrivacyGuard also indexes its tra�c
rate signatures database based on each IoT device’s tra�c rate
signature’s real time-of-use. At any time, PrivacyGuard is trying to
select from the past tra�c rate signatures that occurred near that
time when the LSTM-based user behaviors model allows.

5 IMPLEMENTATION
We implement PrivacyGuard both simulator and prototype in
python using widely available open-source frameworks, including
Pandas, Scikit-learn and PyCUDA. The simulator takes a home’s
network tra�c race traces as input and applies privacy preserv-
ing techniques outlined in the previous section. We also deploy a
prototype PrivacyGuard in a “mock" smart home to demonstrate
the ability to modulate a home’s network tra�c rate demands in
real-time to mask user activities using PrivacyGuard’s approach
online. As shown in Figure 10 and Table 4, we employ a Raspberry
Pi 4 Model B-based hardware (Broadcom BCM2711, Arm Cortex-
A72 Architecture) setup, which enable PrivacyGuard to reshape,
inject and adjust tra�c rate demands in real-time. The prototype
uses IoT network tra�c rate data at the home’s Wi-Fi access points
to query the real-time tra�c rate readings for the entire home
every minute using cronjobs. We implement PrivacyGuard’s algo-
rithms and its optimizations. We deploy our PrivacyGuard remote
server on Amazon EC2 t1.micro instance with a cost of $0.0035
per hour. We also stores the set of arti�cial tra�c rate signatures,
indexed by time period, that are available for replay in a (&!8C43
database. The size of the implementation is less than 1500 lines of
code. We use the Scikit-learn machine learning library in python
to build our machine learning attack approaches. The library sup-
ports multiple techniques including Logistic Regression, Support
Vector Machines (SVMs), and Random Forest. In particular, we also

Metrics Speci�cations

LSTM
CPU usage 30%

Memory usage 1000⇠1050MB
Running time 42 seconds per epoch

DCGAN
CPU usage 30%

Memory usage 500MB
Running time 30 seconds per epoch

Table 4: The benchmarking of DL models on our prototype.

implemented di�erent kernels for SVMs, including linear, linear
passive-aggressive, linear ridge, polynomial with 1⇠10 degrees,
and radial basis function (RBF), and principal component analysis
(PCA). For CNNs-based attack approaches, we implement based
on the framework from VGGnet [36]. For user in-home activities,
we implement LSTM-based user in-home activities modeling using
Keras model library [17] and TensorFlow framework [3]. Finally,
we schedule the batch jobs on our GPU servers to compare the MCC
accuracy of 8 di�erent approaches using CUDA. The server that we
use to get all the benchmarking and evaluation results for attacking
models has resources as follows: 1) CPU: 2x Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz, 2) GPU: nVidia TITAN X (Pascal) (x8), 3)
RAM: 128GB, 4) OS: Linux CentOS 7. PrivacyGuard can be imple-
mented on IoT hubs and middle-boxes (e.g., Wi-Fi access points,
gateway routers, smart IoT hubs).

6 EXPERIMENTAL EVALUATION
Below we describe our datasets, experimental setup, metrics used
to evaluate our PrivacyGuard approaches, and evaluation results.

6.1 Datasets
Dataset 1: UNSW. We downloaded the publicly-available IoT traf-
�c rate traces from UNSW Sydney [33] that includes second level
network tra�c traces of 22 IoT devices for 20.5 days. These raw
tra�c traces contain packet headers and payload information. To
evaluate our approaches, we process the IoT tra�c metadata traces
to IoT tra�c rate data and also label all the user activities.
Dataset 2: Smart* (omitted for double-blind reviewing). We
set up our own “mock" smart home using our lab space that has 4
graduate students operating 31 IoT devices daily. We �rst deploy a
NETGEAR AC1750 smart Wi-Fi router that serves as the internal
switch and the gateway to the public Internet. We then install
C2?3D<? on this gateway to capture network tra�c data. We use
45 days 1 minute level IoT tra�c data to evaluate our PrivacyGuard.
Dataset 3: Real Smart Homes. We also deploy 22 IoT devices
in two real smart homes. The two homes are private townhouse
apartments that have two and four occupants, respectively. We
collect the second level IoT tra�c traces of 22 IoT devices from the
two homes, and also record all the groundtruth user activities for
two weeks.
Dataset 4: IoT Device Captures (Kaggle #1). We download the
IoT Device Captures dataset from Kaggle, and it has 30 IoT devices
and each IoT device was recorded for 20 segments and each segment
has a tra�c duration as of 2 minutes.
Dataset 5: IoTDevice Network Logs (Kaggle #2). We also down-
load the IoT Device Network Logs dataset, which captured 1 minute
level network tra�c traces of 14 IoT devices for 5 days using
NodeMCU with ESP8266 wi� module.



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

PCC SRCC Tra�c Overhead
MB per device per day

Pure Tra�c Injection 0.75 0.83 29.11
Hybrid Tra�c Reshaping 0.46 0.71 32.12
Random Tra�c Padding 0.58 0.69 49.78

PrivacyGuard 0.35 0.64 23.12

Table 5: The correlation and tra�c overhead comparison of
3 di�erent major tra�c modi�cation approaches.

Dataset 6: User In-home Activity Groundtruth Dataset. To la-
bel user activity in public datasets rather than ours, we develop a
script to assist us to search motifs in aggregated tra�c spikes. Then,
we cluster and process the groundtruth user activities data compre-
hensively. For our own datasets, we have been logging user activi-
ties in our monitoring smart homes. We release this groundtruth
dataset along with the above-mentioned evaluation datasets.
Network Tra�c Rate Data Preprocessing. To learn the e�ect
of tra�c rate granularity on user privacy preserving degree, we
preprocess the tra�c rate traces of the above-mentioned datasets
into di�erent granurality levels, such as one second, one minute,
three minutes, �ve minutes, and ten minutes. By default, tra�c rate
granularity is set as of one second.

6.2 Experimental Setup
Pure Tra�c Injection (PTI) Approach. We �rst implement a
general version of prior work [8, 25]. This approach leverages
Bernoulli distribution, Poisson distribution, Linear Chain Condi-
tional Random Field (LCCRF) to randomly inject “fake" tra�c de-
mands that are randomly selected from historical tra�c patterns.
Hybrid Tra�c Reshaping (HTR) Approach. We implement a
general version of prior work [6, 9]. This approach employs a
threshold-based tra�c demand �attening, and leverage Bernoulli
distribution, Poisson distribution, and Linear Chain Conditional
Random Field (LCCRF) to randomly inject “fake" tra�c demands.
Random Tra�c Padding (RTP) Approach. We implement a
general version of prior work [5, 13, 15]. This approach employs traf-
�c demand �attening, and leverage Hidden Markov Model (HMM)-
based user behavior modeling to randomly inject “fake" tra�c
demands that are randomly selected from historical tra�c patterns.
PrivacyGuard Approach. PrivacyGuard employs intelligent
DCGANs-based IoT device tra�c signature learning, Long short-
termmemory (LSTM)-based arti�cial tra�c signature injection, and
partial tra�c reshaping to further obfuscate private information
that can be externally observed in IoT tra�c traces.
PrivacyGuard+ (with optimization) Approach. We also eval-
uate our PrivacyGuard with the online optimization approaches
as we discussed in Section 4 to further obscure user private in-
formation in the externally observed tra�c rate traces, including
intelligent tra�c signature adjustment, and tra�c rate adjustment.

6.3 Evaluating Metrics
Blow we describe the metrics that we use to evaluate PrivacyGuard.
Matthews Correlation Coe�cient (MCC). To quantify the ac-
curacy of di�erent user privacy enhancing approaches, we note
that the standard evaluating metrics, e.g, accuracy, F1, would not
work well on our highly imbalanced IoT tra�c data. Based on the
recommendation from prior work [4, 27], we use the MCC [21], a

 0

 0.2

 0.4

 0.6

 0.8

 1

Original
     HTR      RTP PrivacyGuard

PrivacyGuard+

M
C

C

Occupancy Preserving Approaches

UNSW dataset
Smart* dataset

Kaggle dataset 1
Kaggle dataset 2

Figure 11: The accuracy comparison of occupancy detection
after applying 4 di�erent approaches.

standard measure of a classi�er’s performance, where values are in
the range �1.0 to 1.0, with 1.0 being perfect user activity detection,
0.0 being random user activity prediction, and �1.0 indicating user
activity detection is always wrong. The expression for computing
MCC is below, where TP is the fraction of true positives, FP is the
fraction of false positives, TN is the fraction of true negatives, and
FN is the fraction of false negatives, such that TP+FP+TN+FN= 1.

)% ⇤)# � �% ⇤ �#p
()% + �%) ()% + �# ) ()# + �%) ()# + �# )

(1)

Cohen’s Kappa. The Cohen’s Kappa [10] is a measure of the agree-
ment between two classi�ers who each classify # items into ⇠
mutually exclusive categories. The Cohen’s Kappa is de�ned as,

^ = 1 � 1 � ?>
1 � ?4

(2)

where ?> is the relative observed agreement among classi�ers,
and ?4 is the hypothetical probability of chance agreement, using
the observed data to calculate the probabilities of each classi�er
randomly seeing each category. If the classi�ers are in complete
agreement then ^ should be 1. If there is no agreement among the
classi�ers other than what would be expected by chance, ^ = 0.
Pearson Correlation Coe�cient (PCC). The PCC [26] is a mea-
sure of the linear correlation between two variables (e.g, original
and modi�ed tra�c), computed as the covariance between the vari-
ables divided by the product of their standard deviation. It has a
value between +1 and -1, where 1 is total positive linear correlation,
0 is no linear correlation, and -1 is total negative linear correlation.
Spearman’s Rank Correlation Coe�cient (SRCC). The
SRCC [34] between two variables is equal to the PCC between
the rank values of those two variables (e.g, original tra�c and modi-
�ed tra�c). However, unlike PCC that assesses linear relationships,
SRCC assesses monotonic relationships (whether linear or not). If
there are no repeated data values, a perfect SRCC of +1.0 or -1.0
occurs when each of the variables is a perfect monotone function
of the other. We use PCC and SRCC to quantify the e�ectiveness of
di�erent approaches on masking user private information.
Adversary Con�dence (AC). We leverage AC to describe the ad-
versary’s ability to identify which time periods are corresponding
to user activities. Given a probability ? that user activity occurs
independently in = time periods. AC can be estimated as the em-
pirical fraction of = time periods with tra�c corresponding to user
activities. @ is the probability decision function choosing to perform
non-activity tra�c padding. Thus, AC can be de�ned as,

�⇠ =
=?

=? + =(1 � ?)@ (3)



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

talk to Alexa control lights print files baby present use smartphone use laptop walk in home check body weight other activities

M
C

C

Whole Day User Activities

Original HTR RTP PrivacyGuard PrivacyGuard+

 0

 0.2

 0.4

 0.6

 0.8

 1

talk to Alexa control lights print files baby present use smartphone use laptop walk in home check body weight other activities

M
C

C

Daytime User Activities

Original HTR RTP PrivacyGuard PrivacyGuard+

 0

 0.2

 0.4

 0.6

 0.8

 1

talk to Alexa control lights print files baby present use smartphone use laptop walk in home check body weight other activities

M
C

C

New Traffic Rate Signitures

Original HTR RTP PrivacyGuard PrivacyGuard+

Figure 12: The whole day (top), daytime (middle) and daytime with new tra�c patterns (bottom) MCC comparison of user
activities detection before (original) and after applying HTR, RTP, PrivacyGuard, and PrivacyGuard+.

6.4 Experimental Results
6.4.1 Preventing Occupancy Detection. We �rst compare the ability
of four di�erent approaches regarding masking occupancy. These
approaches split the dataset into training and testing dataset using a
ratio of 7:3 after cross-validation. To perform fair comparison, we set
tra�c “cap” for each approach as 75MB per device per day. As shown
in Table 5, PTI receives PCC and SRCC as the value of 0.75 and 0.83,
and HTR reports PCC and SRCC as of 0.46 and 0.71, respectively.
RTP reports smaller PCC and SRCC as values of 0.58 and 0.69,
respectively. While, PrivacyGuard yields the smallest PCC and
SRCC as the values of 0.35 and 0.64, respectively. Thus, among all
the four di�erent approaches, PrivacyGuard is the best performing
approach to hide user occupancy. In addition, we also compare
occupancy detection accuracy when applying ML/DL-based attacks
that we implemented in Section 3 to quantify the performance
of HTR, RTP, PrivacyGuard, and PrivacyGuard+ using MCC. As
shown in Figure 11, PrivacyGuard+ yields the average detection
MCC as of 0.2235, which is much closer to random prediction, i.e.,
an MCC of 0.0, and are a factor of >2 times less than the average
MCC when attacking on the HTR modi�ed tra�c, which are 0.4665.
Results: By lowering the average MCC to 0.2235 in 4 smart homes,
PrivacyGuard+ approach e�ectively prevents occupancy detection
from a wide set of ML-based and DL-based attacks. In addition,
PrivacyGuard+ yields a factor of >2 times less than the MCC of occu-
pancy attacks on the modi�ed IoT tra�c traces by prior approaches.

6.4.2 Preventing User Activities Detection A�acks. We next bench-
mark the e�ectiveness of masking user activities when applying
three di�erent privacy preserving approaches. We leverage ML/DL-
based attack models that we built in Section 3 to detect 9 di�erent
user activities using the original, HTR modi�ed, PrivacyGuard
modi�ed, and PrivacyGuard+ modi�ed tra�c rate traces. Unsur-
prisingly, as shown in Figure 12, PrivacyGuard+ always yields the

worst MCC in both whole day (top) and midday (7 am to 12 am,
bottom), and thus, is the most e�ective privacy leakage preventing
technique. In addition, we observe the MCCs of both PrivacyGuard
and PrivacyGuard+ using midday data only are the same or slight
higher than the MCCs when using whole day data. This is mainly
due to fact that users are typically sleeping in the nighttime (12
am to 7 am), and thus most of the tra�c occurs in this period are
not re�ecting user in-home interactive activities. Therefore, all the
three approaches are reporting the same or slightly higher than
the MCCs when attacking the midday (7 am to 12 am) tra�c traces
which have eliminated those “non-interactive” periods and mainly
focus on user interaction patterns. Note that, we observed the same
trend when using both UNSW dataset and Smart* dataset.

In addition to Figure 12 (top and middle), we also examine the
performance of the di�erent reshaping approaches when handling
new signatures. The goal is to benchmark these tra�c reshaping
approaches when the incoming tra�c having a mix of known (pre-
seeded) and unknown (new) IoT tra�c rate signatures. For this
example, we set the ratio as 1:1, and we �nd that all the tra�c
reshaping approaches achieved the similar MCCs as shown in Fig-
ure 12 (middle) which primarily reshaped tra�c rate traces using
known (pre-seeded) tra�c rate signatures, and PrivacyGuard+ con-
sistently yields the worst MCC. This is mainly due to the fact that
the di�erent reshaping approaches we implemented are handling
the tra�c rate signatures in the same manner, despite whether they
are known or unknown signatures.
Results: Our PrivacyGuard+ approach e�ectively prevents 9 di�erent
user activities from a wide set of ML-based and DL-based sophis-
ticated attacks in smart homes. Compared with prior approaches,
PrivacyGuard+ consistently yields the worst MCC for each user activ-
ity, and thus is the best performing privacy preserving approach.



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

 0

 20

 40

 60

 80

 100

    HTR     RTP PrivacyGaurd
PrivacyGuard+

A
d

d
tio

n
a

l T
ra

ff
ic

 (
M

B
/d

a
y)

Privacy Enhancing Approaches

UNSW dataset
Smart* dataset

Kaggle dataset 1
Kaggle dataset 2

 0

 0.2

 0.4

 0.6

1 s 1 min 3 mins 5 mins 10 mins

M
C

C

Data Granularity

UNSW dataset
Smart* dataset

Kaggle dataset 1
Kaggle dataset 2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200

M
C

C

User Tunable Additional Traffic Preferences (MB/day)

PrivacyGuard
HTR

(a) (b) (c)

Figure 13: Left graph (a) shows the amount comparison of additional tra�c when applying di�erent approaches. Middle graph
(b) and right graph (c) show the accuracy comparison of user activities detection when applying PrivacyGuard+ on tra�c rate
data in di�erent granularities and di�erent user “tunable” additional tra�c preferences.

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

A
d

ve
rs

a
ry

 C
o

n
fid

e
n

ce

Additional Traffic Overhead (%)

Amazon Echo
Baby Monitor

Dropcam
SmartCam

Tri_Speaker
TP_Cam

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

M
C

C

Knowledge Level (%)

PrivacyGuard-DT
PrivacyGuard-LR

Original-DT
Original-LR

(a) Adversary Con�dence (b) Adaptive Adversary

Figure 14: PrivacyGuard performance comparison under dif-
ferent adaptive adversaries.

6.4.3 �antifying Tra�ic Overhead. We quantify the amount of
network tra�c overheads that are required to perform HTR, RTP,
PrivacyGuard, and PrivacyGuard+. Figure 13 (a) reports the amount
of additional tra�c consumption for each approach. As expected,
PrivacyGuard+ only consumes 27.15 MB tra�c per day on aver-
age over four datasets, which is ⇠2.7 times less than that of HTR,
which is 73.11 MB on average per day. That says, PrivacyGuard+
consumes the least amount of tra�c overhead while achieves the
best performance to prevent user privacy leakage in 4 smart homes.
Results: PrivacyGuard+ only consumes 27.15 MB tra�c per day,
which is ⇠2.75 times less than that of HTR, which is 73.11 MB per day.
PrivacyGuard+ consumes the least amount of tra�c overhead while
achieves the best performance to prevent user privacy leakage.

6.4.4 �antifying Accuracy When Varying Granularity of Tra�ic
Traces. We next evaluate user activity detection e�ect on di�erent
tra�c rate traces that have di�erent level of granularities, such as
1 second, 1 minute, 3 minutes, 5 minutes, and 10 minutes. By doing
this, we can examine PrivacyGuard+’s accuracy when attacking
on di�erent granularities tra�c traces. As shown in Figure 13 (b),
as expected, higher granularity results in lower user activity de-
tecting accuracy in MCC. This is mainly due to the facts that 1)
PrivacyGuard+ performs consistently well on di�erent tra�c trace
data at di�erent granularities, 2) fewer �uctuations and spikes are
observed in higher resolution tra�c rate traces. In addition, when
tra�c rate traces are becoming coarser, some principle features,
such as standard deviation, variation coe�cient and AUC, become
less distinguishable and thus are hidden. This will further obscure
use activity information exposed in the tra�c rate traces.

Results: PrivacyGuard+’s accuracy is a linear function of the gran-
ularities of IoT tra�c rate traces. PrivacyGuard+ yields the MCC of
0.149 when attacking on 10 minutes level network tra�c rate traces,
which is nearly the same as random prediction, i.e., an MCC of 0.0.

6.4.5 �antifying accuracy when varying user tunable reshaping
preferences. We then evaluate user activity detecting accuracy ef-
fect on di�erent user tunable reshaping preferences. As discussed in
Section 4.5, PrivacyGuard can be tuned by users based on their own
preferences to achieve the balance between user privacy masking
and additional tra�c overhead. As shown in Figure 13 (c), Privacy-
Guard signi�cantly reduces user activity detection accuracy—MCC
from ⇠0.95 to ⇠0.5, after applying users’ allowance of additional
tra�c as 6.45 MB per device per day (equivalent to ⇠1.83 KB per
device per minute). While, HTR approach only decreases the MCC
from ⇠1.0 to ⇠0.96. In addition, under the overhead of 11.61 MB
per device per day, PrivacyGuard yields an MCC of 0.47 which is 2
times less than HTR’s MCC of 0.97.
Results: PrivacyGuard enables users the �exible control of threshold
and arti�cial data injection to achieve a trade-o� between user dif-
ferential privacy preserving and tra�c overhead. In addition, when
applying additional 11.61 MB per device per day tra�c overhead,
PrivacyGuard yields an MCC as 0.46, which is 2 times less than the
MCC of 0.97 using HTP.

6.4.6 Preventing User Activities Detection by Adaptive Adversary.
We next examine the e�ect of di�erent adversary con�dence (AC)
and di�erent level adaptive adversary on PrivacyGuard’s perfor-
mance. As shown in Figure 14 (a), for the top-6 tra�c consuming
IoT devices, the adversary’s con�dence drops signi�cantly when
PrivacyGuard having more tra�c overhead. In particular, the cam-
eras (e.g, baby monitor, drop camera, smart camera) reports the
fastest AC decreasing. This is mainly due to the fact that these IoT
cameras themselves have more “unstable” patterns than other IoT
devices which allow them to better respond to our PrivacyGuard.
Figure 14 (b) shows the ability of PrivacyGuard to preserve user
privacy when adaptive adversary having more knowledge about
our attack model. To generate the average MCC values in Figure 14
(b), we apply the Logistic Regression (LR)-based and Decision Tree
(DT)-based attack models on PrivacyGuard modi�ed tra�c traces
to infer 9 user activities and report the mean value of the MCCs,
respectively.

In essence, we de�ne the attacker knowledge-level as the per-
centages of tra�c rate testing dataset that an external adversary can
leverage to train or calibrate its attack models to infer user in-home



IPSN ’21, May 18–21, 2021, Nashville, TN, USA K. Yu et al.

 0

 40

 80

 120

 160

 200

 0  600  1200  1800  2400  3000  3600

T
ra

ff
ic

 R
a
te

 (
K

B
/s

)

Time (s)

PrivacyGuard+
Original

 0

 60

 120

 500  550  600

Figure 15: Masking user activities with PrivacyGuard proto-
type. The zoomed-in inset shows PrivacyGuard’s online op-
erations to hide user in-home tra�c patterns.

activity. 0% indicates that the external adversary has no knowl-
edge of the target home testing dataset and no cross-validation
is performed to train the attack models. While, 100% means that
the external adversary has observed all the groundtruth tra�c pat-
terns for each user activity so that the attack models are “perfectly”
trained. The goal of this experiment is to understand PivacyGuard’s
ability to protect user private information from the attack initialized
by “adaptive” adversaries who have di�erent groundtruth knowl-
edge levels from the target smart home. We �nd that PrivacyGuard
modi�ed tra�c’s MCC slightly increases from 0.16 to 0.35, while
original tra�c’s MCC is �uctuating between 0.65 and 0.72. This
is because attacking original tra�c to infer user in-home activity
is surprisedly easy as we showed in Section 2 and Section 3. Note
that, even when an adversary having 100% knowledge about Pri-
vacyGuard’s deep learning model, PrivacyGuard still can prevent
data analytics attacks as the MCC of 0.35, which is the almost 2
times less than the original tra�c’s MCC as of 0.72.
Results: Using PrivacyGuard, the adversary’s attack con�dence sig-
ni�cantly drops when user permitting additional overhead. Also, Pri-
vacyGuard yields an MCC of 0.35 which is almost 2 times less than
original tra�c’s MCC when an adversary having 100% knowledge of
our PrivacyGuard’s modeling.

6.4.7 Prototype Demonstration. Figure 15 demonstrates the per-
formance of PrivacyGuard+ prototype for an 3,600 seconds (1 hour)
period online tra�c rate data (in KB/s). The unmodi�ed (original)
tra�c demand is the home’s demand without PrivacyGuard+’s con-
tribution. In contrast, the PrivacyGuard+-modi�ed demand is the
external tra�c rate trace seen by the adversaries, which includes
using the prototype to a low-cost arti�cial tra�c signature injection,
partial tra�c reshaping, and online optimizations to mask private
information exposed in tra�c rate traces. The experiment shows
how PrivacyGuard+ prototype modi�es a home’s tra�c demand in
real time, including both replaying arti�cial tra�c rate signatures
and partial tra�c reshaping, to mask the tra�c usage trends ex-
posed in tra�c rate traces. Ultimately, our prototype demonstrates
that PrivacyGuard+’s approach permits a straightforward imple-
mentation using widely-used, o�-the-shelf components. Also, as
shown in Table 6, PrivacyGuard can enable users to signi�cantly
reduce privacy leakage, while still permitting regular IoT device
usage.

IoT Device Original with PrivacyGuard
Amazon Alexa 0.35s 0.51s
Google Home 0.42s 0.47s
Belkin Switch 0.47s 0.76s

Table 6: IoT device response time with and without Privacy-
Guard.

Results: PrivacyGuard+ functionality is simple to implement and
deploy, requiring only the mechanism of basic hardware deployment
and the ability to programmatically reshape tra�c rates in real-time.

7 CONCLUSION AND FUTUREWORK
We design a new low-cost, open-source user “tunable” defense
system—PrivacyGuard that enables users to signi�cantly reduce, the
private information leaked through IoT device network tra�c data,
while still permitting sophisticated data analytics or control that is
necessary in smart home management. We evaluate PrivacyGuard
using IoT network tra�c traces of 31 IoT devices from 5 smart
homes and deploying a Raspberry Pi 4-based prototype. We �nd
that PrivacyGuard can e�ectively prevent a wide range of state-of-
the-art machine learning-based and deep learning-based occupancy
and other 9 user in-home activity detection attacks.

We plan to collect more IoT tra�c traces to further understand
the e�ect on the trade-o� between privacy preserving and tra�c
overhead. In addition, we also plan to develop a tailored smart router
operating system that can host PrivacyGuard services directly.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers and our shepherd
for providing us their insightful comments and valuable feedback,
which signi�cantly improved the quality of this paper. This research
is supported by Cyber Florida Collaborative Seed Program.

REFERENCES
[1] 2020. Ostinato: Packet Generator and Network Tra�c Generator. https:

//ostinato.org/.
[2] 2021. PrivacyGuard. https://github.com/cyber-physical-systems/PrivacyGuard.
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al.
2016. Tensor�ow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[4] Josephine Akosa. [n.d.]. Predictive accuracy: a misleading performance measure
for highly imbalanced data.

[5] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and
Nick Feamster. 2019. Keeping the smart home private with smart (er) iot tra�c
shaping. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019), 128–148.

[6] Phuthipong Bovornkeeratiroj, Srinivasan Iyengar, Stephen Lee, David Irwin,
and Prashant Shenoy. 2020. RepEL: A Utility-preserving Privacy System for
IoT-based Energy Meters. In 2020 IEEE/ACM Fifth International Conference on
Internet-of-Things Design and Implementation (IoTDI). IEEE, 79–91.

[7] T. Brewster. 2017. Now Those, Privacy Rules Are Gone, This Is How ISPs Will
Actually Sell Your Personal Data. https://www.forbes.com/sites/thomasbrewster/
2017/03/30/fcc-privacy-rules-how-isps-will-actually-sell-your-data/.

[8] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A systematic approach to developing and evaluating website �ngerprinting
defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 227–238.

[9] Dong Chen, David Irwin, Prashant Shenoy, and Jeannie Albrecht. 2014. Combined
heat and privacy: Preventing occupancy detection from smart meters. In 2014 IEEE
International Conference on Pervasive Computing and Communications. 208–215.

[10] CKA [n.d.]. Cohen’s Kappa. https://en.wikipedia.org/wiki/Cohen%27s_kappa.
[11] Trisha Datta, Noah Apthorpe, and Nick Feamster. 2018. A developer-friendly

library for smart home iot privacy-preserving tra�c obfuscation. In Proceedings
of the 2018 Workshop on IoT Security and Privacy. ACM, 43–48.



PrivacyGuard: Enhancing Smart Home User Privacy IPSN ’21, May 18–21, 2021, Nashville, TN, USA

[12] Wenbo Ding and Hongxin Hu. 2018. On the Safety of IoT Device Physical Inter-
action Control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). 832–846.

[13] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-boo, i still see you: Why e�cient tra�c analysis countermeasures fail. In
2012 IEEE symposium on security and privacy. IEEE, 332–346.

[14] Md Kamrul Hasan, Husne Ara Rubaiyeat, Yong-Koo Lee, and Sungyoung Lee.
2008. A recon�gurable HMM for activity recognition. In 2008 10th International
Conference on Advanced Communication Technology, Vol. 1. IEEE, 843–846.

[15] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and MatthewWright. 2016.
Toward an e�cient website �ngerprinting defense. In European Symposium on
Research in Computer Security. Springer, 27–46.

[16] Sean Kennedy, Haipeng Li, Chenggang Wang, Hao Liu, Boyang Wang, and
Wenhai Sun. 2019. I can hear your alexa: Voice command �ngerprinting on smart
home speakers. In 2019 IEEE Conference on Communications and Network Security
(CNS). IEEE, 232–240.

[17] Nikhil Ketkar. 2017. Introduction to keras. In Deep learning with Python. Springer,
97–111.

[18] Jinyang Li, Zhenyu Li, Gareth Tyson, X Gaogang, et al. 2020. Your Privilege Gives
Your Privacy Away: An Analysis of a Home Security Camera Service. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE.

[19] Nicole Lindsey. 2019. Smart Devices Leaking Data to Tech Giants Raises New
IoT Privacy Issues. https://www.cpomagazine.com/data-privacy/smart-devices-
leaking-data-to-tech-giants-raises-new-iot-privacy-issues/.

[20] Jianqing Liu, Chi Zhang, and Yuguang Fang. 2018. Epic: A di�erential privacy
framework to defend smart homes against internet tra�c analysis. IEEE Internet
of Things Journal 5, 2 (2018), 1206–1217.

[21] mcc [n.d.]. Matthews Correlation Coe�cient. https://en.wikipedia.org/wiki/
Matthews%_correlation%_coe�cient.

[22] Mirimir. 2018. Collection of User Data by ISPs and Telecom Providers, and
Sharing with Third Parties. https://www.ivpn.net/blog/collection-of-user-data-
by-isps-and-telecom-providers-and-sharing-with-third-parties.

[23] mozilla 2019. ISPs Lied to Congress to Spread Confusion about Encrypted DNS,
Mozilla says. https://arstechnica.com/tech-policy/2019/11/isps-lied-to-congress-
to-spread-confusion-about-encrypted-dns-mozilla-says/.

[24] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A bespoke website
�ngerprinting defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society. ACM, 131–134.

[25] Homin Park, Can Basaran, Taejoon Park, and Sang Hyuk Son. 2014. Energy-
e�cient privacy protection for smart home environments using behavioral se-
mantics. Sensors 14, 9 (2014), 16235–16257.

[26] pcc [n.d.]. Pearson Correlation Coe�cient. https://en.wikipedia.org/wiki/
Pearson_correlation_coe�cient.

[27] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. 2018. The curse of class imbalance and con�icting metrics with machine
learning for side-channel evaluations. (2018).

[28] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[29] Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, and Alexander G Tar-
takovsky. 2013. Coupled hidden markov models for user activity in social net-
works. In 2013 IEEE International Conference on Multimedia and Expo Workshops.

[30] Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, and Alexander G Tar-
takovsky. 2014. Modeling temporal activity patterns in dynamic social networks.
IEEE Transactions on Computational Social Systems 1, 1 (2014), 89–107.

[31] Karsten Rothmeier, Nicolas P�anzl, Joschka Hüllmann, and Mike Preuss. 2020.
Prediction of Player Churn and Disengagement Based on User Activity Data of a
Freemium Online Strategy Game. IEEE Transactions on Games (2020).

[32] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing analysis in low-latency
mix networks: Attacks and defenses. In European Symposium on Research in
Computer Security. Springer, 18–33.

[33] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2018. Classifying
IoT Devices in Smart Environments Using Network Tra�c Characteristics. IEEE
Transactions on Mobile Computing (2018).

[34] srcc [n.d.]. Spearman’s Rank Correlation Coe�cient. https://en.wikipedia.org/
wiki/Spearman%27s_rank_correlation_coe�cient.

[35] Statista. 2016. Internet of Things Connected Devices Installed base Worldwide
from 2015 to 2025 (in billions). https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[36] vgg [n.d.]. Very Deep Convolutional Networks for Large-Scale Visual Recognition.
https://www.robots.ox.ac.uk/~vgg/research/very_deep/.

[37] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
E�ective attacks and provable defenses for website �ngerprinting. In 23rd USENIX
Security Symposium (USENIX Security 14). 143–157.

[38] Tao Wang and Ian Goldberg. 2016. On realistically attacking tor with website
�ngerprinting. Proceedings on Privacy Enhancing Technologies 4 (2016), 21–36.

[39] Tao Wang and Ian Goldberg. 2017. Walkie-talkie: An e�cient defense against
passive website �ngerprinting attacks. In 26th USENIX Security Symposium. 1375–
1390.

[40] Wei Wang, Mehul Motani, and Vikram Srinivasan. 2008. Dependent link padding
algorithms for low latency anonymity systems. In Proceedings of the 15th ACM
conference on Computer and communications security. 323–332.

[41] Wei Wang, Mehul Motani, and Vikram Srinivasan. 2008. Dependent Link Padding
Algorithms for Low Latency Anonymity Systems. In Proceedings of the 15th ACM
Conference on Computer and Communications Security (Alexandria, Virginia, USA)
(CCS ’08). 323–332.


