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Abstract—Erasure-coded computing has been successfully used
in cloud systems to reduce tail latency caused by factors such
as straggling servers and heterogeneous traffic variations. A
majority of cloud computing traffic now consists of inference
on neural networks on shared resources where the response
time of inference queries is also adversely affected by the same
factors. However, current erasure coding techniques are largely
focused on linear computations such as matrix-vector and matrix-
matrix multiplications and hence do not work for the highly
non-linear neural network functions. In this paper, we seek to
design a method to code over neural networks, that is, given
two or more neural network models, how to construct a coded
model whose output is a linear combination of the outputs of
the given neural networks. We formulate the problem as a KL
barycenter problem and propose a practical algorithm COIN

that leverages the diagonal Fisher information to create a coded
model that approximately outputs the desired linear combination
of outputs. We conduct experiments to perform erasure coding
over neural networks trained on real-world vision datasets and
show that the accuracy of the decoded outputs using COIN is
significantly higher than other baselines while being extremely
compute-efficient.

I. INTRODUCTION

Modern machine learning (ML) jobs are deployed on large-

scale cloud-based computing infrastructure. With training be-

ing a one-time event, an overwhelming majority of cloud

computing traffic now constitutes ML inference jobs, in par-

ticular, inference on neural network models. Inference queries

are highly time-sensitive because delays and time-outs can

directly impact the quality of service to users. However, the

ML models in question are often foundation models trained on

diverse large-scale datasets and fine-tuned for different specific

downstream tasks [1]. Due to the size and computational com-

plexity of these models, there can be significant variations in

the time taken to process inference queries. Guaranteeing low

inference latency is all the more challenging because applica-

tions now host multiple neural network models on the same

shared infrastructure. Issues such as resource contention in

multi-tenant clusters [2], network constraints [3] or hardware

unreliability [4] can result in straggling servers. The straggler

problem is even worse in ensemble inference scenarios [5],

where the desired inference output is a combination of the

outputs of an ensemble of models, because delays in the output
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of any one model in the ensemble can bottleneck the entire

query. Heterogeneous traffic for different models hosted on

the same infrastructure can also be a major issue affecting

latency. In many applications, inference queries are routed to

one of the several expert models based on the features of the

query [6], [7]. For example, an object detection application

may use specialized models for indoor and outdoor images or

day and nighttime images. In such scenarios, the query traffic

for each model can vary unpredictably over time [8] and it

can be negatively correlated across models, i.e., if the volume

of queries to one model is high, it is low for another model.

Techniques to handle stragglers and unpredictable traffic

variations include launching redundant queries [9], [10], also

referred to as speculative execution and replication of mod-

els to meet the highest possible traffic demand. These lead

to inefficient execution of queries and idling of resources

respectively. Erasure coding, which is a generalization of

replication, is an effective solution for straggler mitigation

in matrix computations [11]–[13] and handling heterogeneous

traffic [14]–[16]. As an illustrative example, we look at a

linear inference task of matrix computation consisting of

models A1,A2, . . . ,AN . Consider an ensemble inference

query, represented by vector x, that requires outputs of all

the N models and can be bottlenecked by straggling of any

one of the outputs. If we create coded linear combinations

of the N models, they can allow us to recover the N outputs

even when one of the uncoded models slows down. To see the

benefit of coding in handling heterogeneous traffic, consider

an application scenario that routes the query x to one of

the models A1,A2, . . .AN , and the output required to be

computed is Aix. If the server storing Ai is congested or

fails, the query routed to two servers one with Aj and one

with coded Ai + Aj and the outputs can be combined to

recover the desired output Aix. The coded server thus acts as

a flexible model that can effectively be used to serve queries

of both types or enable retrieval if one of the servers is slow.

Main Contributions. A key missing element in previous

works is that erasure coding is inherently linear and does

not work for non-linear functions. Thus, it cannot be directly

used for neural network inference. In this work, we consider

the question of how to erasure code neural networks. In Sec-

tion III, we define the coding objective that seeks to construct



a coded network whose output is a linear combination of two

or more neural networks. In Section IV we reduce our coding

objective to the equivalent KL barycenter problem and propose

a practical solution COIN that approximately produces the

desired linear combination of outputs. Finally in Section V,

we measure the accuracy of the decoded outputs using COIN

on neural networks trained on real-world vision datasets and

highlight its improvement over several competing baselines.

To the best of our knowledge, COIN is one of the first works

to do erasure coding for non-linear neural network functions

in a compute-efficient manner.

II. RELATED WORK

Erasure codes have been extensively studied and applied to

distributed storage and computing. Effective solutions for both

straggler mitigation and latency reduction use principles of

replication and erasure codes [11]–[13]. Other works including

[17]–[20] use erasure codes for straggler-resistant computation

for convex optimization and gradient descent. In [14]–[16],

the authors proposed the idea of using coded servers to

handle variations in skewed traffic for efficient reduction of

the response time of queries. However, the codes in the above

works are for linear function computations and do not work

in general for non-linear functions like neural networks.

There is very little work on employing erasure codes for

non-linear functions and neural networks, some of which

include the following relevant work. [21] decomposes non-

linear functions into inexpensive linear functions and pro-

poses rateless sum-recovery codes to alleviate the problem of

stragglers in distributed non-linear computations. For inference

on an ensemble of neural networks, [22] proposes learning

a ‘parity’ network that is trained to transform erasure-coded

queries into a form that enables a decoder to reconstruct slow

or failed predictions. A major drawback of this, however,

is that it requires training the parity model from scratch,

which is expensive in both compute and data requirements.

Another orthogonal line of work aims to learn the encoder

and decoder neural networks that enable erasure coding in

communication over noisy channels [23], [24]. The goal of

this line of work is different and complementary to ours –

they construct codes using deep neural networks while we are

using codes to improve the reliability and latency performance

of neural network inference.

A recent relevant line of work in ML has investigated the

problem of ‘model fusion’, i.e., combining the weights of two

or more independent neural networks into a single network that

broadly speaking inherits the properties of the fused networks

[25]–[28]. In this aspect, model merging is closer to multi-task

learning [29] where the goal is to learn a single model that can

perform well on all tasks. Our goal on the other hand is strictly

to produce a model whose output is a linear combination of the

given neural networks; we do not care about the performance

of the coded model on individual tasks. The closest work to

ours is [28] which also proposes to use the diagonal Fisher

when merging models. Nonetheless, we believe our motivation

for using the Fisher information for erasure coding is novel

as discussed in Section III along with our experiments in Sec-

tion V which show that our proposed approach significantly

improves decoding accuracy compared to approaches which

are adopted from model merging literature. We discuss other

related works on model merging in Section V.

III. PROBLEM FORMULATION AND PRELIMINARIES

In the rest of the paper, we use lowercase bold letters, e.g.

x, to denote vectors and use xi to denote the i-th element of

the vector x. We use ∥·∥2 to denote the L2 norm, R to denote

the set of real numbers and [N ] to denote the set of numbers

{1, 2, . . . , N}. Probability density functions are represented by

p(x). We use KL(p(x)||q(x)) to denote the KL divergence

between two densities p(x) and q(x).
Multi-Model Inference Setup. We consider a multi-

model inference setup with N neural networks denoted by

fθ1
(x), fθ2

(x), . . . , fθN
(x) where θi ∈ R

d parameterizes the

weights of the i-th neural network. Each neural network takes

an input x ∈ R
s (e.g., an image) and produces an output

y ∈ R
K (e.g., image label). To simplify our discussion

and also allow comparison with other baseline methods in

Section V, we assume that these neural networks have the

same architecture.

Erasure Coding Objective. We consider a class of erasure

codes called systematic maximum distance separable (MDS)

codes [30], [31] that take N source symbols (N neural

networks in our case) and produce Nc coded symbols such that

using the Nc coded symbols and any subset of (N−Nc) source

symbols, we can recover the other Nc source symbols. In this

paper, we focus on the Nc = 1 case and leave extensions to

general k as future work. That is, given N neural networks

fθ1
(x), fθ2

(x), . . . , fθN
(x), our goal is to produce a coded

neural network fθ(x) that can be used to recover the output

of fθi
(x) for any i using the output of the remaining (N −1)

neural networks. To do so, we want to express fθ(x) as a

convex combination of fθi
(x)’s:

fθ(x) ≈
∑N

i=1 βifθi
(x) (1)

where βi > 0,
∑N

i=1 βi = 1 are the coding weights.

Given such a coded neural network fθ(x), it is easy to

approximately recover fθi
(x) using the other N −1 networks

{fθj
(x)}Nj=1,j ̸=i as follows,

f̂θ,i(x) =
1

βi



fθ(x)−
N∑

j=1,j ̸=i

βjfθj
(x)



 ≈ fθi
(x). (2)

The quality of the decoded approximation can be measured

by the mismatch between fθi
(x) and f̂θ,i(x) for all x ∈ R

s

and i ∈ [N ], which we define using the squared loss function:

L(θ) =
1

2N
Ex

[
N∑

i=1

∥
∥
∥fθi

(x)− f̂θ,i(x)
∥
∥
∥

2

2

]

(3)

=
β̄

2
Ex





∥
∥
∥
∥
∥
fθ(x)−

N∑

i=1

βifθi
(x)

∥
∥
∥
∥
∥

2

2



 , (4)



where the last equality follows from substituting Equation (2)

in Equation (3) and defining β̄ = (
∑N

i=1 1/β
2
i )/N . Since

the distribution q(x) over x is typically unknown, we only

assume access to P samples x1,x2, . . . ,xP drawn from

q(x). Given these P samples and the neural networks

fθ1
(x), fθ2

(x), · · · , fθn
(x), we can define the following em-

pirical coding loss

L̂(θ) =
β̄

2P

P∑

l=1

∥
∥
∥
∥
∥
fθ(xl)−

N∑

i=1

βifθi
(xl)

∥
∥
∥
∥
∥

2

2

. (5)

We now discuss a baseline approach to minimize the empirical

objective, followed by our proposed approach in Section IV.

Ensemble Distillation Baseline. From Equation (5), we see

that we want the output of our coded neural network fθ(x) to

match the output of the ‘ensemble’ of neural networks given by
∑N

i=1 βifθi
(xl). This idea has been well studied in the context

of ensemble distillation [32]–[34] where the goal is to distill

the knowledge from an ensemble of models or ‘teachers’ into a

single model or ‘student’. Treating the output
∑N

i=1 βifθi
(x)

as a pseudo-label ŷl for every l ∈ [P ], we see that our

objective becomes exactly the same as squared loss regression

and can be optimized with standard gradient-based techniques.

However, there are some drawbacks to this approach. Firstly

performing such a gradient based optimization step imposes

a significant computation cost. Secondly, it is not easy to

modify the coded network to account for changes in the coding

weights βi’s or add a new neural network fθN+1
(x) to our

coding setup. We would need to re-train the coded network in

such cases. Lastly, in the case where the number of samples

P is small, there is a serious risk of overfitting. We demon-

strate this in our experiments where we show that the coded

network obtained via ensemble distillation generalizes poorly

for samples outside of the training set. Standard regularization

techniques such as early stopping and weight decay are also

unable to help with the overfitting as we show in the Appendix.

IV. COIN: CODED INFERENCE OF NEURAL NETWORKS

In this section we show how the problem of minimizing

the objective in Equation (3) can be reformulated to get an

equivalent problem known as the KL barycenter problem [35].

Next we discuss how to get an approximate solution to the KL

barycenter problem in our setup and how we can practically

implement this solution.

Neural Network as a Statistical Model. To motivate our

proposed solution, we use the idea of a neural network as

a parameterized statistical model that defines a probability

density function pθ(x,y) over all input-label pairs (x,y) in

R
s×K . In particular, we define pθ(x,y) = q(x)pθ(y|x) =

q(x) exp
(

−∥y − fθ(x)∥22
)

/
√
2π where x ∼ q(x) is the

input distribution over Rs, which is independent of parameters

θ. This is a standard idea in statistical learning that draws

an equivalence between minimizing the squared loss and

maximizing the log likelihood of the observed data under a

Gaussian model since − log pθ(x,y) = ∥fθ(x)− y∥22 + c,
where c is some constant which does not depend on θ.

Reduction to KL Barycenter Problem. Expanding the norm

in Equation (4) and since
∑N

i=1 βi = 1, we get

L(θ) =
β̄

2

N∑

i=1

β̄iEx

[

∥fθi
(x)− fθ(x)∥22

]

︸ ︷︷ ︸

L1(θ)

− β̄

2

N∑

i=1

N∑

j=1,j ̸=i

βiβjEx

[∥
∥fθi

(x)− fθj
(x)
∥
∥
2

2

]

(6)

where β̄i = βi

∑N

j=1 βj . Since the second term in Equation (6)

does not depend on the coded model’s parameters θ, we focus

on minimizing just the first term L1(θ):

L1(θ) =
1

2

N∑

i=1

β̄iEx

[

∥fθi
(x)− fθ(x)∥22

]

(7)

=

N∑

i=1

β̄iEx [KL(pθi
(y|x)||pθ(y|x))] (8)

=
N∑

i=1

β̄iKL(pθi
(x,y)||pθ(x,y)) (9)

where Equation (8) follows from our definition of pθ(y|x)
above and uses the fact that KL(N (µ1,Σ)||N (µ2,Σ)) =
∥µ1 − µ2∥22 /2. Thus we see that minimizing L1(θ) is equiva-

lent to finding the density function pθ(x,y) that is a weighted

average (in the KL divergence sense) of the density functions

pθi
(x,y) with weights proportional to β̄i. This is known as

the KL barycenter problem and has been studied in previous

work in the context of clustering [36] and model-fusion [35].

Solving the KL Barycenter Problem. In the case where

pθi
(x,y) belongs to the exponential family of distributions

with natural parameter θ, it is known that there exists an

analytical expression for the parameters θ of the distribution

pθ(x,y) that minimizes Equation (9) [35]. However, this is

not the case in our setup because pθ(y|x) in Equation (8) is

Gaussian with respect to fθ(·) and not θ itself. Thus, we need

to resort to some approximations to get a analytical solution.

We use the following approximation for the KL divergence

between pθi
(x,y) and pθ(x,y) [37],

KL(pθi
(x,y)||pθ(x,y)) ≈ (θ − θi)

⊤Fθi
(θ − θi) (10)

where Fθi
is the Fisher information matrix of θi defined as

follows

Fθi
= Ex

[
Ey∼pθ(·|x)

[
log pθ(x,y)∇θ log pθ(x,y)

⊤
]]

θ=θi

(11)

= Ex

[
∇θfθ(x)∇θfθ(x)

⊤
]

θ=θi
(12)

This approximation comes from treating

KL(pθi
(x,y)||pθ(x,y)) as a function of θ and taking

a second order Taylor expansion around θi (zeroth and first

order terms are zero). As is the case with Taylor expansions,

the quality of the approximation degrades as the distance

∥θ − θi∥22 increases. To capture this we also propose to add a
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θc

Fig. 1: Illustration of how our proposed method COIN (see Algo-
rithm 1) computes the coded model’s parameters θc such that its
output fθc(x) ≈ β1fθ1(x) + β2fθ2(x), a linear combination of
the outputs of fθ1(x) and fθ2(x). Unlike ensemble distillation, the
parameters θc are computed without requiring training the model
from scratch.

Algorithm 1 COIN

1: Input: neural networks fθ1
(x), fθ2

(x), . . . , fθN
(x) to be

coded, coding weights β1, β2, . . . , βN , input data samples

x1,x2, . . . ,xP , penalty parameter λ
2: For i ∈ [N ] do:

3: Compute β̄i = βi

∑N

j=1 βj

4: Compute

F̂θi
= diag

(
1
P

∑P

l=1[∇θfθ(xl)∇θfθ(xl)
⊤]θ=θi

)

5: Return θc = (
∑N

i=1 β̄i(F̂θi
+ λI))−1

∑N

i=1 β̄i(F̂θi
+

λI)θi.

penalty term λ ∥θ − θi∥22 , λ > 0 to this approximation. With

this, our new objective G(θ) is given by,

L1(θ) ≈ G(θ) (13)

=

N∑

i=1

β̄i(θ − θi)
⊤Fθi

(θ − θi) + λ

N∑

i=1

β̄i ∥θ − θi∥22
(14)

We see that G(θ) is a strongly convex function whose global

minimizer is given by,

θ∗ = argmin
θ∈Rd

G(θ)

=

[
N∑

i=1

β̄i(Fθi
+ λI)

]−1
N∑

i=1

β̄i(Fθi
+ λI)θi. (15)

Thus given the parameters of our uncoded networks θi,

Equation (15) outlines how in theory, we can compute θ∗

such that fθ∗(x) ≈∑N

i=1 βifθi
(x).

Practical Solver. In practice, computing the exact Fisher

Fθi
for all i ∈ [N ] in Equation (15) is challenging since

it involves O(d2) operations, with d being in the order of

millions for neural networks. Also recall that we only have

access to P samples x1,x2, . . . ,xP from the distribution

q(x). Thus in order to get a fast and tractable solution, we

propose to approximate the true Fisher Fθi
with the diagonal

of the empirical Fisher as done in several other works dealing

with computing the Fisher [38], [39]. In other words we have,

Fθi
≈ F̂θi

= diag

(

1

P

P∑

l=1

[∇θfθ(xl)∇θfθ(xl)
⊤]θ=θi

)

.

(16)

With this approximation, the parameters of our coded model

θc are given by,

θc = (

N∑

i=1

β̄i(F̂θi
+ λI))−1

N∑

i=1

β̄i(F̂θi
+ λI)θi. (17)

We find that using the diagonal Fisher is sufficient to provide a

consistent improvement over other coding baselines including

ensemble distillation as shown in Section V. Furthermore it

also overcomes other limitations of the ensemble distillation

baseline - it is simple and cheap to compute, effectively taking

only O(d) operations and can be modified easily to incorporate

changes in the coding weights βi or θi without needing an

expensive retraining step. It has also been shown that the

empirical approximation of the Fisher is sample-efficient [40];

we only choose P to be about 200 to get a good approximation

to the true Fisher in our experiments.

V. EXPERIMENTS

In this section we demonstrate the effectiveness of COIN

for erasure coding on neural networks trained on real-world

vision datasets. To do so, we first introduce the metric that we

use in our experiments.

Normalized Decoding Accuracy. Recall in Section III we

use fθi
(x) to denote the outputs of the i-th neural network

and f̂θ,i(x) to denote the decoded outputs for network i for

some given coded model θ (see Equation (2)). Let S test
i be

the test data associated with neural network i. We define the

Normalized Decoding Accuracy (NDA) for the i-th network

as follows:

100×
∑

(x,y)∈S test
i

I

{

argmax
(

f̂θ,i(x)
)

= y
}

∑

(x,y)∈S test
i

I {argmax (fθi
(x)) = y} (18)

where I {·} is the indicator function. We see that the numerator

of Equation (18) measures the accuracy of the decoded outputs

while the denominator measures the accuracy of the original

network fθi
(·). For linear models since f̂θ,i(x) = fθi

(x), this

ratio would always be 100; however for non-linear networks,

due to the approximations introduced in the coding step, i.e.,

f̂θ,i(x) ≈ fθi
(x), this ratio is usually less than 100. Thus,

(100 − NDA) gives us a measure of the error introduced by

the approximate erasure coding over non-linear models.

Baselines. We compare COIN with 4 other baselines includ-

ing 3 which are adopted from the model merging literature.

Vanilla Averaging [25] is the first and most common baseline

in model merging literature where the merged/coded model

is constructed by a simple weighted average of the parameter

vectors of the individual models, i.e., θ =
∑n

i=1 βiθi. Next,

we compared with Task Arithmetic [26], where the coded



TABLE I: Normalized Decoding Accuracy results when coding over experts trained on different partitions of the same dataset. COIN shows
a significant improvement in performance compared to baselines while being compute-efficient.

MNIST FashionMNIST CIFAR10

Algorithm Split 1 Split 2 Avg. Split 1 Split 2 Avg. Split 1 Split 2 Avg.

Vanilla Averaging [25] 95.61 83.52 89.56 98.75 92.21 95.48 94.28 86.09 90.19

Task Arithmetic [26] 96.82 83.56 90.19 98.73 92.21 95.47 95.19 86.70 90.94

RegMean [27] 95.36 83.91 89.63 96.50 89.37 92.93 91.05 85.05 88.05

Ensemble Distillation 97.19 97.06 97.12 92.98 84.63 88.80 85.33 90.86 88.09

COIN(ours) 98.72 97.56 98.14 97.68 97.39 97.54 97.63 98.30 97.96

TABLE II: Normalized Decoding Accuracy results when coding over experts trained on different datasets. COIN shows a significant
improvement in performance compared to baselines while being compute-efficient.

MNIST + FashionMNIST CIFAR10 + FashionMNIST CIFAR10 + MNIST

Algorithm MNIST FashionMNIST Avg. CIFAR10 FashionMNIST Avg. CIFAR10 MNIST Avg.

Vanilla Averaging [25] 42.33 73.27 57.80 66.65 80.12 73.39 86.08 68.84 77.46

Task Arithmetic [26] 52.96 80.99 66.98 76.83 84.25 80.54 86.08 68.84 77.46

RegMean [25] 73.18 78.83 76.00 87.01 86.62 86.81 83.20 69.40 76.30

Ensemble Distillation 82.63 75.27 78.95 62.44 70.38 66.41 65.56 87.29 76.42

COIN(ours) 80.36 83.99 82.17 89.12 85.86 87.49 92.89 84.34 88.62

model is constructed as θ = θ0 + α
∑n

i=1(θi − θ0) with θ0
being our base foundation model and α being a hyperparam-

eter which is tuned using validation data. RegMean [27] is a

recently proposed state-of-the-art model fusion method which

uses the Gram matrices of the data for model fusion. Lastly,

we also compare with the Ensemble Distillation baseline, as

outlined in Section III.

Experimental Setup. We use a ResNet50 pretrained on Im-

ageNet as our foundation model. The datasets we consider are

MNIST, FashionMNIST and CIFAR10, all of which consist

of 10 classes, i.e., K = 10. In all experiments, we set the

number of coded models n = 2 and coding coefficients to be

β1 = 0.5 and β2 = 0.5 for simplicity. Now to simulate n = 2
experts, each of which specializes in a particular type of query,

we consider the following two settings. In the first case we

consider experts that are trained on different partitions of the

same dataset. We split the given dataset into two partitions

S1 and S2 where S1 consists of all the data corresponding to

labels {1, 2, . . . , 5} and S2 consists of the data corresponding

to labels {6, 7 . . . , 10} and fine-tune a neural network on

each partition. In the second case, we consider experts that

are fine-tuned on different datasets itself, for e.g., where S1

is the CIFAR-10 dataset and S2 is the MNIST dataset. For

algorithms which require access to data to create the coded

model (RegMean, Ensemble Distillation, COIN), we sample

P ′ = 100 datapoints from both S1 and S2 giving us P = 200
datapoints in total, which is less than 1% of the total data in

S1 and S2. Additional details and an ablation study evaluating

the effect of P on the normalized decoding accuracy can be

found in the Appendix.

Discussion. Table I shows the normalized decoding accu-

racy results when coding over experts trained on different

partitions of the same dataset while Table II shows the results

of coding over experts trained on different datasets for different

combinations of datasets. In all cases we see that COIN

achieves the highest average normalized decoding accuracy

while avoiding any expensive computational procedures such

as distillation (Ensemble Distillation) or computing the Gram

matrix of data (RegMean). Specifically for Table I we see

that COIN is the only algorithm which consistently achieves

greater than 97.5% average normalized decoding accuracy

which implies that there is a less than 2.5% loss in accuracy

compared to the individual models. In Table II we see that

there is a larger drop in accuracy when coding over models

trained on different datasets which can be attributed to the

greater data heterogeneity used to fine-tune the respective

models. Nonetheless, COIN continues to outperform baselines

with almost 10% in some cases like CIFAR10+MNIST.

VI. CONCLUDING REMARKS

In this paper, we propose COIN, an algorithm that leverages

erasure coding for multi-model neural network inference using

an equivalence with the KL barycenter problem in its design.

Our solution is both efficient in resource utilization (needs

less than 1% of training data) and avoids any expensive

computational procedures such as ensemble distillation. We

demonstrate via experiments over that our method significantly

improves decoding accuracy compared to baselines when

coding over neural networks trained on real-world vision

datasets in various settings. Directions for future work include

characterizing the performance on a wider range of model

architectures such as transformers and coding over a larger

set of models.
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Appendix for Erasure Coded Neural Network

Inference via Fisher Averaging

I. ADDITIONAL EXPERIMENTAL DETAILS

We use PyTorch to run all our experiments. For fine-tuning we use the AdamW optimizer with a learning rate of 10−5,

batch size of 128 and weight decay 0.1. For MNIST dataset we fine-tune for 1 epoch, for FashionMNIST we fine-tune for 5
epochs and for CIFAR10 we fine-tune for 3 epochs. During fine-tuning, we freeze the BatchNorm parameters of the model.

We find that while this does not affect the fine-tuning accuracy it significantly improves the normalized decoding accuracy

for all algorithms. A more extensive evaluation on the effect of using BatchNorm for erasure coding is left as future work.

For Task Arithmetic we use the available P samples as the validation data and tune α in the range [0.05, 0.1, 0.15, . . . , 1.0]
to find the α which achieves the highest normalized decoding accuracy on the validation data. For COIN, we similarly tune

λ in the range [10−5, 10−4, . . . , 1] using the P samples as validation data. To implement RegMean we use the code publicly

available on the official repository on Github. For Ensemble Distillation we again use the AdamW optimizer with a learning

rate of 10−5, batch size of 8, weight decay 0.1 and run the optimization for 20 epochs.

II. ADDITIONAL EXPERIMENTS AND RESULTS

We conduct additional experiments in the setting where we are coding over neural networks fine-tuned on CIFAR-10 and

MNIST respectively to showcase the overfitting behavior of the Ensemble Distillation baseline and the effect of the number

of datapoints P on the decoding accuracy. Figure 1(a) shows the average normalized decoding accuracies computed on the

train set and test set for the Ensemble Distillation baseline as we train the coded model. We see that while the decoding

accuracy for the train set quickly reaches close to 100, the accuracy for the test set saturates close to 75, implying that the

coded model is clearly overfitting the training set. Note that we are using a weight decay of 0.1 in the optimization procedure

which is a standard technique to prevent overfitting. Figure 1(b) shows the average normalized decoding accuracy for COIN,

RegMean and Ensemble Distillation as a function of the number of datapoints P . We see that as P increases, the performance

of Ensemble Distillation improves significantly, which is expected since the coded model is less likely to overfit as the size

of the training data increases. Nonetheless, we note that the cost of computing the coded model using Ensemble Distillation

also grows significantly as P increases. On the other hand there is only a slight improvement in the accuracy for COIN which

reinforces the data efficiency and implicit computational ease of our proposed method. RegMean also sees an improvement as

we increase the number of samples P which can be attributed to a more accurate estimation of the Gram matrices of the data.
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Fig. 1: (a) shows the average normalized decoding accuracies computed on the train set and test set for the Ensemble Distillation baseline
as a function of the number of optimization epochs when coding over networks trained on CIFAR-10 and MNIST. The accuracy on the
train set reaches close to 100 but accuracy on test set saturates close to 75, implying overfitting. (b) shows the average normalized decoding
accuracy for COIN, RegMean and Ensemble Distillation in the same setting as a function of the number of datapoints P . We see only a
slight increase in the accuracy of COIN as we increase P , which demonstrates the data-efficiency of our approach.


