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ABSTRACT
While humans can act as e�ective sensors, human input is subject
to a high degree of error and highly dependent on the context.
Furthermore, extracting the signal from the noise for social sensing
is a di�cult challenge. One approach to improving the accuracy
of social sensing is to use physical sensors as a control knob for
social sensing algorithms. In this paper, we present an architecture
for using audio sensors as a way to control an algorithm used for
social sensing of interesting events. We present various use cases
where the architecture is applicable, and go into the details of one
speci�c use case, namely using crowd behavior in a golf-course to
identify and control social media feeds related to the course.

CCS CONCEPTS
•Human-centered computing→Collaborative and social com-
puting; •Computer systems organization →Distributed archi-
tectures; •Computing methodologies →Machine learning ap-
proaches;
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1 INTRODUCTION
In social sensing applications, advance knowledge of the context of
sensing can provide useful insights for selecting the appropriate
sensing and analytics algorithms for the task. �is can have a sig-
ni�cant impact on the relevance and quality of the collected data
and the e�ectiveness of the analytics. For example, suppose one
is interested in �nding out the times and the locations of severe
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tra�c accidents in a large city through a social/crowd sensing task
utilizing visual data from people’s mobile phones and other sensory
data (e.g., accelerometer reading) from vehicles around the city.
Social sensing using a setup similar to [5] would be much more
e�cient and economical than se�ing up a physical sensing infras-
tructure similar to [8] for a city. �e collective set of data that can
be obtained from all the sensing devices will contain a vast amount
of data completely irrelevant to sensing objective (in this case, data
from devices not in the vicinity of any accident), while only a small
portion will be useful for the task at hand. Sourcing from only a
subset of sensing devices that are potentially relevant to the par-
ticular situation of interests would make it easier to extract true
signals from the noises, and also avoid unnecessary consumption
of computing and network resources. Furthermore, if the same set
of the data is to be used and shared across multiple sensing tasks,
each with a distinct goal (e.g., one for tra�c accidents detection and
the other for road surface condition monitoring), di�erent types of
analytics algorithms can be deployed according to the particular
context. �is will improve the quality of the output.

A common challenge in social sensing applications is the di�-
culty of determining the relevance of the data being collected. A
typical approach widely adopted in many social sensing applica-
tions is to use the location of the sensing device as a type of context.
Such prior knowledge on the locations of and the relationship be-
tween the devices can be easily obtained (most mobile phones today
are equipped with GPS sensor). It can be useful in some types of
social sensing applications, such as those for �nding the general
trends of environments and overall conditions of various kinds in
a speci�c region [2, 7] and those utilizing the social relationship
between people to perform collaborative tasks [3, 6]. However, it is
not useful in detecting interesting events because, by de�nition, the
events occur at unspeci�ed, unpredicted times and locations, and
the “interesting” events are rare (otherwise they are not interesting
any more), so it is di�cult, if not impossible, to pre-determine the
geo-spatial region to de�ne the relevancy of the data.

In order to determine the context of the sensor devices, one needs
to collect and analyze at least “some” data anyway from the sensing
�eld, either directly from the sensor devices to be used in the social
sensing tasks or from other sensors that either perform the tasks of
other application or are speci�cally purposed to help drawing the
contextual information. �e question then is what types of data and
how much of them ought to be collected and used to determine the
contextual information of the targeted sensing �eld. While the an-
swer is application-dependent, a basic principle would be to strike
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the good balance in the cost-bene�t tradeo� between the resource
consumption and the accuracy of contextual information; Resource
consumption is the amount of network bandwidth, storage, compu-
tational and energy consumed in analyzing the data; Accuracy and
precision is de�ned with respect to analyzing the right amount of
data to get good utility from the sensing task. Analyzing very li�le
amount of data, or doing elementary analysis can lead to high false
positives or false negatives. On the other hand, analyzing too much
data may lead to computationally expensive approaches which do
not add utility.

To address this challenge, we propose that social sensing archi-
tectures can gain signi�cantly if they are augmented with control
knobs, i.e. signals and sensors which in�uence the interaction be-
tween di�erent sensors generating data and the analytics performed
upon them. We also argue that the use of the sound, speci�cally
ambient sound, is a good control knob for many social sensing
situations.

�ere are several bene�ts of using sounds as a control knob:
• Audio sensors are ubiquitous and generally inexpensive (e.g., all

mobile phones have microphones by default).
• Sound propagates in all directions and can be heard at a fair bit

of distance from the source of the sound.
• Relatively simple processing of the sound signals can reveal

useful contextual information.
�e �rst two, that is, the ubiquity of the sounds and sound sen-

sors, in particular make the audio analytics an excellent candidate
for realizing an “always-on-everywhere” sensing capability. What
is remaining then is how to minimize the overhead of collecting
and processing the sound data. In the remainder of the paper, we
present our architecture that addresses this issue in using audio
analytics as the control knob for social sensing tasks in Section
2, and its use cases in Section 3, one of which is used to validate
the feasibility of our architecture through experimental analysis.
Section 4 concludes the paper.

2 CONTROL ARCHITECTURE FOR SOCIAL
SENSING

We begin with a description of the basic architecture of the proposed
social sensing control plane that utilizes the ambient sound from a
sensing �eld and controls the sensor selection and analytics task
deployment for the speci�c social sensing tasks. We then present
a few improvements that address the challenges of scalability and
managing resource consumption.

2.1 Base Architecture
Figure 1 illustrates the base architecture of the proposed control
plane, where a shaded box on the right-hand side shows the internal
components of the control plane. We assume the sensing �eld (on
the le�-hand side of the �gure) can be monitored by various types
of sensor devices that can potentially participate in social sensing
tasks, many of which are capable of capturing the sound signal
from the sensing �eld; these include mobile phones, video cameras
with microphones, and stand-alone microphone devices. We also
assume that the collective set of the sound sensors can su�ciently
cover the sensing �eld both in space and in time–we are exploiting
the ubiquity of the sound sensor devices we argued in Section 1.

Figure 1: Base architecture of social sensing control plane
based on audio analytics.

We are primarily interested in detecting interesting events that
occur at unspeci�ed times and locations within the sensing �eld.
�e detection of the events itself is performed by the social sens-
ing tasks that utilize various types of the sensors in the �eld (not
necessarily the sound sensors, though sound sensors can also be
used in the event detection tasks). �e main function of the control
plane is threefold:

• Understand the requirements of the social sensing application in
terms of what contexts extracted from the sounds shall trigger
the active social sensing task.

• Deploy the audio analytics tasks suited for the given social sens-
ing task, and extract the contexts out of the captured sounds in
the sensing �eld.

• Upon detecting a speci�ed context, deploy the social sensing
tasks (sensing and analytics) for a set of sensor devices deemed
to be in the detected context.

As an illustrative example, consider a social sensing application
that detects incidents of gun violence in busy streets of a city. �e
application would utilize video and image footages collected from
various camera devices (e.g., smart phones of people participating
in the social sensing, surveillance cameras) to analyze the scene of
the incidents and identify potential suspects in them through visual
analytics. Since collecting and analyzing video footages all the time
in the entire area is very expensive, in terms of sensing, collecting,
and processing, the application in our architecture would instead
�rst detect possible incidents via audio analytics that is able to
detect the sounds of the gun�re (this gives the “context” of possible
gun�re), and then deploy the video-based social sensing tasks for
only a subset of camera devices near the location that the gun sound
is detected.

In this scenario, the architecture shown in Figure 1 is applicable
in the following manner:

(1) �e Controller �rst interprets the requirements of sound-based
context detection from the social sensing application descrip-
tion,

(2) �e Controller deploys a set of audio analytics algorithm suit-
able for detecting the speci�ed context,

(3) �e deployed audio analytics detects the sound indicating the
speci�ed contexts from one or more microphones (marked by
“diamond” shape) in the �eld,
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(4) �e Controller is noti�ed of the occurrence of the speci�ed
context and the associated meta-information (e.g., time and
location), and

(5) �e Controller deploys the sensing and analytics tasks for the
sensor devices (marked by “circles”) near the location of the
detected incident.

While our focus here is on the architectural aspects of using audio
analytics as a control mechanism for social sensing applications and
the speci�cs of the audio analytics algorithms are beyond the scope,
we want to point out that various mechanisms for inferring the
contextual information from the sound data exist in literature. �ese
methods use various combinations of audio feature extractions (e.g.,
FFT, DCT, MFCC, etc.) and machine learning algorithms for general
scene detection and speci�c event detection problems [1].

�e description of the social sensing application description and
how to translate it into the deployment action can be done in a
variety of ways as well. For example, a formal, schematic language
can be used to govern precisely how the controller shall interpret
the requirements by the application. Another approach is to utilize
NLP (natural language processing) techniques, such as Latent Se-
mantic Analysis (LSA), on unstructured, free-form description of
the application’s intent and requirements, and draw “approximately
appropriate” action. We plan to explore the la�er in the future.

In this way, our architecture enables the targeted deployment of
the social sensing and analytics tasks in which the tasks requiring
expensive operations can be executed in an on-demand fashion,
triggered by a ubiquitous, less expensive, background sensing and
analytics of ambient sounds. In what follows, we describe several
improvements that can be made in this base architecture in order to
address issues related to the scalability and resource consumption
of this background activity.

2.2 Scalability and Resource Consumption
Our architecture uses ambient sounds and audio analytics as a less
expensive mechanism for detecting the context in which further
social sensing tasks can be planned and controlled. �is analytics
does consume system resources for collecting, transmi�ing, and an-
alyzing sounds, especially when it is performed continuously across
the entire sensing �eld. We present here several approaches, which
in combination are e�ective in reducing the resource consumption
of such sensing.

2.2.1 “Shallow” Audio Analytics Models. In our architecture, the
audio analytics algorithms that perform the context inference from
the ambient sounds do not always need to produce very precise
analytical results. Since they are only used as a pre-�ltering mech-
anism, they can a�ord to be “approximate”, essentially trading the
accuracy for the resource consumption. In the context of commonly
used machine learning approaches, this means that we do not need
to employ “deep” models (e.g., deep neural networks such as Con-
volutional Neural Network, Recurrent Neural Network, etc.) that
requires extensive use of memory and processing power. More
traditional “shallow” models that requires signi�cantly less comput-
ing resource (such as logistic regression, support vector machine,
and various tree-based methods) can be e�ective enough as the
control-plane analytics methods.

2.2.2 Edge Analytics. Edge analytics generally refers to a class of
analytics techniques that can be executed at the edge of the network,
e.g., IoT gateways, mobile devices, sensor devices. Performing the
analytics at the edge has a number of advantages over conventional
approaches of running the analytics at a central place like in a cloud
computing environment [11], including:

• It can save a substantial amount of network bandwidth that
would be spent should the data collected in the �eld be sent to
the central servers for processing.

• It can minimize the delay in producing the analytics outcome as
the data are locally processed.

• It can alleviate the privacy concern of data as the raw data are
processed locally and only the results of the analytics are to be
transmi�ed for further processing.

A challenge in edge analytics is that the edge devices generally
have limited computing resources. �is is not a signi�cant concern
in our case since the shallow models can be used e�ectively in such
resource limited environment. Using this principle, the Audio Ana-
lytics Runtime module in our architecture (Figure 1) are physically
placed at the edge devices, though nothing prevents from running
the actual social sensing analytics tasks at the edge as well. Note
that modern smart phones, which are widely used in social sensing
applications, are excellent edge audio analytics platform because
they have microphones and adequate computing resources.

2.2.3 Multiplexing of Sound Sensing. Capturing the ambient
sound continuously throughout the entire sensing �eld by all audio
sensing devices would consume signi�cant energy and comput-
ing resources of the devices. Luckily, the combination of sound
propagation characteristics (i.e., omni-directional) and the remote
sensing capability and ubiquity of the sound sensors e�ectively
removes the need of having all of them active all the time. Instead,
a more conservative approach can be e�ective for our purpose,
that is, le�ing the sound sensors “take turns” based on either a
pre-determined schedule or at random. �e signi�cance of this
approach is that it does not require all the devices to capture spe-
ci�c events indicating a speci�ed context, but only a small subset
of them in the vicinity of the event is good enough to trigger the
social sensing task in the region. As an example, consider the event
occurring in the sensing �eld in Figure 1. �ough there are a few
microphone-enabled devices near the location of the event, only
one of them hearing the sounds of the event will be enough to
trigger the deployment of the sensing task for nearby devices. Note,
however, that there exists another spectrum of tradeo� between
the accuracy and the resource savings: With more microphones
detecting the sound-based events, it becomes gradually possible to
pin-point the precise location of the sound source (through, e.g.,
triangulation), yet at the expense of energy/processing.

In what follows, we will present some use cases of this architec-
ture in the context of using the audio analytics to detect interesting
events in social sensing scenarios. We’ll also present preliminary
experimental evaluation results that demonstrate the feasibility of
our approach in one of the use cases.
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Figure 2: Sports tournament event analysis using sounds.

3 USE CASES
In this section, we present several use-cases where the use of audio
analytics as a control knob can help improve the e�ectiveness of
social sensing.

3.1 Sporting Events
In many golf tournaments, and indeed in many modern sports, it is
common for organizers to use social media to provide highlights
into interesting events. In the context of a golf match, it could be
a player making an very long pu�, a “hole-in-one” or other such
interesting actions that happen during the game. When such an
interesting event happens, social media is used by many members
in the audience to send details of such events out in the �eld.

If we want to detect the interesting events from the social me-
dia feed, we do face the challenge that the feeds from di�erent
individuals tend to be erratic and highly subject to their individual
preferences. It could be di�cult to determine interesting events
just from the analysis of the social media feed themselves.

On the other hand, if audio sensing is used as a control knob for
social sensing, i.e. they are used to �lter the relevance of a social
media stream relevant to a sporting event, a signi�cant improve-
ment in the quality of social sensing can be obtained. In almost
all sports, an interesting event is accompanied by a reaction from
the crowd: applause, a roar or other reaction which shows that
something interesting has happened. An analysis of the crowd
reaction, i.e. the ambient sounds from the crowd, can provide a
good estimation of the ground truth – whether or not something
of interest has happened.

We can therefore propose a control architecture where social
analysis on the tweets is coupled with a control knob that is con-
trolled by the ambient sounds in the crowd (Figure 2). When there
is a roar or clapping from the sound, the analysis of tweets about
the event for some time interval is commenced. When the crowd is
silent, or only normal background noise is heard, the system can
ignore the tweets that are happening, anticipating that many of
those tweets may not be relevant to anything of interest.

�e control architecture used for this use case assumes that peo-
ple would tend to tweet about the most recent interesting event
within some given time threshold a�er the event happens. As-
suming that aspect of human behavior is valid, controlling the
analysis and processing of social media by using the crowd sounds
as a control knob can signi�cantly reduce the amount of irrelevant
information that needs to be processed.

Figure 3: Validation of public event social sensing using au-
dio analysis.

3.2 Public Demonstration Analysis
Social sensing can be used to track the status of public demonstra-
tions, protests and similar expressions of public opinion. Usually,
any signi�cant event of this nature is accompanied by an active
feed in social media. �is would lead to the natural assumption
that social sensing can provide a good mechanism to identify the
e�ectiveness and estimate the size of a public demonstration. How-
ever, the ground truth may be quite di�erent from the information
that can be gleaned from social sensing. Social sensing is very
susceptible to false positives in the case of demonstrations resulting
from overactive social media participants.

An interesting example where social sensing could be led astray
emerges from the pilot of OSCAR project in Wales, UK. OSCAR
is a social media analysis program that was piloted by a group
of universities in Wales along with the local police department
to track and analyze public sentiment [9]. During a high pro�le
meeting being held at Cardi�, UK, the OSCAR system analysis of
social tweets reported a large protest group gathering around the
meeting. Concerned by the analysis, the police went over to the
protest site only to �nd a single tweeter with a computer who was
inundating the social media feeds with reports of a �ctitious large
protest group using multiple handles.

Such type of manipulations of social media is not unusual, given
the ease with which multiple handles can be established, and the
ability to automate the generation of realistically-sounding tweets
using modern computers. Using audio analysis as a control knob
to validate the results of the social sensing can signi�cantly reduce
such manipulation of the social media.

Unlike the sports tournament where the control knob was used
to reduce the workload required for social sensing, this example
uses the audio control knob as a validation mechanism for social
sensing (Figure 3). Using the control knob for event validation
means that the ambient sounds in the environment are checked
against the detection of the a�ributes that are reported in the social
media. If the ambient sounds in the environment does not match
what social sensing analysis is indicating, the social sensing system
can discard those events. �is cross-validation helps reduce the
number of false positives that can be generated in social sensing by
those who would try to manipulate the social media in this manner.

3.3 Event Localization
One of the common use cases for social sensing is that of accident
localization. �e analysis of information from many di�erent cars,
their collective velocity as captured by the phones of the drivers
and passengers, and the motion of di�erent people can be used as
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Table 1: Performance factor de�nitions

Original sound Algorithm
has event detects event

True positive (TP) Yes Yes
True negative (TN) No No
False positive (FP) No Yes
False negative (FN) Yes No

a mechanism for detecting accidents and other congestion points
in real-time, and for mapping them out.

In the localization process of extracting information from such
incidents, audio analysis can be used as a trigger to determine when
the information pertinent to an accident may be collected from the
various social sensing devices. In addition to the monitoring of
the speed and location of various phones involved in the social
sensing experience, one can also enable acoustic monitoring on the
di�erent phones. While the sounds do not directly contribute to
information such as velocity and position of the car, the sounds
that are typical of an accident can be used to trigger the collection
of the vehicle positioning information from the di�erent devices
that are in the vicinity of the di�erent physical sensors.

�e same accident can trigger a sound analysis in many di�erent
devices. Assuming that at least some number of phones are within
the hearing range of the accident, the use of acoustics can reduce
the amount of tra�c that needs to be sent out to detect and identify
accidents in a signi�cant manner.

�e above three are but some of many examples where a control
signal mechanism, speci�cally audio-based ones, can be used to
control and improve the e�ectiveness of social sensing. Despite
the relative inaccurate estimation of sounds using shallow audio
analytics, the system can still provide tremendous value.

4 EXPERIMENTAL RESULTS
In this section, we present some experimental results on example
use cases including the golf tournament scenario described above.
We focus on the automatic detection of events from sounds using
shallow models that are feasible for running at the edge.

�e pipeline for sound classi�cation and event detection includes
feature extraction and classi�cation. �e feature extraction step
extracts useful features from raw audio waveforms, such as FFT
coe�cients and MFCC coe�cients [4], which are then used by the
classi�ers in the classi�cation step. �e classi�ers are �rst trained
on the training data and then evaluated on testing data.

4.1 Performance Metrics
We evaluate the performance of event detection with commonly
used metrics. For a particular event of interest, the de�nitions
of true/false positives and negatives are summarized in Table 1,
which depend on whether the original sound contains an event and
whether the algorithm detects that event.

Based on the above, the precision and recall are de�ned as follows:
Precision = TP / (TP + FP) (1)

Recall = TP / (TP + FN) (2)
Intuitively, the precision means among all sounds where the algo-
rithm says that there is an event, how many of them really have an

Table 2: Results for golf event detection

Training data Precision Recall Accuracy

Background + applause/cheering 90.6% 91.3% 90.7%
Background only 80.0% 83.7% 80.2%

event; the recall means among all real events, how many of them
are detected by the algorithm.

If the focus is on the classi�cation of di�erent types of sounds,
instead of detecting one type of sound out of all other types of
sounds, one can also de�ne the accuracy as the number of correctly
classi�ed sounds divided by the total number of them considered
in the classi�cation. We study the precision, recall, and accuracy
for two di�erent scenarios in the following.

4.2 Golf Tournament Sounds
Several real golf competition videos are used to train the classi�-
cation model used for crowd behavior detection. �e videos are
from di�erent golf competitions and are rich in sound e�ects. �e
sound track of each video is decoded into the wave format and
chopped into 5 second segments (or “sound clips”), and each seg-
ment is then labeled manually for training. For the purpose of
golf crowd behavior detection, we simply divide sound clips into
two categories: background sound and crowd behavior sound. �e
background sounds consist of regular background noise in the �eld
and golf competition commentators’ speech that do not include an
event, and the crowd behavior sounds include events such as ap-
plause, cheering, and roaring sound by crowds (possibly in addition
to the background sound). �e sound dataset that we use in the
experiment has 43 clips with an event, and 43 clips without event.

For this particular application scenario, we found that an MFCC
feature extractor combined with a nearest neighbor classi�er gives
good performance. �e nearest neighbor classi�er saves all (subject
to an upper limit) of the features of clips in the training dataset.
In the classi�cation phase, each new sound clip is classi�ed as the
same category as its closest neighbor in the feature space. �e
“closeness” is measured according to a distance metric. For the golf
scenario, we found that using Lp norm with p = 0.5 as the distance
function gives the best performance.

�e nearest neighbor classi�er can also be extended to support
the detection of an unknown sound. If the distance exceeds a given
threshold, we classify this sound as unknown, indicating that some
interesting event might have happened. �e threshold value has a
direct impact on the trade-o� between precision and recall; it can
be tuned such that the precision and recall are approximately equal.

We study the performance of two di�erent cases in our exper-
iments. In the �rst case, we use both types of sounds (i.e., with
and without event) for training. Here, we use K-fold evaluation
with K=4 [10], where 75% of the total amount of sound clips are
used for training and 25% are used for testing. �ere are four dif-
ferent ways of partitioning the training and testing dataset and
the average results are shown. In the second case, we only use 5
background sound clips (without event) for training, and all the
remaining sound clips are used for testing. �is corresponds to the
case where one has limited amount of training data, which does
not contain any event, and the events will be detected using the
unknown sound detection capability described above.
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(a) (b) (c)

Figure 4: Performance results of multi-class event detection and classi�cation: (a) precision, (b) recall, (c) accuracy.

�e results are shown in Table 2. As one would intuitively ex-
pect, the �rst case performs be�er than the second case. However,
it is interesting to note that the performance of second case is
quite promising as well, particularly since only 5 clips are used for
training the model. Because the number of each type of sounds
are approximately equal in both cases, a random guess would give
approximately 50% of precision, recall, and accuracy.

4.3 Multi-Class O�ce Sounds
In more complex environments, one may want to have the capability
of detecting the presence of di�erent types of sounds. To evaluate
the performance of such cases, we study the performance using the
DCASE 2016 dataset [1], which contains sounds of clearing throat,
coughing, door slam, drawer, keyboard, keys dropping, knocking,
human laughter, page turning, phone, and speech. �e precision
and recall for this scenario are de�ned for detecting one particular
class of sound out of all other classes of sounds. In addition to
considering the entire dataset, we also consider subsets that have a
smaller number of classes.

Because this scenario is more complex, we use more advanced
(but still shallow) classi�ers, including the nearest neighbor with
Euclidian distance, Gaussian mixture model, bag of words on audio
features, random forest, as well as the ensemble of them. �e
results are shown in Figure 4 , which are obtained from K-fold
evaluation with K=4 and multi-class training data. We see that the
best classi�er and the ensemble give promising results (around 80%
of precision, recall, and accuracy). �e ensemble is a�ractive due
to its ability to always select the best set of classi�ers, which may
vary under di�erent scenarios.

5 CONCLUSIONS
In this paper, we argue that using audio as a control knob for
in�uencing social sensing applications is bene�cial, and discuss
several use cases where this abstract model can be applied. We
evaluate the e�cacy of the approach in one use case, speci�cally
for identifying the interesting events that are happening in a golf
tournament. While the concepts of the high level architecture
are helpful in improving social sensing applications, the primary
constraint in ge�ing the desired bene�ts is the accuracy of audio
sensing. Despite the inaccuracy, the audio analysis based control
knob can be useful in reducing the volume and computational needs
of social sensing applications in many di�erent use cases.
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