
1

Laplacian Matrix Sampling for
Communication-efficient Decentralized Learning

Cho-Chun Chiu, Student Member, IEEE, Xusheng Zhang, Student Member, IEEE,
Ting He, Senior Member, IEEE, Shiqiang Wang, Member, IEEE, and Ananthram Swami, Fellow, IEEE

Abstract—We consider the problem of training a given machine
learning model by decentralized parallel stochastic gradient
descent over training data distributed across multiple nodes,
which arises in many application scenarios. Although extensive
studies have been conducted on improving the communication
efficiency by optimizing what to communicate between nodes
(e.g., model compression) and how often to communicate, recent
studies have shown that it is also important to customize the
communication patterns between each pair of nodes, which is
the focus of this work. To this end, we propose a framework
and efficient algorithms to design the communication patterns
through Laplacian matrix sampling (LMS), which governs not
only which nodes should communicate with each other but
also what weights the communicated parameters should carry
during parameter aggregation. Our framework is designed to
minimize the total cost incurred until convergence based on any
given cost model that is additive over iterations, with focus on
minimizing the communication cost. Besides achieving a theo-
retically guaranteed performance in the special case of additive
homogeneous communication costs, our solution also achieves
superior performance under a variety of network settings and
cost models in experiments based on real datasets and topologies,
saving 24–50% of the cost compared to the state-of-the-art design
without compromising the quality of the trained model.

Index Terms—Decentralized learning, D-PSGD, convergence
analysis, Laplacian matrix sampling, communication cost.

I. INTRODUCTION

Learning from decentralized data, first introduced by [1],
is a machine learning paradigm in which multiple nodes
collaboratively learn a shared machine learning model over the
union of their local data without directly sharing the data [2].
Instead, the nodes exchange updates to the shared model or
updated local models, either through a central parameter server
(as in federated learning [1]) or through peer-to-peer links
between neighboring nodes (as in decentralized learning [2]),
which are then aggregated to update the shared model in an it-
erative manner. Due to its potential in reducing communication
cost and preserving user privacy, this learning paradigm has
found many applications, including both mobile applications
(e.g., for Google Keyboard [3] and Google Assistant [4]) and
desktop applications (e.g., for Chrome [5] and Brave [6]).

In all these use cases, although the raw data stay local,
the nodes still need to communicate repeatedly to update the
shared model, which incurs a nontrivial communication cost,
e.g., in terms of communication time, bandwidth consumption,

Chiu, Zhang, and He are with the Pennsylvania State University, University Park, PA
16802 USA. Email: {cuc496, xzz5349, tzh58}@psu.edu. Wang is with IBM. Email:
wangshiq@us.ibm.com. Swami is with DEVCOM Army Research Laboratory. Email:
a.swami@ieee.org.

and energy consumption. In many application scenarios, the
communication cost dominates the total operation cost [1].
This has motivated a number of ideas to reduce the com-
munication cost, mainly by (i) reducing the cost of each
communication and (ii) reducing the total number of commu-
nications. The former is usually achieved through compressing
the communicated models [7], [8], [9], and the latter is usually
achieved through tuning the frequency of communications [1],
[10], [11], [12]. The two approaches address orthogonal as-
pects of the communication cost and thus can be applied
jointly. In this work, we focus on the second approach.

We consider learning in a (fully) decentralized setting. In
contrast to the original setting in [1] where the communication
topology is a star with the parameter server at the center,
nodes in the decentralized setting can communicate according
to an arbitrary topology (as long as it is physically feasible).
Such a setting can avoid a single point of failure and balance
the traffic across nodes, which can significantly reduce
the communication complexity at the busiest node without
increasing the computational complexity [13].

Our solution is inspired by a recent discovery in [14]: not all
the links are equally important for convergence. Hence, instead
of activating communications over all the links at the same
frequency, activating different links with different frequencies
can further reduce the communication cost without hurting
convergence. While [14] gave a solution, called MATCHA, to
minimize the communication time by activating certain sets
of links (matchings) with designed probabilities, it left open
many important questions, such as: (i) Will this idea be useful
in reducing other types of costs (e.g., bandwidth/energy con-
sumption)? (ii) Is there a better design that can further improve
the tradeoff between communication cost and convergence? In
this work, we answer both questions affirmatively by devel-
oping a general framework and the corresponding algorithms
to design the communication patterns during decentralized
learning that can further improve the cost-convergence
tradeoff while supporting a broader set of cost models.

A. Related Work

Decentralized learning. Initially proposed under
a parameter server architecture [1], learning from
decentralized data was later extended to a fully decentralized
architecture [13], where a training algorithm called
Decentralized Parallel Stochastic Gradient Descent (D-
PSGD) was shown to achieve the same computational
complexity but a lower communication complexity than

2

training via a central server. Since then a number of
improvements have been developed, e.g., [15] improved the
robustness to data variance by adding variance reduction, [16]
proposed an asynchronous version to reduce the idle time due
to synchronization barriers, and [17] provided a lower bound
on the iteration complexity and an algorithm that achieves
the bound. These works focused on the number of iterations.

Communication cost reduction. Communication cost is an
important consideration in decentralized learning. One line of
work tried to reduce the amount of data per communication
through model compression, e.g., [7], [8], [9]. Another line
of works tuned the frequency of communications to balance
communication cost and convergence rate, e.g., [10], [11],
[12]. Recent works [18], [19] started to combine model
compression and infrequent communications to improve the
communication efficiency of decentralized learning, which
achieved the same convergence rate of O(1/

√
mK) as the

vanilla D-PSGD (where m is the number of nodes and K the
number of iterations). Instead of either activating all the links
for communications or activating none, it has been recognized
that better tradeoffs can be achieved by activating subsets of
links. To this end, [18], [19] proposed an event-triggered mech-
anism where a node sends (a compressed version of) its local
model to neighbors only if the model has changed sufficiently,
and [14], [20] proposed to activate subsets of links that form
matchings with predetermined probabilities. Although these
solutions all achieved the same asymptotic convergence rate
as the vanilla D-PSGD, the number of iterations to achieve a
given convergence criterion can vary a lot based on the design
of hyperparameters. In this regard, our work focuses on the
design of the mixing matrix, which is closest to [14], [20]
that proposed a framework called MATCHA to design the
probabilities of activating matchings. Our work significantly
improves [14], [20] in multiple ways: (i) instead of only
considering communication time as the cost measure, we adopt
a more general cost model that can represent other important
cost measures such as bandwidth/energy consumption; (ii)
instead of giving the same weight to all the received models
during model aggregation, we consider a larger solution space
by allowing different weights for models from different nodes;
(iii) instead of using a heuristic design objective (algebraic
connectivity), we directly optimize an objective with provable
relationship to the convergence rate of decentralized learning.

Mixing matrix design. Decentralized learning is closely
related to the classical problem of distributed averaging, where
nodes with different initial values need to achieve consensus
by taking a weighted average of the values received from their
neighbors. The matrix containing these weights is referred to
as the mixing matrix (a.k.a. consensus/communication/gossip
matrix). Multiple solutions were proposed to optimize the
mixing matrix for distributed averaging, e.g., [21], [22]
designed a mixing matrix with the fastest convergence
to ε-average via semi-definite programming, and [23],
[24] designed a sequence of mixing matrices to achieve
exact average in finite time. Decentralized learning differs
from distributed averaging in that it interleaves distributed
averaging steps with local model updates. In contrast to the
extensive studies of decentralized learning under given mixing

matrices, few works have addressed the design of mixing
matrices in this context. While it was known that denser
mixing matrices generally require fewer iterations [25], [14],
sparser mixing matrices can reduce the cost per iteration
by reducing the time in waiting for stragglers [25] or the
time in exchanging model parameters [14]. In this regard,
we develop algorithms to design mixing matrices through
Laplacian matrix sampling that outperform the state of the art
in minimizing the operational cost for decentralized learning.

B. Summary of Contributions

We consider the design of communication patterns for
decentralized learning, with the following contributions:

1) We develop a general framework to minimize the total
cost for decentralized learning by designing random-
ized mixing matrices through Laplacian matrix sampling.
Based on an existing convergence bound, we formulate
the design problem into a bilevel optimization, where
the lower level minimizes the number of iterations to
achieve a given convergence bound under a given budget
per iteration, and the upper level tunes the per-iteration
budget to minimize the total cost until convergence.

2) We tackle the computational challenges in solving the
formulated optimization by decomposing it into two
subproblems: (i) designing the sampling probabilities and
(ii) designing the candidate Laplacian matrices. We solve
the first subproblem by formulating it as a semi-definite
programming (SDP) problem, and develop a suite of
algorithms for the second subproblem that includes both
heuristics and a graph-sparsification-based algorithm with
guaranteed performance in the special case of additive
homogeneous communication costs.

3) We evaluate the performance of decentralized learning
under the proposed design in comparison to benchmark
designs on real datasets and network topologies. Our
experiments under a variety of network settings and cost
models show that our design can save 24–50% of the
cost compared to the state-of-the-art design in [14] while
yielding a model of similar or better quality.

Roadmap. Sections II and III provide the background and
the description of our design framework. Section IV presents
our solution and performance analysis. Section V evaluates our
solution in comparison with benchmarks. Section VI concludes
the paper. All the proofs can be found in Appendix.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notations

Let a ∈ Rm denote a vector and A ∈ Rm×m a matrix. We
use ‖a‖ to denote the `-2 norm, ‖A‖ to denote the spectral
norm, and ‖A‖F to denote the Frobenius norm. We use
diag(a) to denote a diagonal matrix with the entries in a on
the main diagonal, and diag(A) to denote a vector formed
by the diagonal entries of A. We use λi(A) (i = 1, . . . ,m)
to denote the i-th smallest eigenvalue of A.

3

B. Decentralized Learning

Consider a network of m nodes (i.e., learning agents)
connected through a connected undirected graph G = (V,E)
(V := {1, . . . ,m}), referred to as the base topology. This
topology may be determined by the physical connectivity be-
tween nodes (when representing a physical network) or the al-
lowed communications (when representing an overlay), in both
cases E defines the pairs of nodes that can directly communi-
cate. Each node i ∈ V has a local, possibly non-convex objec-
tive function Fi(x) that depends on the parameter vector x and
the local dataset Di. The goal is to find the parameter vector x
that minimizes the global objective function F (x), defined as

F (x) :=
1

m

m∑
i=1

Fi(x). (1)

For example, the local objective may be to minimize the
local loss by defining Fi(x) :=

∑
p∈Di

`(x, p), where `(x, p)
is the per-sample loss function, and the corresponding global
objective is to minimize the global loss over all the samples
since F (x) =

(∑
p∈

⋃
i∈V Di

`(x, p)
)
/m. Our results are

independent of the specific definition of Fi(x), as long as
several commonly-made assumptions hold (see Section III-A).

We consider a canonical decentralized training algorithm
called D-PSGD [13], where each node maintains its own
parameter vector that is repeatedly updated and averaged
with the parameter vectors of its neighbors to converge
towards a consensus that minimizes the global objective
function. Specifically, let x(k)

i (k ≥ 1) denote the parameter
vector at node i after k − 1 iterations and g(x

(k)
i ; ξ

(k)
i) the

stochastic gradient computed in iteration k (where ξ(k)i is the
mini-batch sampled by node i). In iteration k, node i updates
its parameter vector by

x
(k+1)
i =

m∑
j=1

W
(k)
ij (x

(k)
j − ηg(x

(k)
j ; ξ

(k)
j)), (2)

where W (k) = (W
(k)
ij)mi,j=1 is the m×m mixing matrix in it-

eration k, and η > 0 is the learning rate. Each update by (2) in-
cludes (i) a gradient descent step x̃(k)

i := x
(k)
i −ηg(x

(k)
i ; ξ

(k)
i),

(ii) a communication step to exchange x̃(k)
i between neighbors,

and (iii) a consensus step x
(k+1)
i =

∑m
j=1W

(k)
ij x̃

(k)
j . To

be consistent with the base topology, W
(k)
ij 6= 0 only

if (i, j) ∈ E. One can swap step (i) and steps (ii–iii),
i.e., x(k+1)

i =
∑m
j=1W

(k)
ij x

(k)
j − ηg(x

(k)
i ; ξ

(k)
i), and the

performance analysis will remain the same [13], [14].
We want to improve the communication efficiency of D-

PSGD by designing the mixing matrix W (k), which plays an
important role in controlling the communication cost, as node
j needs to send its parameter vector to node i in iteration k

only if W (k)
ij 6= 0. According to [13], it is desirable to keep the

mixing matrix symmetric with each row/column summing up
to one1 in order to ensure convergence for D-PSGD. Inspired

1In [13], the mixing matrix was assumed to be symmetric and doubly
stochastic with entries constrained to [0, 1], but we find this requirement
unnecessary for the convergence bound we use from [14, Theorem 2], which
holds as long as the mixing matrix is symmetric with each row/column
summing up to one.

by this requirement, we design the mixing matrix as

W (k) := I −L(k), (3)

where L(k) is the weighted Laplacian matrix [26] of the
topology G(k) = (V,E(k)) that is activated in iteration k,
defined as

L(k) :=D(k) −A(k). (4)

Here, A(k) denotes the weighted adjacency matrix of G(k),
where A

(k)
ij ≥ 0 for (i, j) ∈ E, A(k)

ij = 0 for (i, j) 6∈
E, and A

(k)
ij = A

(k)
ji for all i, j ∈ V , and D(k) :=

diag(d
(k)
1 , ..., d

(k)
m) is the weighted degree matrix of G(k), with

d
(k)
i :=

∑m
j=1A

(k)
ij . The above construction guarantees that

W (k) is symmetric with each row/column summing up to one.
We can write L(k) as a function of the incidence matrix

B of the base topology G and a vector of link weights α(k).
The incidence matrix B is a |V | × |E| matrix defined as

Bij =

 +1 if s (ej) = i,
−1 if t (ej) = i,
0 otherwise,

(5)

where s (ej) and t (ej) are the beginning/ending points of
link ej under an arbitrary orientation. The link weight vector
α(k) ∈ R|E| consists of α(k)

(i,j) := A
(k)
ij for each (i, j) ∈ E.

Then the weighted Laplacian matrix L(k) defined in (4) is
equal to

L(k) = B diag(α(k))BT . (6)

When α(k) = 1, we obtain the unweighted Laplacian matrix
of the base topology G. Together, (3) and (6) reduce the
mixing matrix design problem to a problem of designing the
link weights α(k), where a link (i, j) ∈ E will be activated
in iteration k (i.e., nodes i and j will exchange parameter
vectors in iteration k) if and only if α(k)

(i,j) 6= 0.
Remark: In contrast to the previous work [14] that requires

all the activated links to have an identical weight, we allow
heterogeneous link weights.

C. Cost Model

Based on the update rule (2), the cost incurred at node i ∈ V
during iteration k contains two parts: (i) computation cost
for executing the gradient descent and the consensus steps,
and (ii) communication cost for communicating the gradient-
descended parameter vector (i.e., x̃(k)

i) to the neighbors of
node i over activated links (if any). While the computation
cost is largely independent of the mixing matrix2, the commu-
nication cost directly depends on it, where the specific form
of dependency depends on how the communication cost is
measured.

We use c(L(k)) to denote the cost in iteration k when
the (weighted) Laplacian of the activated topology is L(k),
assumed to be additive across iterations. This is a general
model that can represent any cost measure as long as (i) the
per-iteration cost is determined by the activated topology, and

2As discussed in Section II-E, the type of mixing matrices we adopt requires
nodes to always perform local SGD regardless of the activated topology.

4

(ii) the overall cost over multiple iterations is the sum of the
per-iteration costs. Below are some concrete examples:

1) Communication time: Based on the observation that
the time to complete the communication step of D-PSGD
is typically proportional to the maximal node degree in the
activated topology, [14] defined c(L(k)) as the number of
matchings in the activated topology. This cost measure is
proportional to the communication time in an iteration that
activates a topology according to L(k), under the assumption
that communications on disjoint links can occur in parallel.

2) Energy consumption: In wireless networks, an important
cost measure is energy consumption due to communication
and computation. This can be modeled by defining c(L(k)) :=∑m
i=1 ci(L

(k)) and defining ci(L
(k)) to represent the energy

consumption at node i when activating topology L(k). Under
unicast communication, a node needs to separately transmit
its parameter vector over each activated link incident to it. Let
cai > 0 denote the energy consumption due to the computation
in an iteration at node i and cbij > 0 denote the energy
consumption due to a transmission of the parameter vector
from node i to node j. Then

ci(L
(k)) := cai +

∑
j:(i,j)∈E

cbij1(L
(k)
ij 6= 0) (7)

models the per-iteration energy consumption at node i. Under
broadcast communication, when a node is incident to multiple
activated links (i.e., it needs to share its parameter vector with
multiple neighbors), it only needs to broadcast once. Thus, the
per-iteration energy consumption at node i becomes

ci(L
(k)) := cai + cbi1(∃(i, j) ∈ E : L

(k)
ij 6= 0), (8)

where cai > 0 denotes the computation energy consumption
per iteration and cbi the communication energy consumption
per broadcast, both for node i.

3) Bandwidth consumption: The model of c(L(k)) :=∑m
i=1 ci(L

(k)) with ci(L(k)) defined as in (7) can also model
other cost measures of practical significance. For example,
consider the case that the nodes participating in learning form
an overlay network with topology G, where the existence of
an overlay link (i, j) ∈ E means that nodes i and j can
communicate with each other through a connection (e.g., a
TCP connection) supported by a path in the underlay network.
Then defining cai as 0 and cbij as the hop count in the underlay
path from node i to node j allows c(L(k)) to represent
the total bandwidth consumption in the underlay network
when activating L(k) (measured by the total number of times
the parameter vector is transmitted), as communicating the
parameter vector from i to j involves cbij transmissions of the
parameter vector through the underlay network.

Remark: Note that instead of transmitting the original x̃(k)
i ,

node i may transmit a compressed version (e.g., [7], [8], [9]),
and our solution can be used in combination with such com-
pression schemes to further reduce communication cost, where
the effect of the compression can be incorporated into c(L(k)).

D. Design Parameters
In the vanilla D-PSGD [13], the entire base topology

G is activated in every iteration. While activating all the

links is intuitively beneficial for convergence rate as more
information is exchanged in each iteration, such a strategy can
be inefficient in terms of cost. We seek to design the mixing
matrix by designing the Laplacian matrix (that determines the
mixing matrix as in (3)) to minimize the total cost of running
D-PSGD, through optimizing the following design parameters.

1) Candidate Laplacian Matrices: We want to design a set
of candidate Laplacian matrices L := {L1, . . . ,Ln}, which
can achieve a diverse range of tradeoffs between the per-
iteration cost and the number of iterations required for D-
PSGD to converge. Under (6), this boils down to the design
of candidate link weights (αj)

n
j=1.

2) Sampling Probabilities: As the cost is typically a dis-
continuous function of the Laplacian matrix (e.g., (7)), the
design of Laplacian matrices usually cannot be solved to
optimality. To reduce the optimality gap, we will also optimize
how to choose from the set of candidate Laplacian matrices
by designing their sampling probabilities p := (pj)

n
j=1 with∑n

i=1 pj = 1, where pj denotes the probability of sampling
Lj . We assume that the sampling is i.i.d. across iterations. If
Lj is sampled in iteration k, then W (k) = I −Lj . A justifi-
cation of this randomized approach is given in Section IV-D3.

E. Design Objective
Our goal is to minimize the total cost for running D-PSGD

till convergence by designing the candidate Laplacian matrices
L and their sampling probabilities p. Although n := |L| is also
a design parameter, our focus in this work is on optimizing
(L,p) for a given n. Our experiments have validated that the
performance of our proposed design is not sensitive to the
value of n (see Section V-C1).

Remark: (i) Although generally the activated topologies may
only contain a subset of nodes as in [1], we focus on link
activation in this work, as the definition of mixing matrix in
(3) implies that nodes will still perform local SGD in iteration
k even if L(k) = 0. Defining the mixing matrix as in (3) allows
guaranteed convergence (see Theorem III.1). There has been
some work on optimizing node activation in the centralized
setting [27]. We leave the design of both link and node
activation in the decentralized setting to future work. (ii) The
design of (L,p) together with a common random seed can be
computed by the central authority when setting up the learning
task [2] and shared with the nodes, such that nodes will sample
the same Laplacian matrix in each iteration and execute the
communication and consensus steps accordingly. (iii) As our
design focuses on optimizing the communication patterns, it
can be combined with orthogonal techniques such as model
compression [7], [8], [9] and runtime gradient tracking [15].

III. OPTIMIZATION FRAMEWORK

To rigorously formulate the problem of mixing matrix
design, we will quantify the total cost under a given design in
order to formulate the problem as an optimization.

A. Convergence Bound
To bound the number of iterations for D-PSGD to converge

under a given design of the mixing matrices, we will leverage
an existing result from [14].

5

Define J := 1
m11> as an m×m matrix with all entries be-

ing 1
m . Let the mixing matrices for different iterations be i.i.d.

with the same distribution as W , and ρ denote the spectral
norm (i.e., the largest singular value) of E[W>W]− J , i.e.,

ρ := ‖E[W>W]− J‖. (9)

It has been shown in [14] that to guarantee convergence for
D-PSGD, i.e., x(k)

i for all i ∈ V will converge to the same x
as k increases, we need to have ρ < 1. A more precise bound
is available under the following assumptions:

1) Each local objective function Fi(x) is differentiable with
an l-Lipschitz gradient, i.e., ‖∇Fi(x) − ∇Fi(x′)‖ ≤
l‖x− x′‖, ∀i ∈ V .

2) Stochastic gradients at each node are unbiased estimates
of the true local gradient, i.e., E[g(x(k)

i ; ξ
(k)
i)|F (k)] =

∇Fi(x(k)
i), ∀i ∈ V, k ≥ 1, where F (k) is the σ-algebra

capturing all the randomness until iteration k.
3) The variance of the stochastic gradient at each node

is uniformly bounded by σ2, i.e., E[‖g(x(k)
i ; ξ

(k)
i) −

∇Fi(x(k)
i)‖2|F (k)] ≤ σ2, ∀i ∈ V, k ≥ 1.

4) The deviation between the local gradients and the global
gradient is bounded by ζ2, i.e., 1

m

∑
i∈V ‖∇Fi(x) −

∇F (x)‖2 ≤ ζ2, ∀x.

We note that these assumptions are commonly made in
convergence analysis for decentralized SGD [14], [13], [16].
We also note that these assumptions are only related to
the objective functions, the data distributions, the mini-batch
sampling mechanism, and the mini-batch size, but not our
design parameters of interest (i.e., L, p).

As the objective function F (x) can generally be
non-convex, convergence to the global minimizer can-
not be guaranteed. Instead, convergence is considered to
be achieved if the time-averaged expected gradient norm
1
K

∑K
k=1E[‖∇F (x

(k))‖2] is sufficiently small [14], [13],
[16], where x(k) := 1

m

∑m
i=1 x

(k)
i . The following theorem

gives a sufficient condition for this type of convergence.

Theorem III.1. [14, Theorem 2] Under assumptions (1–
4), if the learning rate η :=

√
m
K satisfies ηl ≤

min
{
1,
(√

ρ−1 − 1
)
/4
}

, the mixing matrices {W (k)}Kk=1

are i.i.d., and each W (k) is symmetric with every row/column
summing to one3, then after K iterations,

1

K

K∑
k=1

E
[∥∥∥∇F (x(k))

∥∥∥2] ≤ 8[F (x(1))− Finf] + 4lσ2

√
mK

+

+
8ml2ρ

K(1−√ρ)

(
σ2

1 +
√
ρ
+

3ζ2

1−√ρ

)
, (10)

where x(1) is the initial parameter vector, Finf is a lower
bound on F (·), and ρ is defined as in (9).

Theorem III.1 implies the following requirement on the
number of iterations to achieve a given level of convergence.

3Although [14] assumed W (k) to be symmetric and doubly stochastic, the
proof of [14, Theorem 2] only required it to be symmetric with rows/columns
summing to one. We thus use this relaxed assumption in mixing matrix design.

Corollary III.2. Under the assumptions in Theorem III.1, to
ensure that 1

K

∑K
k=1E[‖∇F (x

k)‖2] ≤ ε0 for any given ε0 >
0, it suffices for the number of iterations to be

K(ρ) :=
c2
ε0

+
c21
2ε20

+
c1
√

4c2ε0 + c21
2ε20

, (11)

where

c1 =
8(F (x(1))− Finf) + 4lσ2

√
m

, (12)

c2 =
8ml2σ2

1− ρ
+

24ml2ζ2

(1−√ρ)2
. (13)

Remark: Theorem III.1 may be applicable only if ρ < 1.
Under this condition, the design parameters L and p affect
the number of iterations K(ρ) required for ε0-convergence
only through ρ, where a smaller ρ means fewer iterations.

The above analysis is based on assumptions (1–4), which
impose limitations on the supported objective functions and
data distributions. In particular, assumption (3) (uniformly
bounded variance of gradient estimate) and assumption (4)
(uniformly bounded gradient divergence) were considered
strong assumptions that have been relaxed in [28]. Specifically,
for possibly non-convex objective functions as considered in
our work, [28] provided a new convergence bound under the
following relaxations of assumptions (3–4):
3’) There exist constants M1, σ̂ such that ∀x1, . . . ,xm,
1

m

∑
i∈V

E[‖g(xi; ξi)−∇Fi(xi)‖2] ≤ σ̂2+
M1

m

∑
i∈V
‖∇F (xi)‖2.

4’) There exist constants M2, ζ̂ such that ∀x,
1

m

∑
i∈V
‖∇Fi(x)‖2 ≤ ζ̂2 +M2‖∇F (x)‖2.

Assumptions (3’–4’) are weaker (and hence easier to satisfy)
than assumptions (3–4) because they are satisfied whenever
assumptions (3–4) are satisfied as shown in [28].

Theorem III.3. [28, Theorem 2] Under assumptions (1),
(3’), and (4’), if there exist constants p ∈ (0, 1] and integer
τ ≥ 1 such that the mixing matrices {W (k)}Kk=1, each being
symmetric and doubly stochastic4, satisfy

E[‖X
(k′+1)τ∏
k=k′τ+1

W (k) −XJ‖2F] ≤ (1− p)‖X −XJ‖2F (14)

for all X := [x1, . . . ,xm] and integer k′ ≥ 0, then D-PSGD
can achieve 1

K

∑K
k=1E[‖∇F (x

k)‖2] ≤ ε0 for any given ε0 >
0 when the number of iterations reaches

O

(
σ̂2

mε20
+
ζ̂τ
√
M1 + 1 + σ̂

√
pτ

pε
3/2
0

+
τ
√
(M2 + 1)(M1 + 1)

pε0

)
· l(F (x(1))− Finf). (15)

Besides relaxing assumptions (3–4), Theorem III.3 also
generalizes Theorem III.1 in that it allows the mixing matrices
to be non-i.i.d., as long as (14) is satisfied. For any given

4In addition to having rows/columns summing to one, being doubly
stochastic also requires the entries ∈ [0, 1]. This constraint is only needed
to prove [28, Theorem 2] when τ > 1, but not needed under our design.

6

τ ≥ 1, the number of iterations according to (15) depends
on the mixing matrices only through parameter p, where the
larger p is, the smaller the required number of iterations. In
the special case of τ = 1, this implies a design objective of
designing a randomized matrix W , used to generate i.i.d.
mixing matrices across iterations, by maximizing

p := min
X 6=0

(
1− E[‖X(W − J)‖2F]

‖X(I − J)‖2F

)
. (16)

However, (16) is difficult to optimize as it is not a closed-form
function of W . Nevertheless, as it is easy to obtain upper
bounds on (16), we can try to maximize a good upper bound.
To this end, we have found an upper bound that reduces the
design objective under the relaxed assumptions (3’–4’) to the
original design objective.

Lemma III.4. For any randomized mixing matrix W that
is symmetric with every row/column summing to one, p as
defined in (16) satisfies p ≤ 1− ρ for ρ := ‖E[W>W]−J‖.

We have empirically verified that 1 − ρ is a tight upper
bound on p (e.g., (1 − ρ) − p ≤ 10−4 for W designed
by our algorithm). Thus, approximating p by 1 − ρ reduces
the design objective to minimizing ρ, which coincides with
the original design objective derived under assumptions (1–4).
This observation together with the efficacy of mixing matrices
designed via ρ minimization (see Section V) suggests the value
of ρ as an objective of mixing matrix design.

Remark: As noted earlier, Theorem III.3 allows the mixing
matrices to be non-i.i.d. as long as (14) is satisfied for some
p ∈ (0, 1] and τ ≥ 1. This extends the solution space
for mixing matrix design to the joint design of a period τ
and a sequence of randomized mixing matrices W1, . . . ,Wτ ,
such that the number of iterations (15) for a variation of D-
PSGD that iterates through these mixing matrices repeatedly is
minimized. In this work, we focus on the special case of τ = 1,
which is already challenging as explained in Section IV, and
leave the general case to future work.

B. Bilevel Parameter Optimization
Based on the analysis in Section III-A, we should de-

sign the candidate Laplacian matrices L and their sampling
probabilities p to minimize the spectral norm ρ in order to
minimize the required number of iterations K(ρ) according
to (11). However, minimizing ρ alone may not minimize the
total cost, as it may require activating more links and hence
incurring more cost per iteration as discussed in Section II-C.
To find the optimal tradeoff, we introduce an auxiliary design
parameter C, representing the budget on the expected cost per
iteration. This allows us to formulate our problem as a bilevel
optimization:
Lower-level optimization: design p and L to minimize ρ
under a given budget C, which results in a spectral norm of
ρ(C) and a required number of iterations of K(ρ(C)).
Upper-level optimization: design C to minimize the total
cost C ·K(ρ(C)).

The above bilevel formulation preserves optimality in the
following sense.

Lemma III.5. Suppose that the number of iterations of
D-PSGD is determined by (11). Then the design (Lo,po)
obtained by solving the bilevel optimization to optimality will
minimize the expected total cost.

IV. COMMUNICATION-EFFICIENT DESIGN FOR D-PSGD
As the upper-level optimization only has one scalar decision

variable C, our focus will be on the lower-level optimization,
which is tackled below.

A. Formulation of Lower-level Optimization
We start by writing the spectral norm ρ as an explicit

function of the design parameters p and L. By construction,
W (k)>W (k) − J is symmetric. Moreover, by definition (3),
we have that W (k)J = JW (k) = J . This combined with
the fact of J2 = J implies that W (k)>W (k) − J =(
W (k) − J

)> (
W (k) − J

)
, and hence W (k)>W (k) − J is

positive semi-definite. Thus, its expectation E[W (k)>W (k)]−
J is also symmetric and positive semi-definite. This implies
that ρ defined in (9) is equal to the largest eigenvalue of
E[W (k)>W (k)]− J . Minimizing (9) is thus equivalent to

min ρ s.t. E[W (k)>W (k)]− J � ρI, (17)

where A � B means that matrix B − A is positive
semi-definite. This is because by the eigendecomposition
E[W (k)>W (k)]−J = Qdiag(λ1, . . . , λm)Q>, (17) is equiv-
alent to minimizing ρ subject to ρ ≥ maxi=1,...,m λi, for which
the optimal solution must satisfy ρ = maxi=1,...,m λi.

Based on the above analysis, we can formulate the lower-
level optimization as

min
p,(αj)nj=1

ρ (18a)

s.t. I − 2

n∑
j=1

pjLj +

n∑
j=1

pjL
>
j Lj − J � ρI, (18b)

n∑
j=1

pjc(Lj) ≤ C, (18c)

n∑
j=1

pj = 1, (18d)

pj ≥ 0, ∀j = 1, . . . , n, (18e)

Lj = B diag(αj)B
>, ∀j = 1, . . . , n, (18f)

αj ≥ 0, ∀j = 1, . . . , n, (18g)

where the main decision variables are (αj)
n
j=1 (that

specifies the set of candidate Laplacian matrices L :=
{B diag(αj)B

>}nj=1) and p = (pj)
n
j=1. Constraint (18b) en-

sures ρ = ‖E[W (k)>W (k)]−J‖ under the optimal solution,
where the left-hand side (LHS) of (18b) is an expansion of
E[W (k)>W (k)] − J ; (18c) requires the expected cost per
iteration to be bounded by C; (18d)–(18e) ensure that p
is a valid probability distribution; (18f) relates the weighted
Laplacian matrices to the designed link weights.

However, (18) is hard to solve due to the non-linear matrix
inequality constraint (18b), which generally makes the opti-
mization NP-hard [29]. Below we will address this challenge
by optimizing p and L separately.

7

B. Design of Sampling Probabilities

Given a set L of candidate Laplacian matrices, (18) is
reduced to the optimization of a linear objective function
(19a) under a linear matrix inequality (19b) and linear
constraints (19c)–(19e):

min
p

ρ (19a)

s.t. I − 2

n∑
j=1

pjLj +

n∑
j=1

pjL
>
j Lj − J � ρI, (19b)

n∑
j=1

pjc(Lj) ≤ C, (19c)

n∑
j=1

pj = 1, (19d)

pj ≥ 0, ∀j = 1, . . . , n. (19e)

We note that (19) is a (linear) semi-definite programming
(SDP) problem that is convex [30] and can thus be solved in
polynomial time, e.g., using the interior point method [30].

C. Design of Candidate Laplacian Matrices

The design of candidate Laplacian matrices is much harder
because it involves the design of candidate topologies to
activate, which has a discrete solution space. We formulate
this problem as a special case of (18) with n = 1. In this case,
(18) reduces to the design of a weighted Laplacian matrix L
such that ρ := ‖W>W − J‖ for W = I − L is minimized
under c(L) ≤ C, which helps maximize the convergence rate
subject to the given budget C. As ‖W>W−J‖ = ‖W−J‖2,
minimizing ρ is equivalent to minimizing ρ̃ := ‖W − J‖.

The specific formulation of this optimization depends on the
cost model c(L). Below we will detail the optimization under
the cost model in (7) as a concrete example, but analogous
optimizations can be formulated under the other cost models
discussed in Section II-C. Under the cost model in (7), the
design of L := B diag(α)B> can be formulated as follows:

min
α,β

ρ̃ (20a)

s.t. − ρ̃I � I −B diag(α)B> − J � ρ̃I, (20b)
α(i,j) ≤ mβ(i,j), ∀(i, j) ∈ E, (20c)
m∑
i=1

(cai +
∑

j: (i,j)∈E

cbijβ(i,j)) ≤ C, (20d)

α(i,j) ≥ 0, β(i,j) ∈ {0, 1} ∀(i, j) ∈ E, (20e)

where α is the primary decision variable and β is a dependent
variable. We claim that:

1) (20a) and (20b) set the objective to min ‖W − J‖, and
2) (20c) – (20e) enforce the constraint of c(L) ≤ C.
To see the first point, let λ̃1, . . . , λ̃m denote the eigenvalues

of I −B diag(α)B> − J . Constraint (20b) ensures that ρ̃ ≥
max(λ̃i,−λ̃i) for all i = 1, . . . ,m. This together with the
objective (20a) implies that ρ̃ = maxi=1,...,m |λ̃i| under the
optimal solution, which in turn equals ‖I −B diag(α)B> −
J‖ as I −B diag(α)B> − J is a symmetric matrix.

To see the second point, note that (20c) forces β(i,j) to be
1 whenever α(i,j) > 0, indicating that link (i, j) is activated.
Based on this, (20d) enforces c(L) ≤ C according to the
definition in (7). We can express the relationship between
α(i,j) and β(i,j) by the linear inequality (20c) because it
suffices to consider α(i,j)’s that are upper-bounded by the
number of nodes m, as shown below.

Lemma IV.1. To achieve ρ < 1 for ρ := ‖W>W − J‖ and
W := I −B diag(α)B>, we must have α(i,j) < m for all
(i, j) ∈ E.

As discussed in Section III-A, we need ρ < 1 to guarantee
convergence for D-PSGD, and thus it suffices to consider the
designs that satisfy α(i,j) < m for all (i, j) ∈ E.

Unfortunately, (20) is hard to solve. Specifically, as
B diag(α)B> =

∑
(i,j)∈E α(i,j)b(i,j)b

>
(i,j) (b(i,j): column

in B corresponding to link (i, j)), (20b) is a linear matrix
inequality in α. The rest of the constraints are linear, except for
the integer constraints on β. This makes (20) a mixed-integer
SDP problem, which is generally NP-hard [31]. To address
this challenge, we propose the following solutions, which will
be combined to construct a set of candidate Laplacian matrices
with diverse cost-convergence tradeoffs (see Section IV-D).

1) Optimal Design without Budget Constraint: We note that
the hardness of (20) is due to the budget constraint (20d),
which triggers the need for the integer variable β. Without
this constraint, (20) is reduced to

min
α

ρ̃ (21a)

s.t. − ρ̃I � I −B diag(α)B> − J � ρ̃I, (21b)
α ≥ 0, (21c)

which is an SDP that can be solved in polynomial time by
existing algorithms such as [30].

2) Greedy Heuristic: Intuitively, the link (i, j) with the
smallest weight α(i,j) transmits the least important informa-
tion. Thus, we can remove this link from the activated topology
(by setting α(i,j) to 0) and recalculate the optimal Laplacian
matrix by (21) in an iterative manner, until the designed
Laplacian matrix L satisfies the budget constraint c(L) ≤ C.
The pseudocode of this algorithm is shown in Algorithm 1.
The algorithm is guaranteed to succeed for any feasible budget
C ≥ c(0).

The complexity of Algorithm 1 is dominated by line 6,
which is executed at most O(|E|) times as each while loop will
deactivate one link. Each execution of line 6 takes polynomial
time in |E| and m for solving an SDP with |E| variables and
m + |E| constraints (where the exact order of polynomial
depends on the algorithm used to solve the SDP [30]). The
overall complexity is thus polynomial in |E| and m.

3) Sparsifiers: Consider the special case of (7) with homo-
geneous communication costs cbij ≡ cb for all (i, j) ∈ E. This
reduces the budget constraint (20d) to a sparsity constraint:∑

(i,j)∈E

β(i,j) ≤ CE := b 1

2cb
(C −

m∑
i=1

cai)c, (22)

where CE is the maximum number of activated links. In this
case, we can solve (20) with performance guarantee.

8

Algorithm 1: Greedy Laplacian Matrix Design
input : Incidence matrix B, budget C, cost model c(·)
output: Weighted Laplacian matrix L

1 Er ← ∅; // set of deactivated links
2 Solve α from (21);
3 while c(B diag(α)B>) > C do
4 Find the link (i, j) ∈ E \ Er with the smallest α(i,j);
5 Er ← Er ∪ {(i, j)};
6 Solve α from (21) with the additional constraint

α(i,j) = 0, ∀(i, j) ∈ Er;
7 Return L← B diag(α)B>;

Algorithm 2: Sparsification-based Laplacian Matrix
Design

input : Incidence matrix B, sample size q
output: Weighted Laplacian matrix LH

1 Compute the optimal Laplacian matrix before sparsification
L← B diag(α)B>, where α is the solution to (21);

2 Compute effective resistance R← diag(B>L+B), where
L+ is Moore-Penrose pseudoinverse of L;

3 Compute sampling probabilities P ∈ R|E| by Pi ∝ αiRi
and

∑
i Pi = 1;

4 Initialize link weights of the sparsifier s← {0}|E|;
5 repeat q times
6 Randomly sample a link ei ∈ E with probability Pi;
7 si ← si +

αi
qPi

;
8 return LH ← B diag(s)B>;

The solution is inspired by the following relationship
between the objective of (20) and the eigenvalues of the
designed Laplacian matrix (recall that λi(·) is the i-th smallest
eigenvalue).

Lemma IV.2. For any (weighted) Laplacian matrix L,

ρ̃ := ‖I −L− J‖ = max{1− λ2(L), λm(L)− 1}. (23)

Lemma IV.2 allows us to connect (20) to the problem
of graph (spectral) sparsification [32]. The idea is: as the
Laplacian matrix L that minimizes a function (23) of its
eigenvalues without constraint (22) is easily computable by
(21), an algorithm that sparsifies L while approximating its
eigenvalues should provide an approximate solution to the
minimization of ρ̃ under (22).

Algorithm: There is an efficient randomized graph sparsi-
fication algorithm [32], which can generate sparsifiers with
O(m logm/ε2) links that approximate the eigenvalues of the
original Laplacian matrix within a factor of 1 ± ε. Based on
this algorithm, we propose Algorithm 2. First, we solve (21)
in line 1 for the Laplacian matrix L that minimizes ρ̃ while
potentially activating all the links in G. Then we compute
sampling probabilities in lines 2–3, where the probability Pi
for sampling link ei is proportional to the product of its
original weight αi and its effective resistance5 Ri. According
to [32], the effective resistances R ∈ R|E| are given by the
diagonal entries of B>L+B, where B is incidence matrix of

5If viewing G as an electrical network and each weight αi as the
conductance of link ei, then Ri is the potential difference induced across
ei when a unit current is injected at one end of the link and extracted at the
other end.

G and L+ is Moore-Penrose pseudoinverse of L, defined as

L+ =
∑
i:λi>0

1

λi
uiu

>
i , (24)

where λi and ui are the eigenvalue and the corresponding
orthonormal eigenvector of L. Next, we construct the sparsifier
by taking q samples from the links in G independently with
replacement according to the probability distribution P as in
lines 4–7. Each time a link ei is sampled, its weight si in
the sparsifier will be increased by αi/(qPi). As a result, we
obtain a sparsifer with O(q) links and a Laplacian matrix
B diag(s)B>.

Analysis: We first recall the following result from [32].

Lemma IV.3. ([32, Theorem 1]) Given a weighted Laplacian
matrix L ∈ Rm×m and a constant ε ∈ (1√

m
, 1], there exists

a constant6 cr such that if q = crm logm
ε2 and m is sufficiently

large, then with probability at least 1/2, LH := B diag(s)B>

for s generated by lines 4–7 of Algorithm 2 satisfies

(1− ε)y>Ly ≤ y>LHy ≤ (1 + ε)y>Ly, ∀y ∈ Rm. (25)

In particular, the eigenvalue λi(·) (∀i = 1, . . . ,m) satisfies

(1− ε)λi(L) ≤ λi(LH) ≤ (1 + ε)λi(L). (26)

Based on Lemma IV.3, we show that under certain condi-
tions, Algorithm 2 achieves a guaranteed approximation with
a guaranteed probability.

Theorem IV.4. Consider a special case of (20) when (20d) is
replaced by (22). Let ρ̃∗ be the optimal objective value, and
ε := 1

δ

√
crm logm/CE for

δ := min

{∣∣∣∣1− λ2(L)λ2(L)

∣∣∣∣ , ∣∣∣∣λm(L)− 1

λm(L)

∣∣∣∣} , (27)

where L is computed in line 1 of Algorithm 2, and cr is the
constant in Lemma IV.3. If CE ≥ crm logm, then the output
LH of Algorithm 2 for q = CE satisfies the following with
probability at least 1/2:

ρ̃H := ‖I −LH − J‖ ≤ (1 + ε)ρ̃∗. (28)

Two remarks are in order: First, although a randomly-
generated sparsifier only satisfies (28) with probability at least
1/2, one can generate r independent sparsifiers by repeating
lines 4–7 and return the sparsifier with the minimum ρ̃H ,
which will satisfy (28) with probability at least 1 − 2−r.
However, this is not necessary in our case as each sparsifier
only gives a candidate Laplacian matrix, and we will further
optimize how often to use this candidate (see Section IV-B). It
hence does not hurt to include all the generated sparsifiers as
candidates (see Algorithm 3). Moreover, although Algorithm 2
is designed for a specific cost model (7) with cbij ≡ cb

(∀(i, j) ∈ E), it can be applied under a general cost model c(·)
by replacing the fixed loop in lines 5–7 by an indefinite loop
that keeps running as long as c(B diag(s)B>) ≤ C (although
the performance guarantee in Theorem IV.4 no longer applies).

Complexity: In Algorithm 2, solving the SDP (21) in line 1
takes polynomial time in |E| and m. Line 2 takes O(m3)

6Specifically, cr = 144c20, where c0 is the constant in [33, Lemma 3.5].

9

Algorithm 3: Laplacian Matrix Sampling (LMS)
input : Incidence matrix B, requirement on #iterations

K(·) as given in (11), cost model c(·), budgets Cg
for Algorithm 1, sample sizes Q for Algorithm 2,
candidate budgets for upper-level optimization C

output: Laplacian matrices L, sampling probabilities p
1 L ← {B diag(α)B>} for the solution α to (21);
2 foreach C ∈ Cg do
3 L ← L∪ {L}, where L is the output of Algorithm 1 for

budget C;
4 foreach q ∈ Q do
5 L ← L∪ {LH}, where LH is the output of Algorithm 2

for sample size q;
6 p← solution to (19) without constraint (19c), with objective

value ρ;
7 for C ∈ C do
8 p′ ← solution to (19) under budget C, with objective

value ρ′;
9 if K(ρ′)

∑
j:Lj∈L p

′
jc(Lj) < K(ρ)

∑
j:Lj∈L pjc(Lj)

then
10 p← p′, ρ← ρ′;
11 return L, p;

Fig. 1. Illustration of the workflow of LMS

time to compute the pseudoinverse L+ and O(m3) time to
compute the effective resistance R. Then line 3 computes
the link sampling probabilities in O(|E|) time. Afterwards,
it takes O(q) time to sample links as in lines 4–7, and then
O(|E|) time to construct the Laplacian matrix B diag(s)B>.
The overall complexity is thus polynomial in |E| and m, and
linear in q.

D. Overall Solution

1) Algorithm: Based on Sections IV-B–IV-C, we propose
an overall algorithm that designs L and p for D-PSGD, called
Laplacian Matrix Sampling (LMS), which is presented in
Algorithm 3 and illustrated in Fig. 1.

LMS first constructs a set L of candidate Laplacian matrices
with various tradeoffs between the convergence rate and the
cost per iteration. This includes the Laplacian matrix designed
to minimize ρ̃ without constraining the per-iteration cost
(line 1), the outputs of the greedy heuristic under a given
set Cg of budgets (lines 2–3), and the outputs of the graph
sparsification algorithm under a given set Q of sample sizes
(lines 4–5). It then optimizes the probability distribution for
sampling from L under a given set of candidate budgets,
and picks the distribution p that minimizes the expected

total cost for running D-PSGD until convergence, given by
K(ρ)

∑
j:Lj∈L pjc(Lj) (lines 7–10), where K(ρ) is the re-

quired number of iterations as in (11). Given the designed
parameters (L, p), D-PSGD will be executed based on ran-
domized mixing matrices W (k) := I − L(k) (k = 1, 2, . . .)
for Laplacian matrices L(1), L(2), . . . sampled i.i.d. from L
according to the distribution p.

LMS can be run by a task dispatcher ahead of time before
launching learning tasks, which then distributes the designed
parameters (L, p) to the nodes together with a pseudo random
number generator seed. When receiving a learning task, the
nodes can use their seeded pseudo random number genera-
tors to sample Laplacian matrices from L and communicate
accordingly, where the shared seed ensures that all the nodes
will sample the same Laplacian matrix in each iteration.

Due to the polynomial complexity of each of the invoked
subroutines, the overall complexity of LMS is polynomial in
|E|, m, n, |Cg|, |Q|, and |C|. While some of these factors
are design parameters, |E| and m are determined by the base
topology, which limits the scalability of our solution. In this
regard, we envision LMS to be easily applicable for cross-silo
learning (with < 100 nodes) or cross-device learning over a
limited number of devices [2], and leave the development of
more scalable (but less optimal) solutions that can support
massive cross-device learning to future work.

Remark: Although the sparsifiers (generated by Algo-
rithm 2) only provide guaranteed approximation in a special
case (as stated in Theorem IV.4), we can always include
them in the candidate set L under any cost model without
degrading the performance, thanks to the fact that the sampling
distribution p can be solved to optimality in polynomial time.

2) Analysis: LMS can achieve a guaranteed performance in
minimizing the expected total cost till convergence as follows.

Theorem IV.5. Under the cost model in (7) with cbij ≡ cb

for all (i, j) ∈ E, let C∗ be the expected per-iteration cost
under the optimal design, C∗E := b 1

2cb
(C∗ −

∑m
i=1 c

a
i)c, and

ρ∗ the corresponding spectral norm as defined in (9). If C∗E ≥
crm logm, C∗E ∈ Q, and C∗ ∈ C, then the design (L, p)
computed by LMS incurs an expected total cost of

K(ρ)
∑

j:Lj∈L

pjc(Lj) ≤ K
(
(1 + ε)2ρ∗

)
C∗ (29)

with probability at least 1/2, where ρ := ‖
∑
j:Lj∈L pj(I −

Lj)
>(I−Lj)−J‖, and ε := 1

δ

√
crm logm/C∗E for δ defined

in (27).

Remark: When the expected number of links activated by
the optimal design is much larger than crm logm, ε will
be small, and hence the bound in (29) will be close to the
minimum expected total cost K(ρ∗)C∗. Intuitively, this can
occur in large dense networks where the total number of
links can be O(m2). Moreover, by generating r independent
sparsifiers for each q ∈ Q and including all of them into L,
we can improve the probability of satisfying (29) to at least
1− 2−r.

3) Justification of Randomized Design: To justify our ap-
proach of designing the Laplacian matrix (and hence the
mixing matrix) in a randomized manner, we note that first, as

10

shown in (20), designing a deterministic Laplacian matrix to
minimize the spectral norm under a budget constraint will lead
to a mixed-integer optimization that is hard to solve, for which
we can only obtain suboptimal solutions. Moreover, optimally
sampling from candidate solutions can improve performance.
Specifically, if Wj := I −Lj for Lj ∈ L, then

min
p
‖
∑
j

pj(W
>
j Wj − J)‖ ≤ ‖W>

j Wj − J‖, ∀j, (30)

i.e., suitable randomization among given candidates is no
worse than deterministically using any of the candidates. Our
design is guaranteed to satisfy (30) as we can compute the
optimal p in polynomial time as explained in Section IV-B.

V. PERFORMANCE EVALUATION

We have conducted extensive data-driven simulations to
evaluate the proposed solution in comparison with the state of
the art under a variety of cost models of practical importance.

A. Experiment Setup

1) Dataset and ML model: We consider training for image
classification based on CIFAR-10, which consists of 60,000
color images in 10 classes. We train the ResNet-50 model
over its training dataset with 50,000 images, and then test the
trained model over the testing dataset with 10,000 images.

2) Base Topology: We simulate the base topology based on
real wireless/wired networks. In the wireless setting, we use
the topology of the Roofnet [34] mesh network at data rate
1Mbps, which contains 33 nodes and 187 links. In the wired
setting, we simulate the scenario in which nearby desktop
applications communicate with each other for model training.
To this end, we generate an overlay network based on the
Cogent network from the Internet Topology Zoo [35], treating
the degree-1 nodes as (gateways of) learning agents, and
connecting each pair of degree-1 nodes within 14 hops of each
other by an overlay link (i.e., allowing them to communicate
during learning). The generated overlay network, which is the
base topology in the wired setting, contains 21 nodes and 136
links.

3) Cost Model: In the wireless setting, we evaluate two
cost models: communication time and energy consumption.
The former is measured by the number of matchings in the
activated topology according to [14], and the latter is measured
by (7) under the assumption of unicast communication (see
Section V-C2 for the case of broadcast communication), where
we set the computation energy as cai = 0.0003342 (Wh)
and the communication energy as cbij = 0.0009129 (Wh)
based on our model size and the parameters from [36],
[37]. In the wired setting, we also evaluate two cost models:
communication time and bandwidth consumption. The former
is again measured by the number of activated matchings as
in [14]. The latter is measured by the total number of times
the parameter vector is transmitted in the underlay network,
calculated by the cost model in Section II-C3. We note that
although using the number of activated matchings as the cost
measure has limitations (e.g., not capturing the computation
time or variations in the communication time), we still include

0 100 200
epochs

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
87.5

90.0

0 100000 200000
activated matchings

100

lo
ss

0 100000 200000
activated matchings

20

40

60

80

ac
cu

ra
cy

 (%
)

Vanilla D-PSGD
LMS, 40% matchings

MATCHA, 40% matchings
LMS, 20% matchings

Periodic, 40% on

Fig. 2. Communication time in wireless network

this cost model to enable a fair comparison with MATCHA
[14] under its cost measure.

4) Parameters: We set the learning rate as 0.8 at the
beginning and reduce it by 10X after 100, 150, 180, 200
epochs, which is consistent with [14] (to facilitate comparison)
while ensuring convergence. We set the mini-batch size to
32. For LMS, we set n = 3091 by default, by setting
Cg = {0.10, 0.11, ..., 0.99} and constructing Q by generating
3000 instances of q = 0.09m logm

ε2 with ε sampled uniformly
at random from [0.01, 0.8]. These parameters allow LMS to
generate 3091 candidate Laplacian matrices (including the
solution to (21)). We will test the sensitivity of LMS to these
configuration parameters in Section V-C1.

5) Benchmarks: We compare LMS with three benchmarks:
Vanilla D-PSGD (where all the neighbors communicate in all
the iterations), Periodic (periodically, there are either commu-
nications over all the links or no communication at all), and
MATCHA [14] (state of the art). We use the open-source code
[38] provided by the authors of [14] for MATCHA. We use
the approach in [14] to design the link weights for Vanilla and
Periodic, which is the state of the art before our work. We first
fine-tune the parameter of MATCHA to achieve the lowest
loss at convergence, and then tune the communication fre-
quency/budget for Periodic and the proposed algorithm (LMS)
to align the average cost per iteration. We also test LMS when
it is tuned to achieve the same loss as MATCHA at conver-
gence, to evaluate its potential at saving cost while achieving
the same quality of training. Our code is available at [39].

B. Performance Comparison

We have compared the learning performance under each
of the designs via training loss and testing accuracy, in a
variety of settings. The results, given in Fig. 2–5, show that: (i)
all the algorithms with budgeted communications can achieve
convergence at a much lower cost than Vanilla D-PSGD;
(ii) compared to Vanilla D-PSGD, Periodic converges to a
worse model (with a higher loss and a lower accuracy), but
MATCHA and both versions of LMS all converge to models
that are similar or better, signifying the value of fine-grained

11

0 50 100 150 200
epochs

100

lo
ss

0 50 100 150 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
87.5

90.0

0 1000 2000 3000
Energy consumption (Wh)

100

lo
ss

0 1000 2000 3000
Energy consumption (Wh)

20

40

60

80
ac

cu
ra

cy
 (%

)

Vanilla D-PSGD
LMS, 50% links

MATCHA, 50% links
LMS, 30% links

Periodic, 50% on

Fig. 3. Energy consumption in wireless network

0 100 200
epochs

10 1

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
90.0

92.5

0 100000 200000 300000
activated matchings

10 1

100

lo
ss

0 100000 200000 300000
activated matchings

20

40

60

80

ac
cu

ra
cy

 (%
)

Vanilla D-PSGD
LMS, 50% matchings

MATCHA, 50% matchings
LMS, 30% matchings

Periodic, 50% on

Fig. 4. Communication time in wired network

0 100 200
epochs

10 1

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
90.0

92.5

0 2 4
Bandwidth used 1e7

10 1

100

lo
ss

0 2 4
Bandwidth used 1e7

20

40

60

80

ac
cu

ra
cy

 (%
)

Vanilla D-PSGD
LMS, 50% bandwidth

MATCHA, 50% bandwidth
LMS, 30% bandwidth

Periodic, 50% on

Fig. 5. Bandwidth consumption in wired network

communication design; (iii) LMS outperforms MATCHA by
either achieving a lower loss and a higher accuracy at the

5 10 15 20

10 6

10 4

10 2

Pr
ob

ab
ilit

y

20% matchings/Wireless network

5 10 15 20

10 2

10 1

Pr
ob

ab
ilit

y

30% links/Wireless network

5 10 15 20

10 7

10 4

10 1

Pr
ob

ab
ilit

y

30% matchings/Wired network

5 10 15 20

10 2

10 1

Pr
ob

ab
ilit

y

30% bandwidth/Wired network

Fig. 6. Probabilities of sampling the top 20 candidate Laplacian
matrices under LMS (n = 3091)

0 100 200
epochs

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
88

90

LMS, 20% matchings, n=20 LMS, 20% matchings, n=3091

Fig. 7. Varying n: Communication time in wireless network

0 50 100 150 200
epochs

100

lo
ss

0 50 100 150 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
88

90

LMS, 30% links, n=20 LMS, 30% links, n=3091

Fig. 8. Varying n: Energy consumption in wireless network

same cost7 or achieving the same loss/accuracy at a lower
cost. While the difference in loss/accuracy at convergence
seems small, the difference in the cost to achieve convergence
is significant: LMS saves 40–50% of the cost compared to
MATCHA and 70–80% of the cost compared to Vanilla D-
PSGD, while yielding a model of similar or better quality.

C. Additional Experiments

We have conducted additional experiments to explore other
configurations and settings.

1) Sensitivity to n: In order to understand the impact of
the number n of candidate Laplacian matrices on the per-
formance of LMS, we test LMS under another configuration
that leads to n = 20 candidate Laplacian matrices. We
choose n = 20 because out of the original 3091 candidate
matrices, the top 20 are sampled with a total probability of
at least 0.99 across all the evaluated scenarios, as shown

7This is because LMS allows different links to have heterogeneous weights,
as opposed to the identical weight used in MATCHA.

12

0 100 200
epochs

10 1

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
91
92

LMS, 30% matchings, n=20 LMS, 30% matchings, n=3091

Fig. 9. Varying n: Communication time in wired network

0 100 200
epochs

10 1

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
91
92

LMS, 30% bandwidth, n=20 LMS, 30% bandwidth, n=3091

Fig. 10. Varying n: Bandwidth consumption in wired network

0 100 200
epochs

100

lo
ss

0 100 200
epochs

20

40

60

80

ac
cu

ra
cy

 (%
)

175200
88

90

0 100 200 300 400
Energy consumption (Wh)

100

lo
ss

0 100 200 300 400
Energy consumption (Wh)

20

40

60

80

ac
cu

ra
cy

 (%
)

Vanilla D-PSGD
MATCHA, 40% matchings

LMS, 76% nodes LMS, 100% nodes

Fig. 11. Energy consumption under broadcast communication

in Fig. 6, suggesting that n = 20 will almost suffice. To
validate this intuition, we configure LMS to construct (in
addition to the solution to (21)) 9 candidates by Algorithm 1
according to Cg = {0.1, 0.2, . . . , 0.9}, and 10 candidates by
Algorithm 2 according to 10 random instances of q generated
as in Section V-A4.

We repeat the experiments in Fig. 2–5 under the new con-
figuration, with results in Fig. 7–10. The plots of loss/accuracy
vs. cost (#activated matchings, energy consumption, or band-
width consumption) look similar to Fig. 7–10 and are thus
omitted for conciseness. The results show that while sampling
from a larger set of candidate Laplacian matrices (n = 3091)
can lead to a slightly better model, a similar performance (with
< 1% degradation in accuracy) can be achieved by sampling
from a much smaller set of candidates (n = 20). These exper-
iments demonstrate the robustness of LMS to the value of n.

2) Broadcast communication: Previously we have assumed
unicast communication in the wireless setting, indicated by

measuring the energy consumption by (7). Now we evalu-
ate the case of broadcast communication. Recall that under
broadcast communication, the cost model becomes c(L(k)) :=∑m
i=1 ci(L

(k)) with ci(L
(k)) defined as in (8). We set

cai = 0.0003342 (Wh) and cbi = 0.0009129 (Wh) as in
Section V-A3. Under this model, the cost incurred in an
iteration is determined by the number of activated nodes that
share their parameter vectors with neighbors. We note that
MATCHA does not support constraining the expected number
of activated nodes (as it can only constrain the expected
number of activated matchings). Nevertheless, we have tuned
MATCHA’s parameter to achieve the best performance at con-
vergence and then configured the other algorithms accordingly
to facilitate comparison, as explained in Section V-A5. In this
case, MATCHA almost always activates all the nodes, and
hence the corresponding version of Periodic with the same
per-iteration cost coincides with Vanilla D-PSGD.

The results, given in Fig. 11, suggest a similar conclusion
as before: LMS can not only achieve a lower loss and a higher
accuracy at the same energy consumption, but also reduce the
energy consumption by 24% compared to the best-performing
benchmark while yielding a model of similar quality.

VI. CONCLUSION

We aimed to improve the communication efficiency of
decentralized learning by carefully designing the communi-
cation patterns between nodes. Based on an existing con-
vergence analysis, we formulated the design problem as a
bilevel optimization that strives to achieve the maximum
convergence rate and the optimal tradeoff with the cost per
iteration. Based on this formulation, we developed a suite
of efficient algorithms that jointly design both how nodes
should communicate with each other and how much weights
the communicated model parameters should carry in parameter
aggregation. Our design achieves a guaranteed performance in
minimizing the total cost till convergence in the special case of
additive homogeneous communication costs, and at least 24–
50% cost saving compared to existing designs in experiments
based on a variety of network settings and cost models, without
compromising the quality of the trained model. Our solution
has broad applicability by adopting a general cost model that
can be customized for various application scenarios.

REFERENCES

[1] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[2] P. Kairouz et al., Advances and Open Problems in Federated Learning.
Now Foundations and Trends, 2021.

[3] “Google AI Blog: Federated Learning: Collaborative Machine Learning
without Centralized Training Data,” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html.

[4] “Google Assistant using federated learning on Android to im-
prove ‘Hey Google’ accuracy,” https://9to5google.com/2021/03/26/
google-assistant-hotword-federated-learning/.

[5] “Federated Learning of Cohorts (FLoC),” https://github.com/WICG/floc.
[6] “Using Federated Learning to Improve Brave’s On-Device Rec-

ommendations While Protecting Your Privacy,” https://brave.com/
federated-learning/.

[7] A. Koloskova, T. Lin, S. U. Stich, and M. Jagg, “Decentralized deep
learning with arbitrary communication compression,” in The Interna-
tional Conference on Learning Representations (ICLR), 2020.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://9to5google.com/2021/03/26/google-assistant-hotword-federated-learning/
https://9to5google.com/2021/03/26/google-assistant-hotword-federated-learning/
https://github.com/WICG/floc
https://brave.com/federated-learning/
https://brave.com/federated-learning/

13

[8] Y. Lu and C. D. Sa, “Moniqua: Modulo quantized communication in
decentralized SGD,” in International Conference on Machine Learning
(ICML), 2020.

[9] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication com-
pression for decentralized training,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[10] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Systems for
ML, 2019.

[11] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM, 2019.

[12] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, 2017, p. 5336–5346.

[14] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA:
Speeding up decentralized SGD via matching decomposition sampling,”
in NeurIPS Workshop on Federated Learning, 2019. [Online]. Available:
https://arxiv.org/abs/1905.09435

[15] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized
training over decentralized data,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML, 2018.

[16] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML, ser. Proceedings of
Machine Learning Research, vol. 80, 2018, pp. 3049–3058.

[17] Y. Lu and C. D. Sa, “Optimal complexity in decentralized training,” in
International Conference on Machine Learning (ICML), 2021.

[18] N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-
triggered and compressed communication in decentralized optimization,”
in IEEE CDC, 2020.

[19] ——, “SQuARM-SGD: Communication-efficient momentum SGD for
decentralized optimization,” IEEE Journal on Selected Areas in Infor-
mation Theory, vol. 2, no. 3, pp. 954–969, 2021.

[20] J. Wang, A. K. Sahu, G. Joshi, and S. Kar, “Exploring the error-
runtime trade-off in decentralized optimization,” in Asilomar Conference
on Signals, Systems & Computers, 2020.

[21] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, pp. 65–78, September 2004.

[22] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” in IEEE Transactions on Information Theory, vol. 52, 2006.

[23] J. M. Hendrickx, R. M. Jungers, A. Olshevsky, and G. Vankeerberghen,
“Graph diameter, eigenvalues, and minimum-time consensus,” Automat-
ica, pp. 635–640, 2014.

[24] C.-K. Ko, “On matrix factorization and scheduling for finite-time
average-consensus,” Ph.D. dissertation, California Institute of Technol-
ogy, 2010.

[25] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network
topology for distributed machine learning,” in IEEE INFOCOM, 2019.

[26] B. Bollobás, Modern Graph Theory, ser. Graduate texts in mathematics.
Springer, 2013.

[27] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimization,”
in IEEE INFOCOM, 2022, pp. 1449–1458.

[28] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified
theory of decentralized SGD with changing topology and local updates,”
in ICML, 2020.

[29] O. Toker and H. Ozbay, “On the NP-hardness of solving bilinear matrix
inequalities and simultaneous stabilization with static output feedback,”
in Proceedings of 1995 American Control Conference, vol. 4, 1995, pp.
2525–2526 vol.4.

[30] H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song, “A faster
interior point method for semidefinite programming,” in 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), 2020,
pp. 910–918.

[31] R. M. Karp, Reducibility among Combinatorial Problems, ser. Complex-
ity of Computer Computations. Springer, 1972.

[32] D. A. Spielman and N. Srivastava, “Graph sparsification by effective
resistances,” in ACM STOC, 2008.

[33] M. Rudelson and R. Vershynin, “Sampling from large matrices: An
approach through geometric functional analysis,” Journal of the ACM,
vol. 54, no. 4, p. 21–es, July 2007.

[34] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” in SIGCOMM, 2004.

[35] “The Internet Topology Zoo,” http://www.topology-zoo.org/dataset.html.
[36] X. Qiu, T. Parcollet, J. Fernandez-Marques, P. P. B. Gusmao, D. J.

Beutel, T. Topal, A. Mathur, and N. D. Lane, “A first look into
the carbon footprint of federated learning,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.07627

[37] “SpeedTest,” https://www.speedtest.net/.
[38] “Source code for MATCHA,” https://github.com/JYWa/MATCHA.
[39] “Source code for LMS,” https://github.com/cuc496/LMS.
[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.

Cho-Chun Chiu (S’20) received the B.S. degree in
Space Science and Engineering from National Cen-
tral University and M.S. in Mechanical Engineering
from National Taiwan University. He is a Ph.D.
student in Computer Science and Engineering at
the Pennsylvania State University, advised by Prof.
Ting He. His research interest includes computer
networking, network security, differential privacy,
and federated learning.

Xusheng Zhang (S’22) received the B.S. degree in
computer science and the B.S. degree in mathemat-
ics from University of Illinois at Urbana-Champaign
in 2017. He is a Ph.D. student in Computer Science
and Engineering at the Pennsylvania State Univer-
sity, advised by Prof. Antonio Blanca. His research
involves approximation algorithm, Markov chains,
computer networking, and computational geometry.

Ting He (SM’13) received the Ph.D. degree in
electrical and computer engineering from Cornell
University. Dr. He is an Associate Professor in the
School of Electrical Engineering and Computer Sci-
ence at the Pennsylvania State University, University
Park, PA. Her interests reside at the intersection of
computer networking, performance evaluation, and
machine learning. Dr. He has served as Associate
Editor for IEEE Transactions on Communications
and IEEE/ACM Transactions on Networking, TPC
Co-Chair of IEEE ICCCN, Area TPC Chair of

IEEE INFOCOM, and TPC member of many international conferences. She
received multiple awards from IBM and ITA, and paper awards from IEEE
Communications Society, ICDCS, SIGMETRICS, and ICASSP.

https://arxiv.org/abs/1905.09435
http://www.topology-zoo.org/dataset.html
https://arxiv.org/abs/2102.07627
https://www.speedtest.net/
https://github.com/JYWa/MATCHA
https://github.com/cuc496/LMS

14

Shiqiang Wang (S’13–M’15) is a Research Staff
Member at IBM T. J. Watson Research Center,
NY, USA. He received his Ph.D. from Imperial
College London, United Kingdom, in 2015. His
current research focuses on the intersection of dis-
tributed computing, machine learning, networking,
and optimization, with a broad range of applica-
tions including data analytics, edge-based artificial
intelligence (Edge AI), Internet of Things (IoT), and
future wireless systems. He has made foundational
contributions to edge computing and federated learn-

ing that generated both academic and industrial impact. Dr. Wang serves as
an associate editor of the IEEE Transactions on Mobile Computing, IEEE
Transactions on Parallel and Distributed Systems, and IEEE Transactions
on Computational Social Systems. He received the IEEE Communications
Society (ComSoc) Leonard G. Abraham Prize in 2021, IEEE ComSoc Best
Young Professional Award in Industry in 2021, IBM Outstanding Technical
Achievement Awards (OTAA) in 2019, 2021, and 2022, multiple Invention
Achievement Awards from IBM since 2016, Best Paper Finalist of the
IEEE International Conference on Image Processing (ICIP) 2019, and Best
Student Paper Award of the Network and Information Sciences International
Technology Alliance (NIS-ITA) in 2015.

Ananthram Swami is with the US Army’s DE-
VCOM Army Research Laboratory as the Army’s
Senior Research Scientist (ST) for Network Science.
He received the B.Tech. degree from IIT-Bombay;
the M.S. degree from Rice University, and the Ph.D.
degree from the University of Southern California
(USC), all in Electrical Engineering. Prior to joining
ARL, he held positions with Unocal Corporation,
USC, CS-3 and Malgudi Systems. He was a Statis-
tical Consultant to the California Lottery, developed
a MATLAB-based toolbox for non-Gaussian signal

processing, has held visiting faculty positions at INP, Toulouse, and at Imperial
College, London. Swami’s work is in the broad area of network science,
including communication and information networks and cyber security. Recent
awards include a 2018 IEEE ComSoc MILCOM Technical Achievement
Award and a 2017 Presidential Rank Award (Meritorious). He is an ARL
Fellow and a Fellow of the IEEE.

APPENDIX

Proof of Lemma III.4. By its definition in (16), p will be
upper-bounded by

1− E[‖X(W − J)‖2F]
‖X(I − J)‖2F

≤ 1− ‖X · E[W − J]‖2F
‖X(I − J)‖2F

(31)

for any X 6= 0, where (31) is due to the convexity of ‖ · ‖2F .
In particular, consider

X :=

[
sign(λ∗)q∗>

0(d−1)×m

]
, (32)

where λ∗ is th eigenvalue of E[W − J] with the largest ab-
solute value, q∗ the corresponding eigenvector, and 0(d−1)×m
the (d− 1)×m matrix of zeros (d denotes the dimension of
each parameter vector xi). For this X , we have that

‖X · E[W − J]‖2F = ‖
[
|λ∗|q∗>
0(d−1)×m

]
‖2F = λ∗2‖q∗>‖2

= ‖E[W − J]‖2, (33)

where the last step is because q∗ is a unit vector and |λ∗| =
‖E[W − J]‖ by definition. Moreover,

‖X(I − J)‖2F =

m∑
i=1

(q∗i − q∗)2 = 1−mq∗2, (34)

where q∗ := 1
m

∑m
i=1 q

∗
i . Plugging (33)–(34) into (31) yields

p ≤ 1− ‖E[W − J]‖2

1−mq∗2
≤ 1− ρ, (35)

where the last inequality is because 1 − mq∗
2 ≤ 1 and

‖E[W−J]‖2 = ‖(E[W>]−J)(E[W]−J)‖ = ‖E[W>W]−
JE[W] − E[W>]J + J2‖ = ‖E[W>W] − J‖ = ρ, due to
the fact that JE[W] = E[W>]J = J2 = J .

Proof of Lemma III.5. Let (L∗,p∗) denote the optimal design
that achieves the minimum expected total cost E∗, and ρ∗

be the corresponding spectral norm as defined in (9). If the
budget is set to be C = E∗

K(ρ∗) , then (L∗,p∗) will be a feasible
solution to the lower-level optimization, and hence the optimal
solution (L(C),p(C)) to the lower-level optimization would
achieve a spectral norm of ρ(C) ≤ ρ∗, and thus require a
number of iterations of K(ρ(C)) ≤ K(ρ∗). Therefore, under
the design (L(C),p(C)), the expected total cost CK(ρ(C))
will be upper-bounded by E∗. The design (Lo,po) obtained
by further minimizing CK(ρ(C)) over C will thus achieve an
expected total cost that is no greater than E∗.

Proof of Lemma IV.1. If L(i,j) denotes the unweighted Lapla-
cian matrix of the single-link graph G(V, {(i, j)}), then by
definition

L := B diag(α)B> =
∑

(i,j)∈E

α(i,j)L(i,j). (36)

15

Computing the trace yields

Tr(L) = Tr(
∑

(i,j)∈E

α(i,j)L(i,j)) =
∑

(i,j)∈E

α(i,j)Tr(L(i,j))

= 2
∑

(i,j)∈E

α(i,j), (37)

where the last equality is because Tr(L(i,j)) = 2. Moreover,
since Tr(L) =

∑m
i=1 λi(L), we have

2
∑

(i,j)∈E

α(i,j) =

m∑
i=1

λi(L). (38)

By Lemma IV.2, ρ = ρ̃2 < 1 implies that λm(L) < 2. Hence,

2
∑

(i,j)∈E

α(i,j) ≤ mλm(L) < 2m, (39)

which implies α(i,j) < m for all (i, j) ∈ E as α(i,j) ≥ 0.

Proof of Lemma IV.2. Let W := I − L and ui be
the eigenvector of L corresponding to λi(L). We have
Wui = (I − L)ui = (1− λi(L))ui. Thus, the i-th smallest
eigenvalue of W satisfies λi(W) = 1 − λm−i+1(L).
Therefore, based on the eigendecomposition
L = Qdiag(λ1(L), . . . , λm(L))Q>, we have

ρ̃ =‖Q

1− λ1(L) 1− λ2(L)
. . .

Q>

−Q

1 0
. . .

Q>‖, (40)

This is because by definition, λ1(L) = 0, corresponding to

the eigenvector u1 =
[

1√
m
, ..., 1√

m

]>
, and J = u1u

>
1 =

Qdiag(1, 0, ..., 0)Q>. Thus, we can express ρ̃ as

ρ̃ =‖Q

0

1− λ2(L)
. . .

1− λm(L)

Q>‖
=max{|1− λ2(L)|, |1− λm(L)|}
=max{1− λ2(L), λm(L)− 1}, (41)

where (41) is implied by 1− λ2(L) ≥ 1− λm(L).

Proof of Theorem IV.4. Let ρ̃L := ‖I − L − J‖
for L computed in line 1 of Algorithm 2. By
construction, CE = crm logm

(εδ)2 , and εδ ∈ (1√
m
, 1]. By

Lemma IV.3, LH satisfies λ2(LH) ≥ (1 − δε)λ2(L) and
λm(LH) ≤ (1 + δε)λm(L) with probability at least 1/2.

Case 1: If λ2(L) ≤ 1 ≤ λm(L), then

δ = min

{
1− λ2(L)
λ2(L)

,
λm(L)− 1

λm(L)

}
. (42)

Since λ2(LH) ≥ (1−δε)λ2(L) and δ ≤ (1− λ2(L))/λ2(L),

1− λ2(LH) ≤ 1−
(
1− (1− λ2(L))

λ2(L)
· ε
)
λ2(L)

= (1 + ε)(1− λ2(L)). (43)

Similarly, since λm(LH) ≤ (1 + δε)λm(L) and
δ ≤ (λm(L)− 1)/λm(L),

λm(LH)− 1 ≤
(
1 +

(λm(L)− 1)

λm(L)
· ε
)
λm(L)− 1

= (1 + ε)(λm(L)− 1). (44)

Combining (43)–(44) and Lemma IV.2 implies that
ρ̃H ≤ (1 + ε)ρ̃L.

Case 2: If 0 < λ2(L) ≤ λm(L) < 1, then

δ =
1− λm(L)

λm(L)
≤ 1− λ2(L)

λ2(L)
. (45)

Thus, (43) holds, and λm(LH) ≤ (1+ δε)λm(L) implies that

λm(LH)− 1 ≤ (1 +
(1− λm(L))

λm(L)
· ε)λm(L)− 1

= (1− ε)(λm(L)− 1) ≤ (1 + ε)(1− λ2(L)).
(46)

Combining (43), (46), and Lemma IV.2 implies that
ρ̃H ≤ (1 + ε)ρ̃L.

Case 3: If 1 < λ2(L) ≤ λm(L), then

δ =
λ2(L)− 1

λ2(L)
≤ λm(L)− 1

λm(L)
. (47)

Thus, (44) holds, and λ2(LH) ≥ (1− δε)λ2(L) implies that

1− λ2(LH) ≤ 1− (1− (λ2(L)− 1)

λ2(L)
· ε)λ2(L)

= (1− ε)(1− λ2(L)) ≤ (1 + ε)(λm(L)− 1). (48)

Combining (44), (48), and Lemma IV.2 implies that
ρ̃H ≤ (1 + ε)ρ̃L.

Thus, with probability at least 1/2, ρ̃H ≤ (1 + ε)ρ̃L.
Moreover, as ρ̃L is the optimal objective value of (20)
without the constraint

∑
(i,j)∈E β(i,j) ≤ CE , it must satisfy

ρ̃L ≤ ρ̃∗, which completes the proof.

Proof of Theorem IV.5. Let LH be the output of Algorithm 2
for q = C∗E . The proof of Theorem IV.4 implies that with
probability ≥ 1/2,

ρH := ‖I −LH − J‖2 ≤ (1 + ε)2ρ̃2L (49)

≤ (1 + ε)2ρ∗, (50)

where ρ̃L is the optimal objective value of (21) and (50) is
because ρ̃2L ≤ ρ∗ as shown later. Since C∗E ∈ Q, we have
LH ∈ L. Under budget C∗ ∈ C, a design that samples LH
with probability one will achieve an expected total cost of

K(ρH)c(LH) ≤ K(ρH)C∗

≤ K
(
(1 + ε)2ρ∗

)
C∗, (51)

where (51) is because K(·) in (11) is an increasing function.
The design optimized over all the budgets in C and all the
sampling distributions will thus achieve a cost that is no worse.

We now show ρ̃2L ≤ ρ∗. Let L∗ denote the random
Laplacian matrix distributed according to the optimal design.
By (9),

ρ∗ = ‖E[(I −L∗)>(I −L∗)]− J‖

16

= ‖E[(I −L∗ − J)>(I −L∗ − J)]‖
= λm

(
E[(I −L∗ − J)>(I −L∗ − J)]

)
, (52)

where (52) is because E[(I − L∗ − J)>(I − L∗ − J)] is
symmetric and positive semi-definite. For any random vector
v ∈ Rm, since ‖·‖2 is convex [40], Jensen’s inequality implies
that E[v>v] ≥ E[v]>E[v]. For any constant vector u ∈ Rm,
plugging in v := (I −L∗ − J)u yields

u>E
[
(I −L∗ − J)>(I −L∗ − J)

]
u

≥ u>(I − E[L∗]− J)>(I − E[L∗]− J)u. (53)

By the Courant-Fischer theorem [32], (53) implies

λm
(
E[(I −L∗ − J)>(I −L∗ − J)]

)
≥ λm

(
(I − E[L∗]− J)>(I − E[L∗]− J)

)
. (54)

This together with (52) implies that

ρ∗ ≥ λm
(
(I − E[L∗]− J)>(I − E[L∗]− J)

)
= ‖(I − E[L∗]− J)>(I − E[L∗]− J)‖
= ‖I − E[L∗]− J‖2 ≥ ρ̃2L, (55)

where (55) is because E[L∗] is a feasible solution to (21) and
hence ‖I − E[L∗]− J‖ ≥ ρ̃L.

	Introduction
	Related Work
	Summary of Contributions

	Background and Problem Formulation
	Notations
	Decentralized Learning
	Cost Model
	Communication time
	Energy consumption
	Bandwidth consumption

	Design Parameters
	Candidate Laplacian Matrices
	Sampling Probabilities

	Design Objective

	Optimization Framework
	Convergence Bound
	Bilevel Parameter Optimization

	Communication-efficient Design for D-PSGD
	Formulation of Lower-level Optimization
	Design of Sampling Probabilities
	Design of Candidate Laplacian Matrices
	Optimal Design without Budget Constraint
	Greedy Heuristic
	Sparsifiers

	Overall Solution
	Algorithm
	Analysis
	Justification of Randomized Design

	Performance Evaluation
	Experiment Setup
	Dataset and ML model
	Base Topology
	Cost Model
	Parameters
	Benchmarks

	Performance Comparison
	Additional Experiments
	Sensitivity to n
	Broadcast communication

	Conclusion
	References
	Biographies
	Cho-Chun Chiu
	Xusheng Zhang
	Ting He
	Shiqiang Wang
	Ananthram Swami

