
Demonstration of Federated Learning in a
Resource-Constrained Networked Environment

Dave Conway-Jones∗, Tiffany Tuor†, Shiqiang Wang‡, Kin K. Leung†
∗IBM Research, IBM UK, Hursley Park, UK. Email: conway@uk.ibm.com

†Imperial College London, UK. Email: {tiffany.tuor14, kin.leung}@imperial.ac.uk
‡IBM T. J. Watson Research Center, Yorktown Heights, NY, USA. Email: wangshiq@us.ibm.com

Abstract—Many modern applications in the area of smart
computing are based on machine learning techniques. To train
machine learning models, a large amount of data is usually
required, which is often not readily available at a central
location. Federated learning enables the training of machine
learning models from distributed datasets at client devices
without transmitting the data to a central place, which has
benefits including preserving the privacy of user data and
reducing communication bandwidth. In this demonstration, we
show a federated learning system deployed in an emulated wide-
area communications network with dynamic, heterogeneous, and
intermittent resource availability, where the network is emulated
using a CORE/EMANE emulator. In our system, the environment
is decentralized and each client can ask for assistance by other
clients. The availability of clients is intermittent so only those
clients that are available can provide assistance. A graphical
interface illustrates the network connections and the user can
adjust these connections through the interface. A user interface
displays the training progress and each client’s contribution to
training.

Index Terms—Distributed machine learning, federated learn-
ing, model training, networking

I. INTRODUCTION

Machine learning is a promising technology for many
emerging smart applications nowadays. To apply machine
learning, models need to be trained usually with a large amount
of data. In a distributed system where data is collected by local
clients and stored locally, it is difficult to send all the data
to a central location due to bandwidth limitations and data
privacy concerns. To address this problem, federated learning
has been proposed [1], which allows the data to remain at
local clients and only the model parameters are shared between
clients and a central server. Since the size of model parameters
is usually much smaller than the size of the dataset at local
clients, federated learning saves the communication bandwidth
and also preserves the privacy of each client’s raw data. Note
that for deep learning models, there exist ways to extract only
a small amount of data to represent the entire set of model
parameters [2], [3].

The basic system setup for federated learning includes a
server and multiple clients, as shown in Fig. 1. In each training
task, the server and all clients are configured to train a model
with the same architecture. The server initiates the model
and sends the parameter vector of the model to all clients.
After receiving the model parameter, each client computes
updates to the model parameter using (possibly stochastic)

Server
(global model)

Client
(local model)

Client
(local model)

Client
(local model)Local 

data

Local 
data

Local 
data

a

a

a

b

b

b

c

c

c

d

Steps:

a – Broadcast model parameter vector from server to all 
clients

b – Local model update by each client using its local 
dataset (τ steps of gradient descent)

c – Send updated local parameter vector from each client 
back to the server

d – Server computes the global model parameter by 
aggregating received local parameters

(The above steps continue until training completes)

Fig. 1. Federated learning system.

gradient descent on its local dataset. The local model update
is performed for a specific number of steps, and this local
update process at each client is similar to what is done in
the centralized model training for deep neural networks [4].
After completing the pre-specified number of steps of local
updates, the resulting local model parameter at each client
is sent back to the server. The server aggregates all local
parameters (usually by computing an average over the local
parameter vectors) and sends the aggregated parameter back
to all clients. Then, the same process continues until some



Fig. 2. Emulated network topology.

stopping condition has reached.
Several improvements to federated learning have been made

after the initial proposal in [1]. For example, the adaptation of
the number of local update steps (τ in Fig. 1) for efficient
resource utilization is studied in [5], how to improve the
security of global parameter aggregation is studied in [6],
an approach of selecting the set of participating clients is
proposed in [7], sharing a small subset of data to improve the
performance in non-i.i.d. data distribution cases is considered
in [8]. Recently, a design of large-scale federated learning
systems is presented in [9], where it is mentioned that the
connection between client and server may be intermittent due
to wide-area network connection, and the availability of each
client itself may be intermittent too due to the dynamics in
the resource availability of each client.

In this work, we will show a demonstration of federated
learning in an emulated networked system with dynamic,
heterogeneous, and intermittent resource availability, where
the control mechanism in [5] is applied. This is an extension
to our previous demonstration [10] which illustrated federated
learning in stable network environments. The system we show
can be used as a research tool for developing efficient federated
learning mechanisms that are robust against system variations.

II. DESCRIPTION OF THE DEMONSTRATION

We consider an emulated wide-area networked system with
a variety of network types, as shown in Fig. 2. The system has
both fixed and mobile nodes and the emulation is done using

CORE/EMANE [11]. The graphical user interface shown in
Fig. 2 is provided by the emulator, which allows the user to
configure the network links as well as the locations of nodes.
In our demonstrated system, each node runs a software stack
that includes a Delay Tolerant Networking (DTN) layer, a local
controller to respond to requests, and a federated learning stack
that uses TensorFlow [12] with our own distributed protocol
(see [10]).

The system allows any node to initiate a federated learning
task that involves other participating nodes. The node that
initiates the task serves as the server in federated learning. If
the initiating node has data that is useful for its own training
task, it also serves as a client at the same time. Note that a
node can be a server and a client simultaneously in federated
learning [10].

During task initiation, a set of specifications for the machine
learning task (such as model architecture, data type, and
expected prediction labels) is broadcast to all other nodes
in the network. The DTN layer ensures that each node will
receive the specifications, although they may not receive them
instantaneously if the network connection is intermittent. After
receiving the specifications, each node checks whether it has
the data that can be useful for the machine learning task and
whether it has enough computational resource to participate
in the task. If both are true, the node will send a confirmation
to the node that initiated the task (i.e., the federated learning
server).

Federated learning starts when a waiting time has elapsed



after task initiation. The waiting time is determined by the task
initiator, and can be related to aspects such as the minimum
number of participating clients. During federated learning,
clients can join or leave the network at any time. The system
implements a mechanism that ignores updates from clients that
are significantly outdated (i.e., the updated model parameter
is computed based on an old global model parameter that is
very different from the current global model parameter).

The user interface that displays the training progress is
shown in Fig. 3. It allows the user to understand the effect of
mobility and bandwidth in a visual way, and to rapidly model
the effects of different network parameters on the overall
machine learning model creation process.

After the model is trained, it can either be used locally
(at the node that initiated the training task) or re-distributed
to any nodes that require the model. In the demonstration, a
separate application will query the trained model for image
classification, and will show that the images can now be
classified with a fairly high accuracy.

The system we present in this demonstration can be used as
the basis for ongoing experimentation, with the aim of deploy-
ing this approach on next generation networking equipment
and hardware.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2016.

[2] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[3] C. Hardy, E. Le Merrer, and B. Sericola, “Distributed deep learning
on edge-devices: feasibility via adaptive compression,” in Network
Computing and Applications (NCA), 2017 IEEE 16th International
Symposium on. IEEE, 2017, pp. 1–8.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[5] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
pp. 1–1, 2019.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for federated learning on user-held data,” in NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[7] T. Nishio and R. Yonetani, “Client selection for federated learn-
ing with heterogeneous resources in mobile edge,” arXiv preprint
arXiv:1804.08333, 2018.

Fig. 3. User interface.

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[9] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” CoRR, vol. abs/1902.01046,
2019. [Online]. Available: http://arxiv.org/abs/1902.01046

[10] T. Tuor, S. Wang, T. Salonidis, B. J. Ko, and K. K. Leung, “Demo
abstract: Distributed machine learning at resource-limited edge nodes,”
in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), April 2018, pp. 1–2.

[11] J. Ahrenholz, “Comparison of core network emulation platforms,” in
2010-Milcom 2010 Military Communications Conference. IEEE, 2010,
pp. 166–171.

[12] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/


