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Abstract—E-health systems consist of intelligent devices, medi-
cal institutions, edge nodes, and cloud servers to improve health-
care service quality and efficiency. In e-health systems, patients’
data are cooperatively collected by their wearable devices and
the hospital they have visited, i.e., vertically distributed data.
The data on wearable devices share the same feature set but
are different in sample spaces, i.e., horizontally partitioned data.
Meanwhile, hospitals target various user groups resulting in high
data diversity, i.e., non-identically distributed data. These three
characteristics cause that existing federated learning frameworks
cannot efficiently train models on medical data. Furthermore,
model training in e-health is time-sensitive because some diseases
mutate very quickly and spread easily, which requires fast
convergence of machine learning algorithms. In this paper, we
address the problem of how to efficiently and rapidly train
global models on e-health data. Specifically, we propose a multi-
layer federated learning framework to cope with data that are
vertically, horizontally, and non-identically distributed. Moreover,
we develop a Multi-Layer Stochastic Gradient Descent (MLSGD)
algorithm towards the proposed framework to learn the optimal
global model. To improve training efficiency, partial models
learned by devices are aggregated on edge nodes before ex-
changing intermediate results with hospitals. The weight of local
models is proportional to local data size when performing global
aggregation to balance the impact of local models on the global
model. We also prove the convergence of the MLSGD algorithm
from a theoretical perspective. The experimental results from
the real-world dataset MIMIC-III validate that the proposed
algorithm converges fast and achieves desired accuracy.

Index Terms—E-health, multi-layer federated learning, train-
ing efficiency, convergence analysis

I. INTRODUCTION

E-health systems allow smart devices, body sensors, medical
instruments, and health institutions to cooperatively provide
health services with communication and computing tech-
nologies [1]. Compared with the traditional “off-line” health
system, e-health not only gathers information from clinical
cases but also collects data with various wearable devices,
such as bracelets and portable blood glucose meters. Due
to communication constraints, computational bottlenecks, and
privacy concerns, it is challenging to upload all data gener-
ated by distributed nodes to a cloud server for centralized
processing [2]. Fortunately, edge computing emerges as a
decentralized computing paradigm that offloads computation
tasks to edge nodes for fully utilizing computing resources
and saving communication cost. Learning on edge, such as
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Fig. 1. E-health system architecture

federated learning, can also enhance privacy in the applications
of e-health [3]. Federated learning enables multiple users that
keep local data to jointly train machine learning algorithms
over the entire dataset without sharing the raw data.

Federated learning can be categorized into three types
according to different data distribution patterns. Firstly, hor-
izontal federated learning can deal with the horizontal data
partitioning scenarios where each client shares the same fea-
ture subset but is different in samples [4]. Utilizing horizontal
federated learning, each client independently learns a local
model based on its own data, and all clients transmit their
model parameters to the cloud server for aggregating a global
model [5]. Secondly, vertically federated learning can handle
the vertical data partitioning scenarios where each client
records different subsets of features for the same sample
space [6]. In this circumstance, multiple clients collaboratively
learn a local model by communicating intermediate results
between clients [7]. Thirdly, cross-silo federated learning [8]
aims to cope with several data distribution cases including
horizontal, vertical data partitioning, or both. In this setting,
clients with the same features conduct horizontal federated
learning, and those with the same samples conduct vertically
federated learning.

However, existing works still face challenges when applied
in e-health systems. Consider an e-health system where edge
nodes, hospitals, and the cloud server are interconnected via
routers, and wearable devices are managed by edge nodes, as
illustrated in Fig. 1. Data distribution in e-health has three
characteristics: i) Patients’ wearable devices and the hospital
they have visited cooperatively collect and store data, i.e., data
are vertically distributed across wearable devices and hospitals.
This is because patients not only conduct self-monitoring but



also visit hospitals for further physical examinations, e.g.,
X-Ray or MRI. ii) All wearable devices collect the same health
information such as heart rate, and each wearable device only
monitors one patient’s conditions, i.e., data are horizontally
partitioned across wearable devices of different patients. iii)
Both the size and distribution of data vary heavily between
different hospitals because each hospital is responsible for
data collection for its unique patient group, i.e., data are non-
identically distributed across different hospitals.

On one hand, data distribution pattern is more complex
in e-health so that existing frameworks cannot effectively
train models on medical data. Since many existing federated
learning [5], [6] consider either horizontally or vertically
distributed data, they cannot be directly applied to datasets
with both horizontal and vertical data partitioning. Meanwhile,
although cross-silo federated learning [9] is effective in train-
ing horizontally and vertically partitioned data simultaneously,
it does not consider the non-identically distributed feature
of medical data. It equally treats all local models when
performing aggregation. However, the local model obtained by
clients with a larger number of samples should have a higher
weight to balance the impact of local models on the global
model when data are non-identically distributed.

On the other hand, model training in e-health is time-
sensitive and requires higher training efficiency. Several
diseases such as COVID-19 mutate very quickly and spread
easily. Rapid and accurate model training through existing
cases is conducive to the diagnosis and control of such dis-
eases. This requires that training algorithms should converge
quickly while effectively processing e-health data.

In this paper, we aim to achieve efficient and rapid global
model learning when training e-health data. The main contri-
butions of this paper are summarized as follows.
• We propose a multi-layer federated learning framework

with one intermediate result exchange and two aggrega-
tion phases for e-health systems to cope with both verti-
cally and horizontally partitioned data while considering
non-identically distributed data.

• Based on the proposed framework, we develop an effi-
cient Multi-Layer Stochastic Gradient Descent (MLSGD)
algorithm to train the optimal global model. For enhanc-
ing training efficiency, the local partial model aggregation
is performed on edge nodes before exchanging interme-
diate results with hospitals. Furthermore, to balance the
impact of local models on the global model, the weight
of local models is proportional to local data size when
performing global aggregation. From a theoretical per-
spective, we prove that the proposed algorithm converges.

• We conduct extensive experiments to validate the per-
formance of the proposed MLSGD algorithm using real-
world health datasets. The results confirm that our pro-
posed algorithm can effectively train medical data and
rapidly converge compared with gradient descent algo-
rithm based on conventional machine learning frame-
works. In addition, the influence of local partial model
and global model aggregation intervals are evaluated.

II. RELATED WORKS

Existing works study federated learning frameworks and
algorithms for adapting federated learning to various Internet
of Things application scenarios.

Horizontal federated learning is one of the most frequently
used frameworks, which enables the server to generate a global
model by aggregating all local models without sharing local
data [10]. Based on horizontal federated learning, Choudhury
et al. [11] proposed a framework with two-level privacy
protection that can learn a global model from distributed health
data kept locally at different clients. Moreover, Wu et al. [12]
proposed a cloud-edge based federated learning framework
for in-home health monitoring and a generative convolutional
autoencoder to mitigate the influence of non-independent-and-
identically-distributed data on model training. These works are
effective when utilized in simple cases where clients hold the
full feature set of samples but are not applicable to complex
e-health systems because they do not have the corresponding
strategy to cope with the vertical data partitioning.

Vertical federated learning was proposed to coordinate
multiple clients with partial data features to jointly train
a model [6]. To enable clients to independently conduct
stochastic gradient algorithms, Chen et al. [13] proposed an
asynchronous learning strategy for vertical federated learning.
Although these works are mature in dealing with vertically
partitioned data, they cannot handle the additional horizontally
distributed data. For the scenario where horizontally and
vertically distributed data co-exist, Das et al. [9] proposed a
federated learning framework for multi-tier networks. How-
ever, it still faces challenges when utilized in e-health systems
because of the following reasons. On one hand, it considers a
symmetric network structure so that each silo performs the
same operation, while device and hospital sides are asym-
metric in e-health. On the other hand, cross-silo federated
learning ignores the non-identically distributed feature of data
and equally treats all local models when performing global
aggregation, resulting in a low convergence rate.

In contrast to existing works, we focus on designing a
special federated learning framework for e-health systems
with a three-tier asymmetric network structure, i.e., server,
hospital or edge, and device tiers. Based on this framework, we
intend to propose an effective and efficient federated learning
algorithm for training medical data.

III. MULTI-LAYER FEDERATED LEARNING

A. System model

We consider an e-health system consisting of one
cloud server and M units, where each unit includes
Km,m = 1, ...,M wearable devices and a hospital. A
patient’s wearable device and the hospital where the patient
has visited cooperatively collect the patient’s data. Specifically,
a portion of data is collected by patients using wearable
devices, such as heart rate monitors and sleep trackers in
long-term, while the rest of the data is collected by hospitals
according to patients’ visits and lab results. We assume that



a patient only corresponds to one hospital. A dataset with
K samples, {X(i), y(i)}Ki=1, is maintained by M units. Each
unit m holds a subset Dm of the data with Km samples:
{X(m,i), y(m,i)}Kmi=1 , where X(m,i) denotes the feature vector
of the i-th sample, and y(m,i) represents the target value.
The dataset is vertically partitioned between the wearable
devices and the hospital within a unit. For a single sample
X(m,i) := [(X

(m,i)
1 )T, (X

(m,i)
2 )T]T, the wearable device i

maintains features X(m,i)
1 , and the hospital holds X(m,i)

2 . Since
a device only collects information for one user, the data on the
device is only related to one sample. A hospital is responsible
for all visiting patients, so that the data on the hospital is
relevant to all Km samples, i.e., the hospital in unit m keeps
{X(m,i)

2 }Kmi=1 . Noting that target value y(m,i) is kept by both
wearable devices and hospitals.

B. Multi-layer federated learning framework

As shown in Fig. 2, the proposed multi-layer federated
learning framework contains three phases: i) vertical federated
learning, ii) local horizontal federated learning, and iii) global
horizontal federated learning. The details of each phase are
given as follows.

Vertical federated learning: Due to separated feature col-
lection, neither wearable devices nor hospitals have the entire
dataset. Transmitting data collected by devices to the hospitals
for centralized model training is infeasible because raw data
transmission may divulge private information of patients. To
solve this issue, we apply vertical federated learning to achieve
model training on such distributed dataset. Wearable devices
and hospitals calculate intermediate results and send the results
to each other. Utilizing the intermediate results, they can
update their model by computing partial derivatives, while
keeping the raw data private. The details of intermediate results
are given in Section IV.

Local horizontal federated learning: Allowing all devices
to conduct model training with the hospital separately may
degrade training efficiency because the hospital needs to learn
a unique model for each device. Furthermore, the number of
samples at each device in the considered e-health scenario is
limited, leading to overfitting. To enhance training efficiency,
we can utilize horizontal federated learning among devices so
that the hospital only needs to train one model that corresponds
to the aggregated model on the device side. Meanwhile,
overfitting can be avoided by applying horizontal federated
learning because the sample size increases. In addition, involv-
ing all devices in the model aggregation process may result
in high communication cost and long latency. To solve these
issues, a subset of devices is randomly selected to participate
in the local horizontal federated learning process [14].

Global horizontal federated learning: As the datasets held
by units are determined by the type of hospitals and the
number of patients, sample size and data distribution may vary
heavily between different units. The non-identically distributed
datasets may cause that the local model fits well for their data
but is not applicable to the entire dataset [10]. Our goal is to
find a universal model that can obtain higher accuracy when

Fig. 2. Multi-layer federated learning framework

applying to entire data. To realize this aim, global horizontal
federated learning is applied among units.

C. Problem Formulation

Since each wearable device monitors user conditions to
generate one sample, the sample size equals the number of
devices in each unit. The loss function for unit m is

Fm(θm) =
1

Km

Km∑
i=1

f(θm;X(m,i), y(m,i)) +

2∑
j=1

r(θj,m),

(1)
where r(·) is a regularizer, and θm := [(θ1,m)T, (θ2,m)T]T

concatenates the partial model learned by wearable devices and
hospitals to constitute the local model of unit m. The device
side partial model θ1,m is obtained by aggregating θ1,m,n that
is trained on the n-th device in the m-th unit, i.e.,

θ1,m =
1

|Am|
∑
n∈Am

θ1,m,n, (2)

where Am denotes a randomly selected device subset in unit
m for device side partial model training. The cardinality of the
set is |Am|, which is assumed to be proportional to Km, i.e.,
|Am| = αKm, where Km is not only the number of devices
but also the number of data samples. The global model can
be defined as

θ̃ := [(θ̃1)
T, (θ̃2)

T]T,

with θ̃1 =
1

K

M∑
m=1

Kmθ1,m , θ̃2 =
1

K

M∑
m=1

Kmθ2,m,
(3)

where K =
∑M
m=1Km is the total number of samples. Noting

that the global model parameter θ̃ is only calculated and
observable to nodes every P iterations, but we define it for
all t to facilitate the analysis later. The global loss function is

F (θ̃) =
1

K

M∑
m=1

KmFm(θ̃), (4)

which measures how well the model fits the entire datasets.

IV. MULTI-LAYER STOCHASTIC GRADIENT DESCENT
ALGORITHM

In this section, we propose a Multi-Layer Stochastic Gra-
dient Descent (MLSGD) algorithm based on the multi-layer
federated learning framework, as shown in Algorithm 1.



Algorithm 1: MLSGD Algorithm
Input: η, Q, P
Output: Global model θ̃t := [(θ̃t1)

T, (θ̃t2)
T]T.

1 Initialize θ01,m,n = θ̃01 , θ02,m = θ̃02 , ∀ m,n;
2 for t = 0, . . . , T do
3 if t (mod P ) = 0 then
4 Server computes θ̃t1 = 1

K

∑M
m=1Kmθ

t
1,m,

θ̃t2 = 1
K

∑M
m=1Kmθ

t
2,m;

5 for m = 1, . . . ,M do
6 for n = 1, . . . ,Km do
7 θt1,m,n = θ̃t1;
8 end
9 θt2,m = θ̃t2;

10 end
11 end
12 if t (mod Q) = 0 then
13 for m = 1, . . . ,M do
14 Randomly selected Q subsets {Aτm}

t+Q−1
τ=t

with the mini-batches {DAτm}
t+Q−1
τ=t ;

15 Compute θt1,m = 1
|Atm|

∑
n∈Atm

θt1,m,n;
16 for n = 1, . . . ,Km do
17 θt1,m,n = θt1,m;
18 if n ∈ {Aτm}

t+Q−1
τ=t then

19 Send {ζt1,m,n}
t+Q−1
τ=t to edge nodes

20 end
21 end
22 Edge nodes and hospitals exchange

intermediate results {Zτ1 }
t+Q−1
τ=t and

{Zτ2 }
t+Q−1
τ=t ;

23 Edge nodes transmit {Zτ2 }
t+Q−1
τ=t to

devices;
24 for n ∈ {Aτm}

t+Q−1
τ=t do

25 Extract the information corresponding
to its own samples from {Zτ2 }

t+Q−1
τ=t ;

26 end
27 end
28 end
29 for m = 1, . . . ,M do
30 for n ∈ Atm do
31 θt+1

1,m,n =

θt1,m,n − η∇(1)Fm(θt1,m,n,θ
t0
2,m;Dm,n);

32 end
33 θt+1

2,m = θt2,m − η∇(2)Fm(θt01,m,θ
t
2,m;DAtm);

34 end
35 end

In initialization stage, the server generates a model contain-
ing two parts, i.e., θ̃01 and θ̃02 . The part θ̃01 , which is related to
device collected data, is sent to devices in the system, and the
part θ̃02 , which is related to hospital collected data, is trans-
ferred to all hospitals, and neither devices nor hospitals have
the entire model. The cloud server conducts global model ag-

gregation, i.e, it aggregates local models [(θ1,m)T, (θ2,m)T]T

to calculate the global model [(θ̃1)
T, (θ̃2)

T]T based on (3)
every P iterations, where P is a positive integer. Once the
global model is generated, the two elements in the aggregated
model are transmitted back and replace the original models on
devices and hospitals, respectively.

In iteration 0, and every Q-th iteration thereafter, two
operations are conducted. On one hand, devices within a unit
perform local partial model aggregation. Specifically, since
each device has a small sample size, learning models on such
a dataset may cause the overfitting problem. To solve the
issue, the device side local partial models in each unit, i.e.,
θt1,m,n, n ∈ Atm, are collected and aggregated by the edge
node based on (2) every Q iterations, where P

Q is a positive
integer. Since each unit may contain thousands of devices,
involving all devices in local partial model aggregation may
degrade model training efficiency. The edge node and hospital
within unit m agree on Q device subsets {Aτm}

t+Q−1
τ=t , and

the corresponding mini-batches are {DAτm}
t+Q−1
τ=t . The mini-

batch DAτm consists of Dm,n, ∀n ∈ Aτm, where Dm,n =

{X(m,n)
1 ,X

(m,n)
2 ; y(m,n)} is the sample on the n-th device

on m unit. Only the device in the subset Aτm can participate
in local aggregation. Then the edge node transmits the local
aggregation results to all devices within the same unit.

On the other hand, devices and their corresponding hospi-
tals exchange intermediate results every Q iterations. Since
both devices and hospitals only have the partial of the en-
tire model, they cannot calculate partial derivatives with-
out sharing the intermediate results. The intermediate result
on devices for one sample is ζt1,m,n = f1(θ

t0
1,m;X

(m,n)
1 ),

where f1(·) denotes the machine learning model such as
LSTM on devices, and t0 is the last iteration that satisfies
t0 (mod Q) = 0. Similarly, the intermediate result on
hospitals for one sample is ζt2,m,n = f2(θ

t0
2,m;X

(m,n)
2 ), where

f2(·) represents the machine learning model on hospitals.
Generally, f1(·) and f2(·) are the same. In every Q round,
devices send {ζτ1,m,n}

t+Q−1
τ=t to edge nodes. Then edge nodes

stack all {ζτ1,m,n}
t+Q−1
τ=t to form Q intermediate result sets

{Zτ1 }
t+Q−1
τ=t := {ζτ1,m,n}n∈Aτm , t ≤ τ ≤ t +Q − 1 and com-

municate these sets to the corresponding hospital. Conversely,
hospitals transfer {Zτ2 }

t+Q−1
τ=t := {ζτ2,m,n}n∈Aτm , t ≤ τ ≤

t + Q − 1 to the edge node within the same unit. After that,
edge nodes forward {Zτ2 }

t+Q−1
τ=t to device n, n ∈ {Aτm}

t+Q−1
τ=t

and devices extract the information corresponding to their own
samples. Once receiving the required intermediate result, both
devices and hospitals updated their local models by utilizing
gradient descent. We use η to represent the learning rate.
The partial derivatives of the Fm with respect to θt1,m,n is
∇(1)Fm(θt1,m,n, ζ

t
2,m,n;Dm,n). For ease of understanding, we

can rewrite the partial derivatives to a function of model pa-
rameters, i.e.,∇(1)Fm(θt1,m,n,θ

t0
2,m;Dm,n). The partial model

trained by devices is updated by

θt+1
1,m,n = θt1,m,n − η∇(1)Fm(θt1,m,n,θ

t0
2,m;Dm,n). (5)

The partial derivatives of the Fm with respect to θt2,m



is ∇(2)Fm(ζt1,m,n,θ
t
2,m;DAtm) obtained from a mini-batch

DAtm . Similarly, the partial derivative is rewritten as
∇(2)Fm(θt02,m,θ

t
2,m;Dm,n). The partial model learned by

hospital is updated by

θt+1
2,m = θt2,m − η∇(2)Fm(θt01,m,θ

t
2,m;DAtm). (6)

Noting that t0 ≤ t is the last iteration that edge nodes and
hospitals exchange intermediate results.

V. CONVERGENCE ANALYSIS

We present convergence results of the proposed MLSGD
algorithm in this section. The following commonly-used as-
sumptions on loss functions are given for facilitating analysis.

Assumption 1. The gradient ∇Fm(θ) is ρ-Lipschitz, i.e.,

||∇Fm(θ1)−∇Fm(θ2)|| ≤ ρ||θ1 − θ2||, (7)

and ∇(i)Fm(θ) is ρi-Lipschitz continuous, i.e.,

||∇(i)Fm(θ1)−∇(i)Fm(θ2)|| ≤ ρi||θ1 − θ2||. (8)

Assumption 2. The mini-batch stochastic gradient descent is
unbiased, i.e.,

E[∇(i)Fm(θ;D)] = ∇(i)Fm(θ), (9)

and the variance of stochastic gradients is bounded, i.e.,

E[||∇(i)Fm(θ;D)−∇(i)Fm(θ)||2] ≤ δ2i . (10)

Assumption 3. The expected Euclidean norm of
∇(i)Fm(θ;D) is uniformly bounded, i.e.,

E[||∇(i)Fm(θ;D)||2] ≤ ω2. (11)

According to Algorithm 1, we can compute the global
model by

θ̃t+1 = θ̃t − ηGt, (12)

where Gt denotes the gradient for the global model, and it
equals the mean of gradients for all units, i.e.,

Gt : = [(Gt
(1))

T, (Gt
(2))

T]T

=

[
1
K

∑M
m=1KmG

t
(1,m)

1
K

∑M
m=1Km∇(2)Fm(θt01,m,θ

t
2,m;DAtm)

]
,

with Gt
(1,m) =

1

|Atm|
∑
n∈Atm

∇(1)Fm(θt1,m,n,θ
t0
2,m;Dm,n).

(13)
Due to the space limitation, we only present the main

result of convergence analysis in Theorem 1. The details of
convergence analysis can be found in [15]. To simplify the
expression, we define that

C1 = Kαη2ω2
(
2Q2 + 3 (P −Q)

2
+ 2MP 2

)
+Mη2P 2

(
δ21 +Kαδ22

)
,

C2 = Kη2ω2
(
(P −Q)

2
+ 2MP 2 + P 2

)
+Mη2P 2

(
δ21
α

+Kδ22

)
,

C3 = ρηM

(
2ω2 +

δ21
Kα

+ δ22

)
+ (8M + 8)ω2.

(14)

Theorem 1. From Assumptions 1, 2, and 3, we have

E

[
1

T

T−1∑
t=0

∣∣∣∣∣∣∇F (θ̃t)∣∣∣∣∣∣2]

≤ 2

Tη

(
F (θ̃0)− F ∗

)
+

2ρ21
Kα

C1 +
2ρ22
K

C2 + C3.

(15)

where F ∗ is the lower bound of loss function.

VI. PERFORMANCE EVALUATION

A. Experimental Settings

We evaluate the proposed MLSGD algorithm with
MIMIC-III health dataset. The dataset is preprocessed as
in [16] to create 14,681 training samples and 3,236 test
samples, where each sample has 76 features. We horizontally
split the data among M = 10 units to follow the non-
identical distribution and vertically split the data among de-
vices and hospitals with each party having 36 features. The
LSTM model is adopted to conduct the in-hospital mortality
prediction task. For comparison, we utilize three baselines: 1)
Centralized model training; 2) Devices communicate their data
to the corresponding hospital and hospitals perform horizontal
federated learning; 3) Devices in a random choosing subset
independently conduct vertical federated learning with the
corresponding hospital to obtain local models. After that, local
models are transmitted to a server for aggregation. Finally,
aggregated results are sent back to devices and hospitals for
the next model update. For all experiments, the learning rate
is η = 0.01 and the device selection rate for baseline 3 and the
proposed algorithm is α = 0.02. To measure training time, we
consider that devices communicate with edge nodes and hos-
pitals via mobile Internet, where download and upload speeds
are 110 Mbps and 14 Mbps [17], respectively. Meanwhile,
edge nodes, hospitals, and the cloud server communicate via
fixed broadband with 204 Mbps download speed and 74 Mbps
upload speed [17]. Take the proposed algorithm as an example
to illustrate how to calculate the training time. For each global
aggregation, systems conduct once global aggregation, P

Q

times local aggregation, PQ times intermediate result exchange,
and P times local computation. The training time for each
global aggregation is t = tg +

P
Q (tl + te) + P × tc, where tg ,

tl, and te denote communication time for global aggregation,
local aggregation, and intermediate result exchange, respec-
tively. The local computation time of each iteration tc is
obtained from experiments.

B. Experimental results

We validate the convergence of the proposed MLSGD algo-
rithm. Fig. 3 shows how Area Under the Curve of the Receiver
Operating Characteristics curve (AUC of ROC) changes as the
number of iterations varies. The proposed MLSGD algorithm
and baseline 2 converge when iteration reaches 1500, while
baselines 1 and 3 do not converge. The results indicate that
our proposed algorithm can converge within limited iterations
and outperform baselines 1 and 3. In addition, we utilize the
change of AUC of ROC with time to evaluate the training
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efficiency of our proposed MLSGD algorithm, as shown in
Fig. 4. Baseline 1 starts model training when time is about
2500 s because it requires transmitting entire raw data to a
cloud server before conducting model learning. Similarly, the
AUC of ROC of baseline 2 starts to increase when time is
about 160 s because devices should first communicate their
data to the corresponding hospital. Moreover, since baseline
3 and the proposed MLSGD algorithm only transmit model
parameters which is much smaller than raw data, they start
model training quicker than baselines 1 and 2. In addition, the
proposed MLSGD algorithm converges when time is about
100 s, while baseline 3 converges when time is about 3000 s.
The results show that our proposed MLSGD algorithm is more
training efficiency than baselines.

The effect of local partial model aggregation interval (or
intermediate result exchange interval) Q on the convergence
of our proposed MLSGD algorithm is shown in Fig. 5. As Q
increases, the convergence value of AUC of ROC decreases.
The result reveals that choosing a small Q, which means more
frequent local aggregation and intermediate result exchange,
can contribute to a more accurate global model when P is
fixed. Fig. 6 shows how the global model aggregation interval
P influences the convergence of our proposed MLSGD algo-
rithm. A larger P leads to a lower convergence value of AUC
of ROC. This demonstrates that the accuracy of the global
model degrades when the frequency of global aggregation
decreases, i.e., as P grows. Based on these results, we can
select a small Q and P to train a model with higher accuracy
when ignoring communication resource restrictions.

VII. CONCLUSION

In this paper, we have proposed a novel multi-layer fed-
erated learning framework that enables the implementation
of distributed learning in e-health systems where data are

both vertically and horizontally partitioned and follow the
non-identical distribution. Based on the multi-layer federated
learning framework, we have developed an efficient MLSGD
algorithm to minimize the global loss function for finding
the optimal global model. We have analyzed the theoretical
convergence result of the proposed algorithm. The experiments
validate that the MLSGD algorithm can achieve rapid con-
vergence while guaranteeing accuracy. In the future, we will
investigate how to choose the optimal subset of devices to fur-
ther accelerate training, as well as how to achieve the tradeoff
between communication overhead and accuracy considering
device computation capabilities and resource constraints.
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