
Robust Coreset Construction for Distributed
Machine Learning

Hanlin Lu∗, Ming-Ju Li∗, Ting He∗, Shiqiang Wang†, Vijaykrishnan Narayanan∗, Kevin S. Chan‡

∗Pennsylvania State University, University Park, PA, USA. Email: {hzl263,mxl592,tzh58,vxn9}@psu.edu
†IBM T. J. Watson Research Center, Yorktown, NY, USA. Email: wangshiq@us.ibm.com

‡Army Research Laboratory, Adelphi, MD, USA. Email: kevin.s.chan.civ@mail.mil

Abstract—Motivated by the need of solving machine learning
problems over distributed datasets, we explore the use of coreset
to reduce the communication overhead. Coreset is a summary
of the original dataset in the form of a small weighted set in
the same sample space. Compared to other data summaries,
coreset has the advantage that it can be used as a proxy of
the original dataset. However, existing coreset construction
algorithms are each tailor-made for a specific machine learning
problem. Thus, to solve different machine learning problems,
one has to collect coresets of different types, defeating the
purpose of saving communication overhead. We resolve this
dilemma by developing robust coreset construction algorithms
based on k-means/median clustering, that give a provably good
approximation for a broad range of machine learning problems
with sufficiently continuous cost functions. Through evaluations
on diverse datasets and machine learning problems, we verify
the robust performance of the proposed algorithms.

Index Terms—Coreset, machine learning, k-means, k-median

I. INTRODUCTION

The recent decade has observed a dramatic growth in
distributed data generation, powered by various Internet of
Things (IoT) applications and social networking applications.
It has been predicted that the rate of such distributed data
generation will exceed the current Internet capacity in the
near future [1]. This phenomenon presents both opportunities
and challenges for machine learning. On the one hand, the
real-time and location-based nature of the distributed data
enables novel applications based on machine learning, such
as augmented reality and cognitive assistance. On the other
hand, the distributed nature of the data sources, coupled
with the difficulty of collecting the data to a central location
due to network bandwidth, energy, and/or privacy constraints,
calls for a fundamentally different way of applying machine
learning that is suitable for distributed datasets.

Broadly speaking, three approaches have been proposed for
distributed machine learning: sharing the output, sharing the
model, and sharing the data. In the first approach [2], data

This research was partly sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. Narayanan
and Hanlin were partly supported by NSF 1317560. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

Edge network

data source

raw data

data summary

ML1 ML2

ML3 ...

. . .

Fig. 1. Application scenario (ML i: machine learning model i).

sources independently compute and share outputs of local
models, which are then aggregated into a global output (e.g.,
by majority vote). In the second approach [3], [4], data sources
share models learned on local data, which are then aggregated
into a global model (e.g., by taking weighted average). In the
third approach [5]–[7], data sources share summaries of their
local data, which are then used to compute a global model.
Each approach has its pros and cons: the first approach usually
has the smallest communication overhead, but only supports
one query; the second approach builds a global model that can
be used for multiple queries, but only supports one model; the
third approach may incur a larger communication overhead,
but can potentially support multiple models.

In this work, we take the third approach, with a particular
interest in supporting diverse machine learning models. Fig. 1
illustrates a typical application scenario in the context of
mobile edge computing [4], where data sources report local
summaries to an edge server, which then computes various
models from these summaries.

In particular, we consider data summarization using coreset
[8]. A coreset is a small weighted dataset as a proxy of
the original dataset with provable approximation guarantees.
Compared to other data summaries (e.g., sketches), a coreset
preserves the sample space of the original dataset, and is hence
more convenient to use, e.g., a classifier learned from the core-
set can classify a new data point, the principle components
learned from the coreset can be used for feature selection,
both in the original sample space. Algorithms have been
developed to construct coresets for various machine learning
problems (see Section II-B), such that the model learned on
the coreset approximates the model learned on the original
dataset. However, existing coreset construction algorithms are

tailor-made for specific machine learning problems, which
means that we have to collect different coresets to solve
different problems. The question we raise is: Is there a coreset
that is robust against different machine learning problems, i.e.,
having good performance in computing a variety of machine
learning models?

In this work, we answer the above question affirmatively
by proving that a particular type of coreset, generated by k-
means/median clustering, can give a good approximation for
a broad set of machine learning problems.

A. Related Work

Distributed learning is one of the most promising lines of
research for large-scale learning [2], particularly for naturally
distributed data. The main challenge in distributed learning
is to incorporate information from each distributed dataset,
without the high overhead of collecting all the data.

Traditionally, this is achieved by collecting the outputs
of learned models or the models themselves [9]. The first
approach (i.e., collecting outputs) is more popular among
earlier works. For example, [10] proposed various heuristic
decision rules (e.g., majority vote) to combine outputs of local
classifiers, and [11] proposed to train a global classifier using
labeled outputs of local classifiers.

The second approach (i.e., collecting models) is more useful
when we want to learn not just one answer, but the rule to give
answers. For example, the distributed boosting framework in
[12] requires nodes to share locally trained classifiers, and the
federated learning framework in [3] requires nodes to report
locally learned models to a single node, which then aggregates
the models and broadcasts the result to others.

Meanwhile, research on data summarization has inspired a
third approach: collecting data summaries. Data summaries,
e.g., coresets, sketches, projections [13], [14], are derived
datasets that are much smaller than the original dataset, and
can hence be transferred to a central location with a low
communication overhead. This approach has been adopted in
recent works, e.g., [5]–[7]. We are particularly interested in a
specific type of data summary, coreset, as it can be used as a
proxy of the original dataset. See Section II-B for a detailed
review of related works on coreset.

B. Summary of Contributions

We are the first to explore using coreset to support diverse
machine learning problems on distributed data. Specifically:

1) We prove that the optimal k-clustering (including k-
means/median) gives a coreset that provides a guaran-
teed approximation for any machine learning problem
with a sufficiently continuous cost function (Theo-
rem III.1).

2) We further prove that the same holds for the coreset
given by a suboptimal k-clustering algorithm, as long
as it satisfies certain assumptions (Theorem III.2).

3) We develop an algorithm based on k-clustering to con-
struct a robust coreset with a very low communication
overhead.

4) Our evaluations on diverse machine learning problems
verify that k-clustering (especially k-means) provides a
robust coreset.

Roadmap. Section II reviews the background on coreset.
Section III presents our main theoretical results on the uni-
versal performance guarantee of k-clustering-based coreset.
Section IV evaluates the proposed algorithm. Section V con-
cludes the paper. Supporting proofs, analysis, and evaluations
are provided in [15].

II. BACKGROUND

A. Coreset and Machine Learning

Many machine learning problems can be cast as a cost (or
loss) minimization problem. Given a dataset in d-dimensional
space P ⊆ Rd , a generic machine learning problem over P
can be characterized by a solution space X , a per-point cost
function cost(p,x) (p∈ P, x∈X), and an overall cost function
cost(P,x) (x ∈ X) that aggregates the per-point costs over P.
For generality, we consider P to be a weighted set, where
each p ∈ P has weight wp. Let wmin := minp∈P wp denote the
minimum weight. For an unweighted dataset, we have wp≡ 1.
The machine learning problem is then to solve

x∗ = argmin
x∈X

cost(P,x) (1)

for the optimal model parameter x∗.
Example: Let dist(p,x) := ∥p− x∥2 denote the Euclidean

distance between points p and x. The minimum enclosing
ball (MEB) problem [8] aims at minimizing the maximum
distance between any data point and a center, i.e., cost(p,x) =
dist(p,x), cost(P,x) = maxp∈P cost(p,x), and X =Rd . The k-
means clustering problem aims at minimizing the weighted
sum of the squared distance between each data point and
the nearest center in a set of k centers, i.e., cost(p,x) =
minxi∈x dist(p,xi)

2, cost(P,x) = ∑p∈P wpcost(p,x), and X =
{x := {xi}k

i=1 : xi ∈ Rd}.
Typically, the overall cost is defined as: (i) sum cost, i.e.,

cost(P,x) = ∑p∈P wpcost(p,x) (e.g., k-means), or (ii) maxi-
mum cost, i.e., cost(P,x) = maxp∈P cost(p,x) (e.g., MEB).

A coreset is a small weighted dataset in the same space as
the original dataset that approximates the original dataset in
terms of cost, formally defined below.

Definition II.1 ([16]). A weighted set S⊆Rd with weights uq
(q ∈ S) is an ε-coreset for P with respect to (w.r.t.) cost(P,x)
(x ∈ X) if ∀x ∈ X ,

(1− ε)cost(P,x)≤ cost(S,x)≤ (1+ ε)cost(P,x), (2)

where cost(S,x) is defined in the same way as cost(P,x), i.e.,
cost(S,x) = ∑q∈S uqcost(q,x) for sum cost, and cost(S,x) =
maxq∈S cost(q,x) for maximum cost.

From Definition II.1, it is clear that the quality of a coreset
depends on the cost function it needs to approximate, and
hence the machine learning problem it supports.

B. Coreset Construction Algorithms

Because of the dependence on the cost function (Defini-
tion II.1), existing coreset construction algorithms are tailor-
made for specific machine learning problems. Here we briefly
summarize common approaches for coreset construction and
representative algorithms, and refer to [13], [14] for detailed
surveys.

1) Gradient descent algorithms: Originally proposed for
MEB [8], [17], these algorithms iteratively add to the coreset
a point far enough or furthest from the current center, and
stop when the enclosing ball of the coreset, expanded by 1+ε,
includes all data points. This coreset has been used to compute
ε-approximation to several clustering problems, including k-
center clustering, 1-cylinder clustering, and k-flat clustering
[8], [18].

2) Random sampling algorithms: These algorithms con-
struct a coreset by sampling from the original dataset. The
basic version, uniform sampling, usually requires a large
coreset size to achieve a good approximation. Advanced
versions use sensitivity sampling [19], where each data point
is sampled with a probability proportional to its contribution
to the overall cost. Proposed for numerical integration [19],
the idea was extended into a framework supporting projective
clustering problems that include k-median/means and princi-
ple component analysis (PCA) as special cases [16]. Although
the framework can instantiate algorithms for different machine
learning problems by plugging in different cost functions,
the resulting coreset only guarantees approximation for the
specific problem defined by the plugged-in cost function.

3) Geometric decomposition algorithms: These algorithms
divide the sample space or input dataset into partitions, and
then selecting points to represent each partition. An example
machine learning problem supported by such algorithms is
k-means/median [7].

Using a generic merge-and-reduce approach in [20], all
these algorithms can be used to construct coresets from
distributed datasets. Of course, the resulting coresets are still
tailor-made for specific problems. In contrast, we seek coreset
construction algorithms which can construct coresets that
simultaneously support multiple machine learning problems.

III. ROBUST CORESET

Our main result is that selecting representative points using
clustering techniques yields a robust coreset with a guaranteed
approximation for a broad set of machine learning problems.

A. The k-clustering Problem

At the core, the proposed algorithm constructs a k-point
coreset by partitioning the dataset into k clusters, and then
using the cluster centers as the coreset points. To present this
algorithm, we introduce a few definitions.

Given a weighted dataset P⊆ Rd with weight wp (p ∈ P),
and a set Q = {q1, ...,qk} of k ≥ 1 points in Rd (referred to
as centers), the cost of clustering P into Q is defined as

c(P,Q) = ∑
p∈P

wp(min
q∈Q

dist(p,q))z, (3)

for a constant z > 0. The k-clustering problem is to find the
set of k centers that minimizes (3). For z = 1, this is the
k-median problem. For z= 2, this is the k-means problem. We
will use the solution to the k-clustering problem to construct
coresets, based on which we can solve general machine
learning problems. We use c(P, ·) to denote the cost function
of the k-clustering problem and cost(P, ·) to denote the cost
function of a general machine learning problem of interest.

We denote by µ(P) the optimal center for 1-clustering of
P. It is known that for z = 2, µ(P) is the sample mean:

µ(P) =
1

∑p∈P wp
∑
p∈P

wp · p. (4)

We denote by opt(P,k) the optimal cost for k-clustering
of P. It is known that k-means and k-median are both NP-
hard problems [21], [22], for which efficient heuristics exist
(e.g., Lloyd’s algorithm and variations) [23]. Let approx(P,k)
denote the cost of a generic k-clustering algorithm, which
always satisfies approx(P,k)≥ opt(P,k).

Each set of k centers Q = {qi}k
i=1 induces a partition of

P into {P1, . . . ,Pk}, where Pi is the subset of points in P
whose closest center in Q is qi (ties broken arbitrarily). For
ease of presentation, we use1 {Pi}i∈[k] to denote the partition
induced by the optimal k-clustering, and {P̃i}i∈[k] to denote
the partition induced by a suboptimal k-clustering.

B. Coreset by Optimal k-clustering

We will show that the superior performance of the algo-
rithm in [7] is not a coincidence; instead, it is a fundamental
property of any coreset computed by k-clustering, as long as
the cost function of the machine learning problem satisfies
certain continuity conditions.

Sketch of analysis: At a high level, our analysis is based
on the following observations:

1) If doubling the number of centers only reduces the opti-
mal k-clustering cost by a little, then using two centers
instead of one in any cluster gives little reduction to its
clustering cost (Lemma III.1).

2) If selecting two centers in a cluster Pi gives little
reduction to its clustering cost, then all the points in
Pi must be close to its center µ(Pi) (Lemma III.2),
as otherwise selecting an outlier as the second center
would have reduced the cost substantially.

3) If each data point is represented by a coreset point with
a similar per-point cost, then the coreset gives a good
approximation of the overall cost (Lemmas III.3 and
III.4).

Therefore, for any machine learning problem with a suffi-
ciently continuous cost function, if the condition in item (1)
is satisfied, then the per-point cost of each k-clustering center
will closely approximate the per-point costs of all the points
in its cluster, and hence the set of k-clustering centers will
give a good coreset (Theorem III.1).

1Throughout the paper, for k ∈ Z+, [k] := {1, . . . ,k}.

Complete analysis: We now present the precise statements,
supported by proofs in Appendix A in [15].

Lemma III.1. For any ε′ > 0, if opt(P,k)− opt(P,2k) ≤ ε′,
then opt(Pi,1)−opt(Pi,2)≤ ε′ (∀i ∈ [k]), where {Pi}k

i=1 is the
partition of P generated by the optimal k-clustering.

Lemma III.2. If opt(Pi,1) − opt(Pi,2) ≤ ε′, then
dist(p,µ(Pi))≤ (ε′

wmin
)

1
z , ∀p ∈ Pi.

Lemma III.3. For any machine learning problem with cost
function cost(P,x)=∑p∈P wpcost(p,x), if ∃ a partition {Pi}k

i=1
of P such that ∀x ∈ X , i ∈ [k], and p ∈ Pi,

(1− ε)cost(p,x)≤ cost(µ(Pi),x)≤ (1+ ε)cost(p,x), (5)

then S = {µ(Pi)}k
i=1 with weight uµ(Pi) = ∑p∈Pi wp is an ε-

coreset for P w.r.t. cost(P,x).

Lemma III.4. For any machine learning problem with cost
function cost(P,x)=maxp∈P cost(p,x), if ∃ a partition {Pi}k

i=1
of P such that (5) holds for any x ∈ X , i ∈ [k], and p ∈ Pi,
then S = {µ(Pi)}k

i=1 (with arbitrary weights) is an ε-coreset
for P w.r.t. cost(P,x).

We now prove the main theorem based on Lemmas III.1–
III.4.

Theorem III.1. If opt(P,k)−opt(P,2k)≤ wmin(
ε
ρ)

z, then the
optimal k-clustering of P gives an ε-coreset for P w.r.t. both
the sum cost and the maximum cost for any per-point cost
function satisfying (i) cost(p,x) ≥ 1, and (ii) cost(p,x) is ρ-
Lipschitz-continuous in p, ∀x ∈ X .

Proof. By Lemma III.1, opt(P,k)− opt(P,2k) ≤ ε′ implies
opt(Pi,1) − opt(Pi,2) ≤ ε′, ∀ cluster Pi generated by the
optimal k-clustering. By Lemma III.2, this in turn implies
that dist(p,µ(Pi)) ≤ (ε′

wmin
)

1
z , ∀p ∈ Pi. Because cost(p,x) is

ρ-Lipschitz-continuous in p for all x ∈ X , we have

| cost(p,x)− cost(µ(Pi),x) |≤ ρ(
ε′

wmin
)

1
z ,∀x ∈ X , p ∈ Pi.

Moreover, as cost(p,x)≥ 1,

| cost(p,x)− cost(µ(Pi),x) |
cost(p,x)

≤ ρ(
ε′

wmin
)

1
z = ε

for ε′ = wmin(
ε
ρ)

z. By Lemma III.3, k-clustering gives an ε-
coreset for P w.r.t. the sum cost; by Lemma III.4, k-clustering
gives an ε-coreset for P w.r.t. the maximum cost.

Often in practice, the coreset size must satisfy some upper
bound specified by the maximum communication overhead.
In this case, we can rephrase Theorem III.1 to characterize
the quality of approximation as a function of the coreset size.

Corollary III.1.1. Given a maximum coreset size k ∈ Z+

(positive integers), for any cost function satisfying the con-
ditions in Theorem III.1, the optimal k-clustering gives an
ε-coreset for P w.r.t. this cost function, where

ε = ρ
(

opt(P,k)−opt(P,2k)
wmin

) 1
z

. (6)

Proof. This is a direct implication of Theorem III.1, as setting
ε by (6) satisfies the condition in Theorem III.1.

Remark: Condition (i) in Theorem III.1 is easily sat-
isfied by any machine learning problem with nonnegative
per-point costs, as we can add ‘+1’ to the cost function
without changing the optimal solution. Even without this
condition, a similar proof will show that the coreset S given
by k-clustering approximates the original dataset P in that
|cost(P,x)−cost(S,x)| ≤ ε̃ (∀x ∈ X), where ε̃ = ε∑p∈P wp for
the sum cost, and ε̃ = ε for the maximum cost.

Condition (ii) is satisfied by many machine learning prob-
lems with distance-based cost functions. For example, for
MEB, cost(p,x) = dist(p,x), where x ∈Rd denotes the center
of the enclosing ball. For any data points p, p′ ∈ Rd , by the
triangle inequality, we have:

|dist(p,x)−dist(p′,x)| ≤ dist(p, p′). (7)

Hence, its cost function is 1-Lipschitz-continuous (i.e., ρ= 1).
See Appendix B in [15] for more examples. In Section IV,
we will stress-test our coreset when this condition is violated.

C. Coreset by Suboptimal k-clustering

While Theorem III.1 and Corollary III.1.1 suggest that the
optimal k-clustering gives a good coreset, the k-clustering
problem is NP-hard [21], [22]. The question is: does similar
performance guarantee hold for the coreset computed by an
efficient but suboptimal k-clustering algorithm? To this end,
we introduce a few assumptions on the k-clustering algorithm:

Assumption 1 (local optimality): Given the partition
{P̃i}k

i=1 generated by the algorithm, the center it selects in
each P̃i is µ(P̃i), i.e., the optimal 1-clustering center for P̃i.

Assumption 2 (self-consistency): For any P and any k≥ 1,
the cost of the algorithm satisfies

approx(P,2k)≤
k

∑
i=1

approx(P̃i,2). (8)

Assumption 3 (greedy dominance): For any P, the 2-
clustering cost of the algorithm satisfies

approx(P,2)≤ c(P,{µ(P), p∗}), (9)

where c(P,Q) is defined in (3), and p∗ := argmaxp∈P wp ·
dist(p,µ(P))z is the point with the highest 1-clustering cost.

We argue that these are mild assumptions that should be
satisfied or approximately satisfied by any good k-clustering
algorithm. Assumption 1 is easy to satisfy, as computing the 1-
mean is easy (i.e., sample mean), and there exists an algorithm
[24] that can compute the 1-median to an arbitrary precision
in nearly linear time. Assumption 2 means that applying the
algorithm for 2k-clustering of P should perform no worse than
first using the algorithm to partition P into k clusters, and then
computing 2-clustering of each cluster. Assumption 3 means
that for k = 2, the algorithm should perform no worse than
a greedy heuristic that starts with the 1-clustering center, and
then adds the point with the highest clustering cost as the
second center.

Algorithm 1: Robust Coreset Construction(P,ε,ρ)
input : A weighted set P with minimum weight wmin,

approximation error ε > 0, Lipschitz constant ρ
output: An ε-coreset S for P w.r.t. a cost function satisfying

Theorem III.2
1 foreach k = 1, . . . , |P| do
2 if approx(P,k)−approx(P,2k)≤ wmin(

ε
ρ)

z then
3 break;
4 ({µ(P̃i)}k

i=1,{P̃i}k
i=1)← k-clustering(P,k);

5 S←{µ(P̃i)}k
i=1, where µ(P̃i) has weight ∑p∈P̃i

wp;
6 return S;

We show that for any k-clustering algorithm satisfying
these assumptions, statements analogous to Lemma III.1 and
Lemma III.2 can be made. Let {P̃i}k

i=1 denote the partition of
P generated by the k-clustering algorithm.

Lemma III.5. For any ε′ > 0, if approx(P,k)−approx(P,2k)
≤ ε′, then approx(P̃i,1)−approx(P̃i,2)≤ ε′ for any i ∈ [k].

Lemma III.6. If approx(P̃i,1) − approx(P̃i,2) ≤ ε′, then
dist(p,µ(P̃i))≤ (ε′

wmin
)

1
z , ∀p ∈ P̃i.

Theorem III.2. If approx(P,k)− approx(P,2k) ≤ wmin(
ε
ρ)

z,
where approx(P,k) is the cost of a (possibly suboptimal)
k-clustering algorithm satisfying Assumptions 1–3, then the
centers computed by the algorithm for k-clustering of P
give an ε-coreset for P w.r.t. both the sum cost and the
maximum cost for any per-point cost function satisfying (i–ii)
in Theorem III.1.

Proof. The proof follows the same steps as that of Theo-
rem III.1, except that Lemma III.1 is replaced by Lemma III.5,
and Lemma III.2 is replaced by Lemma III.6. Note that Lem-
mas III.3 and III.4 hold for any partition of P, which in this
case is {P̃i}k

i=1 generated by the k-clustering algorithm.

Similar to Corollary III.1.1, we can rephrase Theorem III.2
to characterize the quality of a coreset of a specified size.

Corollary III.2.1. Given a maximum coreset size k ∈Z+, for
any cost function satisfying the conditions in Theorem III.1
and any k-clustering algorithm satisfying Assumptions 1–3,
the centers computed by the algorithm for k-clustering of P
give an ε-coreset for P w.r.t. the given cost function, where

ε = ρ
(

approx(P,k)−approx(P,2k)
wmin

) 1
z

. (10)

D. Coreset Construction Algorithm

Based on Theorem III.2, we propose a k-clustering-based
coreset construction algorithm, called Robust Coreset Con-
struction (RCC) (Algorithm 1), which uses a k-clustering
algorithm as subroutine in lines 2 and 4. If the coreset size k is
predetermined, we can directly start from line 4. The constant
z = 1 if the adopted clustering algorithm is for k-median, or
z = 2 if it is for k-means.

TABLE I
MACHINE LEARNING COST FUNCTIONS

problem overall cost function2 ρ
MEB maxp∈P dist(x, p) 1

k-means ∑p∈P wp ·minqi∈x dist(qi, p)2 2∆
PCA ∑p∈P wp ·dist(p,xp)2 2∆(l +1)

SVM ∑wp max(0,1− pd(pT
1:d−1x1:d−1 + xd)) ∞

IV. PERFORMANCE EVALUATION

We evaluate the proposed coreset construction algorithm
and its benchmarks over a variety of machine learning
problems, and compare the cost of each model learned from
a coreset with the cost of the model learned from the original
dataset.

Coreset construction algorithms: We evaluate RCC based
on k-median clustering (‘RCC-kmedian’) and RCC based
on k-means clustering (‘RCC-kmeans’), together with bench-
marks including the algorithm in [17] (‘gradient descent’),
the framework in [16] instantiated for k-means (‘random
sampling’), and uniform sampling (‘baseline’).

Datasets: We use MNIST data [25], which consists of
60,000 images of handwritten digits, each trimmed to 20×20
pixels. We pre-process the data as explained in [15]. All our
findings have been verified on three other datasets [15].

Machine learning problems: We evaluate three unsuper-
vised learning problems—MEB, k-means, and PCA, and one
supervised learning problem—SVM. Table I gives their cost
functions, where for a data point p ∈ Rd , p1:d−1 ∈ Rd−1

denotes the numerical portion and pd ∈ R denotes the label.
The meaning of the model parameter x is problem-specific, as
explained in the footnote. We also provide (upper bounds of)
the Lipschitz constant ρ; see Appendix B in [15] for analysis.
Here l is the number of principle components computed by
PCA, and ∆ is the diameter of the sample space. In our
experiments, ∆ =

√
(d−1)(L2−2L+2), which is 181.1 for

MNIST. Although SVM does not have a finite ρ, we still
include it to stress-test our algorithm.

Results: We evaluate the coreset construction algorithms by
the normalized costs of the models learned from the coresets.
This means the performance of a coreset S is evaluated by the
normalized cost, defined as cost(P,xS)/cost(P,x∗), where x∗

is the model learned from the original dataset P, and xS is the
model learned from the coreset. The smaller the normalized
cost, the better the performance. As these coreset construction
algorithms are randomized, we plot the CDF of the normalized
costs computed over 100 Monte Carlo runs for dataset MNIST
in Figure 2. Due to page limit, additional results of the other
three datasets are included in Appendix D in [15].

We see that the proposed algorithms (‘RCC-kmeans’ and
‘RCC-kmedian’) perform either the best or comparably to the
best across all machine learning problems. The gradient de-
scent algorithm in [17], designed for MEB, can perform very

2The model x denotes the center of enclosing ball for MEB and the set
of centers for k-means. For PCA, x = WW T , where W is a d × l matrix
consisting of the first l (l < d) principle components as columns. For SVM,
x1:d−1 ∈ Rd−1 is the coefficient vector and xd ∈ R is the offset.

1 1.002 1.004 1.006 1.008 1.01 1.012

normalized cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

gradient descent

random sampling

baseline

RCC-kmeans

RCC-kmedian

(a) MEB

1 1.5 2 2.5 3

normalized cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

gradient descent

random sampling

baseline

RCC-kmeans

RCC-kmedian

(b) k-means (k = 2)

20 40 60 80 100 120 140

normalized cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

gradient descent

random sampling

baseline

RCC-kmeans

RCC-kmedian

(c) PCA (300 components)

4 6 8 10 12 14 16 18 20 22

normalized cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
gradient descent

random sampling

baseline

RCC-kmeans

RCC-kmedian

(d) SVM (‘0’: 1; others: -1)
Fig. 2. Evaluation on MNIST dataset (label: ‘labels’, coreset size: 50).

TABLE II
AVERAGE RUNNING TIME (SECONDS)

algorithm MNIST
gradient descent 7.27

random sampling 4.34
baseline 0.01

RCC-kmeans 13.59
RCC-kmedian 123.82

poorly for other machine learning problems. The sampling-
based algorithms (’random sampling’ in [16] and ‘baseline’)
perform relatively poorly for MEB and PCA. Note that all the
algorithms are within 3% of the optimal for MEB.

Moreover, we see from the CDFs that the proposed algo-
rithms (‘RCC-kmeans’ and ‘RCC-kmedian’) also have sig-
nificantly less performance variation than the benchmarks,
especially the sampling-based algorithms (‘random sampling’
and ‘baseline’). This means that the quality of the coresets
constructed by the proposed algorithms is more reliable,
which is a desirable property.

Between the proposed algorithms, ‘RCC-kmeans’ some-
times outperforms ‘RCC-kmedian’, e.g., Fig. 2 (c–d). We
note that ‘RCC-kmeans’ can be an order of magnitude faster
than ‘RCC-kmedian’, as shown in Table II. Other than ‘RCC-
kmedian’, all the algorithms can finish in a few seconds. In
Appendix D in [15], we have also validated the approximation
bound given by Corollary III.2.1.

V. CONCLUSION

We show, both theoretically and empirically, that the k-
clustering centers form a coreset that provides a universal
approximation for a broad set of machine learning problems
with sufficiently continuous cost functions. As k-clustering
(including k-means/median) is one of the most well-studied
machine learning problems, this result allows us to lever-
age existing k-clustering algorithms for coreset construction.
While our evaluations show that existing algorithms already

give good performance, the assumptions in our proofs (see
Section III-C) do suggest new requirements that can be
investigated in future work. Our extensive evaluations verify
the superior robustness of the proposed k-clustering-based
coreset construction algorithm in simultaneously supporting
a diverse set of machine learning problems.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, December 2016.

[2] D. Peteiro-Barral and B. Guijarro-Berdinas, “A survey of methods for
distributed machine learning,” in Progress in Artificial Intelligence,
November 2012.

[3] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, May 2016.

[4] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM, April
2018.

[5] M. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and k-
median clustering on general topologies,” in NIPS, 2013.

[6] R. Kannan, S. Vempala, and D. Woodruff, “Principal component
analysis and higher correlations for distributed data,” in COLT, 2014.

[7] A. Barger and D. Feldman, “k-means for streaming and distributed big
sparse data,” in SDM, 2016.

[8] M. Bādoiu, S. Har-Peled, and P. Indyk, “Approximate clustering via
core-sets,” in ACM STOC, 2002.

[9] P. K. Chan and S. J. Stolfo, “Toward parallel and distributed learning
by meta-learning,” in AAAI Workshop in Knowledge Discovery in
Databases, 1997.

[10] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, March 1998.

[11] D. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2,
pp. 241–259, 1992.

[12] A. Lazarevic and Z. Obradovic, “Boosting algorithms for parallel and
distributed learning,” Distributed and Parallel Databases, vol. 11, no. 2,
pp. 203–229, March 2002.

[13] J. M. Phillips, “Coresets and sketches,” CoRR, vol. abs/1601.00617,
2016.

[14] A. Munteanu and C. Schwiegelshohn, “Coresets-methods and history:
A theoreticians design pattern for approximation and streaming algo-
rithms,” KI - Künstliche Intelligenz, vol. 32, no. 1, pp. 37–53, 2018.

[15] H. Lu, M.-J. Li, T. He, S. Wang, V. Narayanan, and K. S. Chan,
“Robust coreset construction for distributed machine learning,” 2019.
[Online]. Available: http://arxiv.org/abs/1904.05961

[16] D. Feldman and M. Langberg, “A unified framework for approximating
and clustering data,” in STOC, June 2011.

[17] M. Bādoiu and K. L. Clarkson, “Smaller core-sets for balls,” in SODA,
2003.

[18] S. Har-Peled and K. R. Varadarajan, “Projective clustering in high
dimensions using core-sets,” in SOCG, 2002.

[19] M. Langberg and L. J. Schulman, “Universal ε approximators for
integrals,” in SODA, 2010.

[20] D. Feldman, A. Krause, and M. Faulkner, “Scalable training of mixture
models via coresets,” in NIPS, 2011.

[21] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
Euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, May 2009.

[22] N. Megiddo and K. J. Supowit, “On the complexity of some common
geometric location problems,” SIAM Journal of Computing, vol. 13,
no. 1, pp. 182–196, 1984.

[23] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in SODA, January 2007.

[24] M. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford, “Geometric
median in nearly linear time,” in STOC, 2016.

[25] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, 1998. [Online].
Available: http://yann.lecun.com/exdb/mnist/

