
A Survey on Federated Learning
for Resource-Constrained IoT Devices

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Member, IEEE, Jian Li, Member, IEEE, and
M. Hadi Amini, Member, IEEE

Abstract—Federated learning (FL) is a distributed machine
learning strategy that generates a global model by learning from
multiple decentralized edge clients. FL enables on-device training,
keeping the client’s local data private, and further, updating
the global model based on the local model updates. While FL
methods offer several advantages, including scalability and data
privacy, they assume there are available computational resources
at each edge-device/client. However, the Internet-of-Things (IoTs)
enabled devices, e.g., robots, drone swarms, and low-cost com-
puting devices (e.g., Raspberry Pi), may have limited processing
ability, low bandwidth and power, or limited storage capacity. In
this survey paper, we propose to answer this question: how to
train distributed machine learning models for resource-constrained
IoT devices? To this end, we first explore the existing studies
on FL, relative assumptions for distributed implementation using
IoT devices, and explore their drawbacks. We then discuss the
implementation challenges and issues when applying FL to an
IoT environment. We highlight an overview of FL and provide a
comprehensive survey of the problem statements and emerging
challenges, particularly during applying FL within heterogeneous
IoT environments. Finally, we point out the future research
directions for scientists and researchers who are interested in
working at the intersection of FL and resource-constrained IoT
environments.

Index Terms—Federated Learning, resource-constrained IoT
devices, global model, on-device training, local model, conver-
gence.

I. INTRODUCTION

IN this section, we explain the motivation to conduct a
comprehensive survey on FL for resource-constrained IoT

devices, followed by recently published prior works, and
differentiate how our proposed survey is necessary for the
FL domain. After that, we discuss our contributions and the
necessity of conducting this research. Finally, at the end of this
section, we briefly highlight the organization of this paper.

Corresponding Author: M. Hadi Amini, Florida International University,
Miami, FL 33199, moamini@fiu.edu

Ahmed Imteaj and M. Hadi Amini are with Knight Foundation School of
Computing and Information Sciences, Florida International University, Miami,
FL 33199, USA. They are also with the Sustainability, Optimization, and
Learning for InterDependent networks laboratory (solid lab) at FIU.

Urmish Thakker is with Deep Learning Research, SambaNova Systems,
USA.

Shiqiang Wang is with IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA.

Jian Li, Binghamton University, State University of New York, USA.
Manuscript received February 28, 2021.
Copyright (c) 2021 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

A. Motivation

The ever-growing data collected/produced at edge devices
is the result of billions of connected Internet-of-Things (IoTs)
devices as every active IoT client extracts their observed data
and pushes those data to the edge. The traditional machine
learning (ML) approaches need to perform aggregation of that
extracted data element on a data center or a single machine,
and such a learning scheme is common in different AI-based
giant companies such as Facebook and Google. Companies
store all the data collected in their data center, where they
train the respective ML model. To attain a better ML model
under the conventional centralized approach, the users may
need to compromise their privacy by sending private data to the
data center. Such a model training strategy is privacy-intrusive,
particularly when the clients need to address their personal or
sensitive data to achieve a better training model.

Federated learning (FL) is such an approach that is capable
of training a model, leveraging the private data of clients
without ever sharing it with other entities. However, the
client may possess a lack of resources to perform on-device
computation and may fail to reach the target convergence
within an expected time. Moreover, we may face some unique
challenges that could not be observed in a traditional FL-based
approach in terms of communication, computation, privacy,
storage, power, and energy utilization, e.g., straggler issue,
high energy consumption, handling dropped participants. This
paper reveals the challenges of FL setting in such a situation
and describes the impact of having such resource-constrained
clients within a network by considering their practical con-
straints. To that end, we emphasize the open research issues
in this area and enumerate numerous future directions.

B. Related works and Contributions

Numerous studies from a wide range of research disciplines,
including databases, distributed systems, cryptography, ma-
chine learning, and data mining, explored FL methods from
various perspectives. It is a prevailing goal to learn from the
distributed dataset and simultaneously preserve privacy by not
exposing the data. In 1982, a cryptographic mechanism was
developed to apply on encrypted data [1]. The works of [2],
[3], [4], [5], [6] are some of the early examples to discover
knowledge from local data while maintaining privacy. To that
end, the introduction of FL maintains privacy by storing client
data only on-device, eliminates the dependency on a single
server to generate prediction model by performing computa-
tion on client devices, and builds a smarter model by learning

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021

from various client models. It is to be noted that any resource-
constrained device could be a server in an IoT environment;
therefore, it is not a good solution to consider such a device to
store all the extracted data of the available clients and generate
a model like conventional ML approach. Instead, the server
can only be used to perform aggregation on the collected local
models to generate an updated global model. In this paper, we
focus on the deployment and implementation of FL in an IoT
environment, where the IoT nodes are considered as clients
with limited resources. These resources include computation
power, communication bandwidth, memory, and battery power.
The IoT clients may have different technical characteristics
and available resources, and that is why all the clients can not
be treated the same. The list of abbreviations that are used in
this paper is listed in Table I.

Several detailed surveys on FL have already been conducted
by assuming that all clients within the network are resource-
unbounded. Li et al. [7] presented an overview of challenges,
open problems, and issues associated with FL by considering
the heterogeneity of devices; however, they assumed that all
clients are resource-boundless. The authors of [8] focused on
the categorization of FL settings while the authors in [9]
presented the issues of FL in a wireless environment. Be-
sides, a federated optimization-based framework is proposed
in [10], which is constructed by addressing challenges related
to both system and statistical heterogeneity. They mentioned
that straggler client is responsible for increasing statistical
heterogeneity which put adverse impact during convergence.
By adding proximal terms during local training, they obtained
faster convergence and were able to analyze the effect of
heterogeneity. Another exciting paper [11] discussed FL from
the perspective of mobile edge computing (MEC), including
caching and communication mechanism at the edge, while a
detailed survey is presented in [12] by analyzing the recent
advancement and issues of FL.

There are a couple of survey papers available on FL
systems, and we listed them in Table II. The papers in
Table II are classified according to the area of FL and
edge computing. FL survey papers [7], [8], [9], [10], [7],
[12], [11] are mostly focused on FL settings, system design,
and components, implementation challenges, or on recent
advancements. On the other hand, edge computing surveys
[13], [14], [15], [16], [17], [18], [19] are mainly conducted
on edge computing infrastructure, applications including ML
and AI, resource-management, wireless communication, and
security and privacy issues. However, all these works consid-
ered only heterogeneity of systems or their statistical data,
and did not discuss the challenges that would arise when
the clients are resource-bounded. Throughout this paper, we
point out the FL challenges while applying on a resource-
constrained IoT environment, analyze the potential solutions
towards those challenges, and reveal the future directions of
this domain. This paper is mainly a critical survey on the
previous works that identifies gaps in resource-constrained FL
implementation. To the best of our knowledge, this paper is
the first comprehensive survey on FL for resource-constrained
IoT devices.

TABLE I
LIST OF ABBREVIATIONS USED IN THIS PAPER.

Abbreviation Description
CM Cryptographic Method
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
DNN Deep Neural Network
DP Differential Privacy
DRL Deep Reinforcement Learning
DT Decision Tree
FedAvg Federated Averaging
FL Federated Learning
FLS Federated Learning System
GAN Generative Adversarial Network
IID Independent and Identically Distributed
IoT Internet of Things
LM Linear Model
LSTM Long Short Term Memory
MEC Mobile Edge Computing
ML Machine Learning
MLP Multilayer Perceptron
NLP Natural Language Processing
NN Neural Network
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SVM Support Vector Machine
TFF TensorFlow Federated
UE User Equipment

C. Organization

The rest of this paper is organized as follows. In Section
II, we present an overview and taxonomy of FL with a
comprehensive list of existing studies. In Section III, we
review distributed optimization and ML approaches. Section
IV presents a detail analysis of the major challenges of
FL while applying on resource-constrained devices, which
is followed by Section V, where we discuss the potential
solutions of those emerging challenges. After that, in Section
VI, we present the existing FL applications, and in Section
VII, we highlight the future research direction in FL-based
IoT domain. Finally, in Section VIII, we conclude our paper.

II. AN OVERVIEW OF EXISTING STUDIES ON FEDERATED
LEARNING MODELS

This section covers the definition of FL, a detailed descrip-
tion of the FL taxonomy, a brief highlight on the existing
FL frameworks, and a comparison summary of the existing
FL-based studies which are classified in terms of privacy
maintenance, attack schemes, fairness, learning effectiveness,
and resource utilization.

A. Definition of Federated Learning

Federated learning can be defined as a distributed machine
learning approach where the clients train themselves locally
without sharing their direct information to the server. By peri-
odically updating a shared global model based on performing
aggregation of each client model information, this approach
trains each device to capture the global view [20]. A high-
level architecture of FL process is presented in Fig. 1. The FL
process generally includes three steps:

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 2

TABLE II
COMPARING OUR PROPOSED SURVEY PAPER WITH EXISTING SELECTED SURVEYS ON FL AND MEC

Reference Area Published in Year

No. of
Times
cited
(as of
2/25/21)

Contribution
Considered FL
for resource-
constrained IoT?

[7] FL IEEE Signal Processing Magazine 2020 390 Tutorial on characteristics and
implementation challenges of FL No

[8] FL ACM TIST 2019 729 Discussed categorization of FL
settings e.g. vertical, horizontal No

[9] FL Arxiv 2019 76 Presented applications and issues
of FL in wireless communications No

[10] FL IEEE Communications Surveys
& Tutorials 2020 197 Comprehensive survey on FL

in mobile-edge computing No

[11] FL IEEE Network 2019 227 Discussed on MEC, caching, and
communication of FL No

[12] FL Foundations and Trends®
in Machine Learning 2021 456 Survey on recent advancements

and open problems of FL No

[13] Edge Computing IEEE 2019 289 Survey on AI for edge intelligence No

[14] Edge Computing IEEE Internet of Things Journal 2017 834

Survey on edge
computing infrastructure,
applications, security
and privacy issues

No

[15] Edge Computing International Journal of Machine
Learning and Cybernetics 2018 54 Survey on ML applications for IoT No

[16] Edge Computing IEEE Communications Surveys
& Tutorials 2017 1804

Survey on resource-management
in mobile edge computing and
wireless communication

No

[17] Edge Computing IEEE Network 2018 662 Survey on DL for IoTs in MEC
environment No

[18] Edge Computing IEEE Access 2017 593
Survey on computation, caching,
and communication strategies
at mobile edge

No

[19] Edge Computing IEEE Communications Surveys
& Tutorials 2017 1452

Survey on Computation offloading,
resource-management and mobility
management in edge computing

No

Step 1 (Initiate training task and global model): In the initial
phase, the central server decides the task requirement and
target application. A global model (W 0

G) is initialized and the
server broadcasts that global model to the selected local clients
that are known as participants.
Step 2 (Local model update): Each participant generates a
model utilizing their local data. Upon receiving the global
model W t

G (where t denotes the t-th iteration), each client
k updates its model parameters W t

i for finding optimal pa-
rameters that minimizes the local loss function Fk(W t

k). The
local optimal models are then shared with the FL server.
Step 3 (Global aggregation): After receiving the local models
from the participants, the FL server performs aggregations and
generates an updated global model (W t+1

G). The latest global
model is again shared with all the new participants.

Steps 2 and 3 are repeated until the central server reaches a
convergence by minimizing the global loss function F (W t

G)
which can be expressed as follows [21]:

min
w
f(w) =

N∑
k=1

PkFk(w)

where, N is the total number of available devices, Pk(≥ 0)
indicates the relative impact of each device k while satisfying∑
k Pk = 1, and Fk(w) is the expected prediction loss on a

sample input of kth device on parameter w. Each device k
possesses nk samples (where n =

∑
k nk). thus, the relative

impact of each local device can be expressed as Pk = nk

n .

Fig. 1. Federated learning procedure considering N number of participants.

B. A Taxonomy of FL-based Systems

Federated learning system (FLS) can be categorized ac-
cording to data sample, communication, prediction model,
scale, privacy, and participation motivation (see Fig. 2). In this
segment, we discuss each individual categorization instance
with proper examples.

1) Partitioning sample: While designing an FL model, we
need to analyze the data distribution records by utilizing both
the features and non-overlapped instances. We can categorize
FL into (a) Horizontal FL, (b) Vertical FL, and (c) Hybrid
FL based on the data samples distributed over networks and
features space of those samples.

(a) Horizontal FL: Horizontal or sample-based FL have

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 3

Fig. 2. A taxonomy of federated learning based systems.

different data samples, but they share the same feature space.
In Fig. 3, we can see that two client devices have a data
sample that is generated using some similar applications, and
each client device has an identical feature space. Each client
generates a local model by utilizing the data samples and carry
out the FL process. We can also consider horizontal FL from
the perspective of real-life scenarios. Assume that two local
superstores have different customers, thus, the user intersection
set would be minimal. However, the business structure and
policy of the two superstores may be similar, i.e., the feature
spaces are aligned. In such a case, we can apply horizontal FL
to perform the learning action. Most of the FL studies conform
to the horizontal FL strategy, where the local participants train
their model by sharing the same feature space, and a similar
global model architecture is generated. Next-word prediction
[22], wake-word detector [23], recommendation system [24]
are some examples of horizontal FL.

Fig. 3. Horizontal Federated Learning scenario.

(b) Vertical FL: In vertical or feature-based FL, the datasets
share different sample spaces, but the sample IDs are the same
(see Fig. 4). For instance, consider a bank and a superstore in
the same area. Most of their customers may be the same, but
their business structure, i.e., the feature space, is different, and
thus the user-space intersection is quite large. We can consider
another example. Suppose we want to make a prediction model

for product purchases based on user information, credit card
rating, and purchasing history. In such a case, vertical FL
can perform aggregation of these different features and col-
laboratively construct a prediction model. SecureBoost [25],
FedBCD [26] are some of the examples of vertical FL.

Fig. 4. Vertical Federated Learning scenario.

(c) Federated Transfer Learning (FTL): FTL [27] can
be consideblack as the combination of both horizontal and
vertical partitioning of data (see Fig. 5). Horizontal and
vertical FL would not be effective when two clients (A and
B) have small overlapping data samples and feature space,
and we need to learn all the sample labels of a client (e.g.,
client A). FTL is applicable in such scenarios where the
data samples and feature spaces are both different in the two
clients’ datasets. In other words, FTL can be applied when
the clients’ local data can differ in terms of both data samples
and feature space. For instance, a group of research labs
wants to invent a COVID-19 vaccine, but their samples (e.g.,
testing samples may contain different coronavirus categories)
and feature spaces (i.e., strategic plan, test results) may be
dissimilar. Similarly, two different multinational companies
located in different countries may have different customers
(i.e., samples) as well as distinguishable rules and regulations
(i.e., features). Due to geographical location difference of
the two companies, the overlapping data sample would be

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 4

negligible, while due to different business types, there may
be a very small intersection in the feature space. In such a
case, FTL can be applied to handle variance in data sample and
feature space while performing on-device learning. In FTL, an
overlapping representation between two feature space of the
clients are learned utilizing the small common data samples
and each client obtains predictions for local samples using
one-side features. Liu et al. [28] designed a framework that
can learn a feature representation of multiple parties based on
common instances.

Fig. 5. Federated Transfer Learning (FTL) scenario.

2) Machine learning Model: The appropriate ML model
needs to adapt based on the training objective. For instance,
if we want to classify the objects from an image, we need
to train the FL model using convolutional neural networks
(CNN). Several existing studies develop ML models for FL
settings. The most popular ML model that is used in FL
is Federated Stochastic Gradient Descent (Fed-SGD) coupled
with neural network (NN), e.g., image classification [20],
word prediction [29], [22]. The decision tree (DT) is an-
other popular and widely used ML method that is highly
efficient for training models. In tree-based FL, a model is
generated for training single or multiple decision trees. The
authors in [30], [25] designed a gradient boosting decision
trees (GBDTs) by considering both horizontal and vertical
partitioned data schemes. Different linear models (e.g., linear
regression and classification, logistic regression, support vector
machine (SVM) [31], [32]) are convenient to handle. Such
linear models are easier to learn than different complex models
(e.g., DTs, NNs). In a nutshell, many FL applications and
frameworks are proposed on FedSGD [20], [33], [21], [34].
SGD is basically a common optimization technique that can be
applied in different models, including SVM, linear regression,
and NN. To improve the model accuracy in a large-scale FLS
and to cover the gap between FLS with state-of-the-art ML
models, it is necessary to exploit the ML architecture for
obtaining better FL training.

3) Federation scale: FLS can be divided into cross-silo and
cross-device categories based on the scale of federation [12],
[7]. This categorization is performed based on the number of
clients and their data quantity.

Cross-device: In cross-device FL, the number of clients
can be large, but each client has a limited size of data.
Different smartphones or IoT devices can be considered as

the clients of such a system, which could be millions or
billions in number. Recently, Google has invented an FL-based
keyboard suggestion [29] by training the model on-device of
the user and aggregate the model information in the server.
However, in such an approach, the clients may not be able to
train themselves in a complex training environment because
of resource scarcity. Thus, the server needs to be capable
enough to process all the model information to generate a
global training model.

Cross-silo: Cross-silo FL holds a relatively small number
of clients, but they own a large amount of data. Typically,
in cross-silo FL, the clients are data centers or different
organizations. For instance, Amazon recommends products by
training models using the collected data from hundreds of data
centers, where each data center stores large amounts of data
and configured with sufficient computational resources.

4) Encouragement towards FL: In real-world FL appli-
cations, the clients need encouragement or motivation to
participate in the training phase and that can be carried out
through regulations or incentives mechanism. For instance,
Google FL keyboard suggestion [29] can not force the users
to provide data, but they ensure better keyboard suggestions to
the users who upload their data. Such incentives motivate the
users to share information or performing on-device training.

C. Summary of Existing FL-based Studies

There have been several studies on FL due to its positive
effect in terms of privacy preservation, resource utilization,
and overall efficiency of the learning scheme [35]. We have
extended the classification provided by [35] and presented a
detailed summary of those studies in Table III.

We provide classification of the prior works based on two
categories, i.e., FL algorithm (e.g., FedAvg [20]), and feature
integration (e.g., blockchain-based FL [36]). We categorized
each work according to their data partition scheme, i.e.,
vertical and horizontal, as discussed in Section II-B1. For the
sake of simplicity, different model types, i.e., neural networks,
linear models, and decision trees, are abbreviated as “NN”,
“LM” and “DT”, respectively. We provide the model types in
some cases, where the authors applied multiple ML strategies
for their proposed approaches. For instance, the authors in
[37] combined DP with multiparty computation to protect
their system from inference threats and to generate high-
quality models. We included all three model types (i.e., “NN”,
“LM” and “DT”) for [37] as they validated their system using
CNN, SVM, and DT. We also classified the existing studies
based on their decision-making architecture. We realized that
a major part of the existing approaches are based on server-
centric design using trusted servers (e.g., [38]). However,
such a server-centric decision-making architecture may face
trust issues, particularly in a cross-silo FL setting. In order
handle a cross-silo environment, one approach is to replace the
central server while enabling each client to share their model
parameters and maintaining a similar global model. Such
strategies increase the computation cost and communication
overhead as compared with the server-centric approaches. In
Table III, we explore such studies (e.g., [39]) as “Client-

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 5

centric” in the “Decision-making” column. We also consid-
ered the privacy methods that are deployed in prior works
and categorized them in three groups: cryptographic methods
(CM), differential privacy (DP), and hashing based privacy.
In CM, a cryptographic strategy is adapted to encrypt client
data (e.g., tree boosting model [25]) during communication
or data storage considering the security threat involved in the
learning process. DP is another privacy-preserving strategy,
where the patterns of groups within the dataset is shared while
withholding raw data or information about any individual (e.g.,
[40]). Besides, some studies (e.g., [30]) considered a hashing-
based privacy-preserving approach, where a hashing algorithm
is applied on data to generate a hash that is used to verify data
integrity. Finally, in the “Remark” column of Table III, we
highlighted the main research directions (e.g., effectiveness,
fairness, privacy, incentives) of the existing FL studies.

III. DISTRIBUTED LEARNING AND OPTIMIZATION
ALGORITHMS

In this section, we discuss the areas of research related to
distributed learning and optimization techniques. Even though
the main focus of the paper is not in such domains, a brief
highlight on these areas could motivate researchers to bring
with a new or improved version of distributed learning setting
or optimization techniques.

A. Federated Learning Algorithms

As we discussed earlier, after introducing FL by [20],
several modified versions of the algorithms are proposed that
can be effective in different circumstances. In this segment, we
present some of the well-known and effective FL algorithms
that would motivate researchers to introduce an improved
version of FL.

1) Federated Averaging (FedAvg): FedAvg algorithm [20]
performs training operation via a central server that prop-
agates a shared global model wt, where indicates t the
communication round. However, each client orchestrates local
optimization using the concept of SGD. This algorithm has
five hyperparameters: a fraction of clients or, participants C
that takes part in the training round, size of local mini-batch
B, learning rate η, number of local epoch on the client-side
before updating of the global model E, and a learning rate
decay λ. The algorithm is presented in Algorithm 1. When
the system starts, the global model parameter wo is randomly
initialized (line 1). At each communication round of the server,
a fraction of clients is selected (line 3), and a random set
of the client is chosen for the training phase (line 4). Each
client sends his/her local optimal model parameter, which is
then aggregated onto the server (line 5-7). The iteration period
continues until a certain number of iterations, or if the update
is small enough, or reaches a convergence.

2) Local Gradient Descent: Large-scale models are often
constructed, and first-order techniques are applied to solve
related problems as they scale well in terms of dimension and
data size. One popular choice is to use the Local Gradient
Descent approach, where the optimization process is divided
into epochs. Each iteration initiates to perform averaging steps
across available N devices. The rest of the other epoch does

Algorithm 1: Federated Averaging (FedAvg) [20].
The index of N clients are denoted by k;B rep-
resents the minibatch size of local client, E is the
number of local epochs, nk is the local examples of
a client while n denotes the total data points, Pk
stores a client data samples, and η represents the
learning rate.

1 initialize wo
2 for each round t = 0, 1, 2, . . . do
3 c← max(bC ·Nc, 1)
4 Rt = random set of c clients
5 for each client k ∈ Rt in parallel do
6 wkt+1 = UpdateFromClient (k,wt)

7 wt+1 ←
∑N
k=1

nk

n w
k
t+1

8 UpdateFromClient (k,w) : // Run on client k
9 Batch← (split Pk into batches of size B)

10 for each local epoch i from 1 to E do
11 for batch b ∈ Batch do
12 w ← w − η∇`(w; b)
13 return w to server

not involve any further communication. Each client device
implements a fixed number of Gradient Descent (GD) steps
(declares from the average model) using their local function
independently in parallel [70]. See the details in Algorithm 2.

Algorithm 2: Local Gradient Descent [70]. η >
0 represents the learning rate, and tp denotes a
particular communication time and g indicates fixed
number of Gradient Descent (GD) steps.

1 Initialize vector w0

2 Initialize wk0 = w0 for all k ∈ [N]
def
= {1, 2, . . . , N}

3 for t = 0, 1, 2, . . . do
4 for k = 1, 2, . . . , N do
5 wkt+1 ={

1
N

∑N
g=1 (wgt − η∇fg (wgt)) , if t = tp, p ∈ {1, 2, . . .}

wkt − η∇fk
(
wkt
)
, otherwise

6 end for
7 end for

3) FedProx: In FL settings, the clients may need to perform
a nonuniform amount of tasks that can handle the nega-
tive effect of system heterogeneity. Still, too many clients’
updates can diverge the overall methods in the results of
underlying heterogeneous data. The authors in [21] proposed
an algorithm named FedProx that is particularly useful for
resource-constrained FL-based IoT environment. They enable
variable local updates from the participated devices by adding
a proximal term within the local subproblems. The proximal
term is useful in two aspects. First, it limits the client’s local
updates to address the statistical heterogeneity issue. Second,
it helps incorporate a variant amount of clients to work safely.
We summarize the technique in Algorithm 3.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 6

TABLE III
COMPARING THE EXISTING FEDERATED LEARNING LITERATURE.

NN: NEURAL NETWORKS, DT: DECISION TREE, LM: LINEAR MODEL, DP: DIFFERENTIAL PRIVACY, CM: CRYPTOGRAPHIC METHOD.

Approach Category Data
partition

Model
type

Decision-
making Privacy Remark

FedAvg [20] NN∗ Server-centric
Residual FL [41] LM∗

Agnostic FL [38] NN, LM –
FL SVRG [42] Horizontal LM
FedProx [21] – SGD-based
FedBCD [26] Vertical NN
Bayesian FL [43] Horizontal NN-specialized
FedMA [34]
Tree-based FL [39] DT∗ Client-centric DP∗ DT-specialized

SimFL [30] FL-based
Algorithms Hashing

FedXGB [44] Server-centric CM∗

FedForest [45]
SecureBoost [25] Vertical
Ridge Regression FL [32] Horizontal LM LM-specialized
PPRR Linear Regression FL [46]
Linear Regression FL [47] Vertical
Logistic Regression FL [31] Horizontal
Federated MTL [48] Multi-task learning
Federated Meta-Learning [24] NN Meta-learning
Personalized FedAvg [49]
Lifelong FL [50] – Reinforcement learning
FedNAS [51] Efficiency improvement
Structure and sketched updates [33] Efficiency improvement
Multi-Objective optimization FL [52]
Federated distillation [53]
FL STC [54]
Client-Side DP FL [40] DP Privacy guarantees
FedSel [55]
FL Language Models [56]

Federated Extra-Trees [57] Functionality
Upgrade LM

FL Scalar DP[58] LM, NN
Secure Aggregation FL [59] NN CM
SPC+DP FL [37] LM, DT, NN CM, DP
Backdoor FL [60] NN Attacks
Adversarial Lens FL [61]
Distributed Backdoor [62] –
Fair-allocation FL [63] LM, NN Fairness
FedCoin [64] LM Incentives
Blockchained FL [36]
Contract Theory FL [65]
Client Selection FL [66] NN Edge computing
Adaptive FL [67] LM, NN
LEAF [68] Benchmark – – benchmark
Revocable FRF [69]

Algorithm 3: FedProx [21].
1 for t = 0, . . . do
2 Server randomly chooses a subset Rt of N devices

(each client k is chosen with probability Pk)
3 Server sends latest global model wt to all chosen

clients
4 Each device k ∈ Rt finds a wkt+1 where, wkt+1 ≈

arg minw hk (w;wt) = Fk(w) + µ
2 ‖w − w

t‖2

5 Each device k ∈ Rt sends wkt+1 back to the server
6 Server aggregation, wt+1 = 1

N

∑
k∈Rt

wkt+1

7 end for

4) q-FedAvg: Though the state-of-the-art FedAvg signif-
icantly accelerates the convergence speed [20], it fails to

allocate client resources fairly (performs uniform allocation of
resources). The allocation of resources is significantly crucial
when we consider resource-constrained devices for the FL
process. With this motivation, the authors in [63] proposed
q-FedAvg algorithm that can impose fairness based on the
clients’ contributions. In q-FedAvg algorithm, for a given cost
functions Fk and parameter q > 0 (which is the fairness
amount we wish to impose), the FL objective is defined as:

min
w
fq(w) =

m∑
k=1

pk
q + 1

F q+1
k (w),

where F q+1
k (·) denotes (q+1) as a power of Fk(·). Here, q is a

parameter that tunes the amount of fairness we wish to impose.
When q > 0, it prevents the execution of local SGD. To solve
the issues of the local updating approach, particularly while
allocating resources, the authors in [63] proposed a heuristic

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 7

solution by replacing gradient with the client’s local updates
obtained by running SGD on each local device. The algorithm
is depicted in Algorithm 4.

Algorithm 4: q-FedAvg [63]
1 for t = 0, 1, 2, · · · do
2 Server randomly selects a subset Rt of N devices

(each client k is chosen with probability Pk)
3 Server sends latest global model wt to all chosen

clients
4 Each chosen client device k updates wt by

performing SGD for E epochs with η to obtain w̄kt+1

5 Each selected client k computes:
6 ∆wkt = L

(
wt − w̄kt+1

)
7 ∆k

t = F qk (wt) ∆wkt
8 hkt = qF kq−1 (wt)

∥∥∆wkt
∥∥2

+ LF kq (wt)
9 Each selected client k sends his/her parameters ∆k

t

and hkt to the server

10 Server update: wt+1 = wt −
∑

k∈St
∆k

t∑
k∈St

hk
t

11 end for

B. Distributed Learning

As discussed in Section II, the central server of the FL
process orchestrates the learning process by managing the con-
tributions of its clients. Thus, it can be considered as a single
point of failure (see Fig. 6(b)). Though large organizations and
companies may afford to place a powerful, robust, and secure
central server to carry out the training process, all types of
sectors can not adapt that [71]. Besides, some clients within
the network can slow down the overall process [72], [73]. The
main idea of fully distributed and decentralized learning is
peer-to-peer communications of the clients that eliminates the
central server (see Fig. 6(c)). In contrast, on-device training
without learning from a server or its peers is shown in (see
Fig. 6(a)). In these figures, the communication topology looks
like a connected graph, where each node represents a client,
and the line between two nodes specifies a communication
channel. In a distributed learning mechanism, each round
corresponds to a local update by the clients and information
exchange with peers. Though we do not have any global model
or state as in standard FL, still, we can design the process such
that all clients reach a global solution through local models.
The local models can be converged through on-device training
and learning from their peers [12]. Fully decentralized SGD
and other optimization algorithms are recently getting popular
for scalability in large-scale systems [74] and decentralization
of networks devices [71], [75], [76], [77], [78], [79], [80],
[81], [82]. Note that even in the decentralized distributed
setting, a central authority may need that will be in charge
of setting up system configuration, learning tasks, hyper-
parameters, algorithm selection, or resolve system failure. A
degree of trust needs to establish among the clients to replace
the central authority. Alternatively, such decisions can be made
by a leader client, through a collaborative consensus scheme
[83], [56], [59].

C. Distributed and Federated Optimization

The early trend of distributed optimization was naive dis-
tributed variants of corresponding serial algorithms, which is
often inefficient in terms of communication. The second trend
is to design communication-efficient algorithms. The idea is to
perform a lot of local computation that is further followed by
a communication round. Such technique is useful in practice
and Distributed Approximate Newton (DANE) [84], CoCoA
[85], DiSCO [86] are some of the examples of such distributed
optimization techniques. In distributed optimization, the data-
centers possess huge data with relatively few devices. Later
on, federated optimization is introduced to protect privacy in a
better way. In that concept, the users keep their data private and
provide the computational power of resources. Consequently,
the data points are relatively smaller, the number of devices
is huge, and data patterns vary on different devices.

There have been various methods to deal with dis-
tributed online optimization and distributed learning, including
Stochastic Variance Reduced Gradient (SVRG) [87], [88],
DANE [84] that is particularly for distributed optimization,
naive Federated SVRG and Federated SVRG (FSVRG). The
desirable properties while designing an algorithm for unbal-
anced, non-IID, and massively distributed can be stated as
follows [33]:

1) An algorithm stays there in case it is initialized to the
optimal solution.

2) In case a single node possesses all data, the algorithm
should converge in O(1) communication rounds.

3) If all available features within the system occur on a
single node, then the problem can be decomposed, and
the algorithm is supposed to converge in O(1) rounds of
communication.

4) If we assume that each node has an identical dataset, then
the algorithm converges in O(1) communication rounds.

Property (1) is valuable for any optimization setting whereas
properties (2) and (3) are applicable in federated optimization
systems (e.g. unbalanced, non-IID, massively distributed). To
the end, property (4) is an extreme case, particularly for a
distributed optimization setting where we have a large number
of IID data per device.

IV. LEARNING ON RESOURCE-CONSTRAINED DEVICES

Before discussing the challenges associated with resource-
constrained devices, it is essential to understand the definition
of on-device learning of edge devices clearly. We can define
an edge device as a resource-constrained entity with limited
computational power, storage capacity, transmission range, and
battery [89]. We consider an object as an edge device if it
cannot be integrated with additional resources, i.e., the device
resources can not be increased or decreased. For instance, a
workstation cannot be considered as an edge device as we can
integrate additional resources within that device. However, a
manufactured robot can be considered as an edge device since
we cannot directly incorporate any more support to the robot’s
capability. If we look at our today’s IoT world, then we can
see the use of resource-constrained devices in every aspect,
from monitoring the environment to controlling human life.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 8

Fig. 6. Different modeling approaches in federated networks. Depending on properties of the data, network, and application of interest, one may choose to
(a) learn separate models for each device, (b) fit a single global model to all devices, or (c) learn related but distinct models in the network.

Within such an IoT environment, edge devices are utilized as
they are smaller in size and are more transportable. Different
kinds of robots, drones, and smartphones can be considered
as edge devices possessing limited resources that communicate
remotely. To attain optimal service performance from such IoT
components, we need to train those edge devices that prevent
them from being stragglers during the learning process. Those
devices should be trained with diversified sample environments
to perform accurate prediction in a various of testing data. It
is not feasible to train those edge devices with a large dataset
due to their limited resource availability. In this section, we
discuss the potential challenges we may face while considering
such resource-bounded IoT nodes in the FL environment.

Fig. 7. Core challenges of FL considering resource-constrained IoT devices.

A. Communication Overhead

Communication overhead is considered one of the major
challenges in an FL-based IoT environment. The commu-
nication cost mainly increases due to the large sizes of
data passing during the process and the iterative and non-
optimized approach of conducting communication between the
server and the clients. This problem becomes adverse when
clients possess insufficient resources. For instance, if a client
possesses limited bandwidth, then the client would not be able
to communicate with the FL server effectively during model
training. Similarly, if a client has weak processing capability,
then performing an assigned local computational task would
be infeasible for that client. Further, there could be large data
across the network that could produce a large model size,
and eventually, the resource-constrained clients would struggle
in dealing with such a large model. To carry-out efficient

training in a large data network, the client models need to
be compressed so that the clients do not have to waste extra
resources in training a large model. If a majority of the FL
clients are resource-constrained, then the FL process requires
more server-client interaction to reach a target convergence,
and the clients would not be able to afford such a high com-
munication cost. While frequent FL server-client interaction
can reduce convergence time, recurrent communication can
encounter high costs. Therefore, it is required to design an
effective optimization technique that can handle the trade-off
between communication overhead and resource utilization of
an FL setting. The authors in [90] analyzed the trade-offs of
communication and resource expense; however, they did not
address the complexity of the clients’ local model solutions.

B. Heterogeneous Hardware

The training phase of FL can run on multiple devices which
may belong to various generations of products. Such product
variation creates a network that consists of heterogeneous
devices with a discrepancy in computational ability, memory
size, or battery life. Therefore, the training period may vary
significantly across clients, and it is not effective to consider
all participants with the same scale. To achieve optimal results
in training, FL needs to be aware of heterogeneous hardware
configurations [7]. The proficient and trusted clients need to be
selected in the training phase considering system requirements.
After selecting suitable clients, it may be possible that a model
fails to send its local model due to connection error or out of a
battery issue (see Fig. 8). However, due to system requirements
(e.g. memory, bandwidth), most of the clients may not be able
to be a part of the training round. Besides, it is possible that
the majority of proficient clients go out of networks, and we
may end up with a few clients that do not satisfy system
requirements. Thus, carrying out the FL training process in
such a situation is challenging.

C. Limited Memory and Energy Budget

In Section IV-B, we discuss heterogeneous hardware chal-
lenges, and in this segment, we describe the memory availabil-
ity and energy budget issue across heterogeneous FL clients.
Any FL client may have a very limited memory size, or
a client having a larger memory size may not have space.
Besides, the FL clients may have a preset energy budget,

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 9

which may not fulfill the system requirements during the
training process. While limited computational ability takes
more processing time, memory shortage leads to over-flooding
of the device. Such situations encounter extra communication
overhead and degrade the system performance. Hard et al. [22]

Fig. 8. Systems heterogeneity scenario in Federated Learning.

pointed out the necessary hardware requirement, including
the required memory size and processing ability during their
implementation of next-word prediction on the keyboard.
They mentioned that to simulate their application, the device
should have a minimum of 2 GB of free memory, whereas
many IoT devices hardly possess even free megabytes of
memory. Considering such memory constraints, the authors
in [91] proposed an approach of distributing shards of data
across FL clients to attain the target model swiftly. In their
approach, they selected proficient clients who possessed a
greater memory size, energy budget, higher bandwidth, and
processing capability. However, they did not discuss the mem-
ory management and data handling for FL clients with limited
available memory. We can manage such memory limitation
by storing limited sizes of data, and in case of memory
shortage, data aggregation technique can be applied to avoid
memory outburst. The authors in [92], [93], [67], [94] analyzed
hardware limitation challenges in the implementation of FL by
considering Raspberry Pi and other types of resource-limited
clients. They studied the feasibility of implementing FL on
resource-constrained edge devices but did not cover the way
of leveraging optimal memory requirement and quantifying
energy budget throughout the FL process.

D. Scheduling

Existing federation optimization techniques can be classified
into synchronous and asynchronous training. The authors in
[42], [33], [20], [95] focused on analyzing federated opti-
mization that considers synchronous communication during
training between the FL server and clients. In every training
round, a subset of clients is triggered to perform a task.
However, device or network issues can compel some clients
to be unresponsive in the process, and the server needs to
wait until getting a response from sufficient clients. Otherwise,
the server drops that epoch as time-out and proceeds on to
the next iteration. On the contrary, asynchronous optimization
enables FL participants to directly send gradients to the FL

server after every local update that is excluded in synchronous
FL optimization. Asynchronous training [96] is applied in
some recent works because of its faster convergence when
communication latency is comparatively higher and hetero-
geneous across the clients. The authors in [97], [98], [99]
analyzed asynchronous FL training with provable convergence
by combining it with federated optimization. We present the
synchronous and asynchronous FL behaviors in Fig. 9.

In an FL process, it is indispensable to set the training phase
of the participants, which is called scheduling. Scheduling
is explicitly important when there exists resource-constrained
IoT devices within the networks, and frequent interaction with
the server costs more resources. Optimized scheduling can
play a vital role in minimizing energy consumption as well
as utilizing less bandwidth. Scheduling should be carried out
in such a manner so that there remains less possibility of
possessing old data by the participants. It is possible that
some participants can generate local models utilizing their old
data repeatedly while skipping new data [95]. Such a situation
can lead to resource-wastage without bringing any variations
or improvements in the model. Besides, any participant can
collect data by using a malicious application, and recognizing
such harmful application data can be a challenge as it needs
extra resources. Moreover, improper scheduling can lead to
slow learning or straggler issues, which is considered as one
of the reasons of a performance bottleneck, particularly for a
resource-constrained FL-based IoT environment. By straggler
clients, we mean the IoT devices that fail to respond within
a specified period while the other clients react to the server
successfully. Due to the slow response, the server needs to wait
for the straggler client model, resulting in a delay in perform-
ing aggregation of the model parameters in synchronizing FL.
If the number of such straggler clients is high, then the overall
model convergence would be at stake [100], [101]. Besides, in
the conventional FL approach, the straggler clients are simply
dropped [102]. However, if a significant portion of the clients
is straggler, and we drop all of them, then the model quality
would be extremely low [94]. Therefore, it is challenging to
leverage a proper scheduling and guarantee model convergence
even when a major portion of the clients are stragglers.

Fig. 9. Difference between a synchronous and asynchronous FL.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 10

E. Energy Efficient Training of DNNs

Deep neural networks (DNNs) are applied in various arti-
ficial intelligence and deep learning-based applications where
the sample dataset is large. A lot of edge applications are
now using DNN based algorithms [103], [104] and there is an
increasing focus on making DNN inference efficient on edge
devices [105], [106]. Additionally, FL requires edge devices
to perform on-device training. However, training DNNs re-
quires high computation capability, large memory and energy
availability, and most of the IoT clients may lack such system
configurations. Wu et al. [107] proposed an approach to reduce
the cost of training and inference by using lower-bitwidth
integers for both stages of the application. Jiang et al. proposed
an efficient learning technique using pruned models, while the
authors in [108] proposed a strategy to generate a high-quality
ML model through on-device model output, parameters, and
data aggregation. Another interesting approach to training high
capacity models having fewer parameters is discussed in [23].
Specifically, in case the size and features of the training
dataset is huge, we need to devise energy-efficient training on
resource-constrained clients, perhaps a challenging approach.

The memory requirement of the training phase of DNN
has been an issue that is well studied for training on large
GPU and CPU server clusters. Training on edge devices
can benefit by adapting techniques that have served well in
managing this problem in the server context like efficient
gradient checkpointing [109], tensor rematerialization [110]
and recompute [111]. The authors in [112] proposed another
way to reduce the memory required for on-device training
by introducing a lite residual module that can be adapted
to new data. By only changing this lightweight module and
keeping the other parameters constant, they reduce the memory
requirement of the training process.

Another factor that can cost extra energy resources during
training is mislabeled or unlabeled training data, particularly
when the size of the dataset is large. The existing FL-based
applications consider that all extracted data are appropriately
labeled. Nevertheless, this assumption can be disproved if the
collected data is mislabeled via security holes or unlabeled due
to a network connection error. Mislabeled data would generate
a wayward model that eventually affects the global model up-
date. In case we have unlabeled data, it costs extra resources to
put labels, and that would be crucial for resource-constrained
IoT settings. Gu et al. [113] proposed a framework to identify
the mislabeled data which are injected through data poisoning
attacks. Using representation-based fingerprints, they detect
the malicious or compromised participant’s data label while
coming across erroneous predictions during runtime. Tuor et
al. [114] proposed a method of finding and ignoring irrelevant
data (possibly due to mislabelling) from FL. To come up with
a solution of unlabeled data, the authors in [115] proposed a
strategy to make labeling of unlabeled data through applying
collaborative learning with the neighbor clients. Implementing
the same procedure for resource-constrained clients would be
challenging in real-time as it needs additional resources.

F. Fairness in Federated Learning

Fairness in the FL process means the distribution of client
resources in an equitable manner. We can think of the global
model as a resource, which is responsible for serving the
client devices. However, the service that each user receives
needs to be fair, i.e., the resource allocation and accuracy
distribution across the client devices are unprejudiced. A
minimax optimization framework named Agnostic FL [38]
is developed, which can optimize the target distribution of
the centralized model and is formed as a mixture of partici-
pated client distributions. However, their proposed approach
is applied only at small scales. The authors in [63] used
a α-fairness metric and proposed a q-Fair FL to ensure
fair accuracy distribution. Their proposed strategy can tune
resource distribution by considering the desired amount of
fairness. A collaborative fair FL framework is proposed in
[116], which utilizes client reputation and compels them to
converge to different models. They achieved fairness without
degrading predictive performance. In [117], an FL-based client
selection process is investigated to minimize clients’ model
exchange time that guarantees long-term, flexible fairness in
the presence of rigid system constraints. However, they could
not figure out a way to quantify how the fairness factor would
impact the convergence speed and final target accuracy.

Moreover, some recent works on the optimization of re-
source allocation with incentive mechanisms for the FL pro-
cess can be found in [118], [117], [119], [120], [121], [122].
The authors in [118] designed an incentive-based FL model
via a Stackelberg game for motivating client participation in
the learning process. With the motivation of addressing issues
related to costs and mismatch between client’s contributions
and receiving incentives, the authors in [117], [123] proposed a
payoff-sharing scheme named Federated Learning Incentivizer
(FLI). Their proposed scheme can dynamically distribute a
given budget among data owners by ensuring maximization of
collective utility and minimization of inequality, considering
the received rewards and waiting time for receiving those
rewards. A trust and incentive-based FL model is designed in
[120], where they proposed to add local computation results
of the clients using the concept of blockchain consensus to
establish a public auditable and decentralized FL ecosystem.
In their model, honest clients can receive incentives while
malicious clients are punished heavily in terms of payoffs.
Besides, the authors in [121] proposed a strategy of estimating
the contributions of each client in an FL process and provide
incentives accordingly, reducing the communication and com-
putation overhead. Similarly, the authors in [122] designed a
client contribution-based incentive method for FL but using
the concept of Vickrey-Clarke-Groves (VCG) mechanism.

After analyzing the above-mentioned FL-fairness strategy,
we can conclude that any client within an FL-IoT environ-
ment may have resource scarcity. Therefore, designing a fair
resource allocation and distribution scheme is necessary to
reduce communication overhead, computation power and to
achieve higher accuracy. We need to check clients’ activities,
resource status, and contributions towards model convergence
to ensure fairness in FL resource allocation.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 11

G. Scalability of Federated Learning

In a realistic FL-based IoT environment, we may observe
a large number of IoT devices that are heterogeneous in
nature and possess limited resources. In such a situation,
FL training can be executed through effective client selec-
tion and optimal resource utilization. The authors in [124]
developed a framework via joint learning and establishing
wireless communication among the FL clients. They dis-
cussed that the FL process can be hampered due to packet
errors or the unavailability of wireless resources (e.g., limited
wireless bandwidth). Considering the factors, they formulate
an optimization problem considering joint learning, resource
block allocation, and effective user selection with a goal
of minimizing FL loss function. They derive a closed-form
expression for FL convergence by considering the effect
of the wireless channel. Their proposed framework ensures
scalability and sparsification. The authors in [66] design a
client selection protocol, using FL edge server. Their proposed
model can manage the communication resources between the
FL server and the clients, choosing clients based on their
resource conditions. Besides, an activity and resource-aware
FL model is presented in [125]. They proposed a strategy
of examining client’s resources and assigning trust scores to
clients as per their contributions towards model convergence.
On the basis of sufficient resources and a higher trust score,
they only select a subset of eligible clients for the training
round from a large number of available clients. Their proposed
model ensures scalability, robustness, and sparsification of the
FL process. The authors in [126] proposed a selective client
model aggregation-based FL framework for vehicular edge
computing. Instead of a random selection of FL clients, they
leverage a technique of selecting clients based on contract
theory. Moreover, a tri-layer lightweight FL framework is
proposed in [127] that is capable to handle a large number
of clients and their huge data streams across the networks.
They shrink large model size through pruning mechanism,
select clients based on their resource status and previous
activities, handle divergent local model update, and also allow
a variable local model update. Their proposed framework
ensures scalability, quantization, robustness, and sparsification.

H. Privacy Issues

In federated settings, we keep the raw data of each client
on-device due to privacy concerns. However, it is possible to
leak sensitive information [128], [129], [58], [130] through
sharing model update during the training process. For instance,
the authors in [129] presented that sensitive patterns (e.g.,
credit card numbers) can be extracted from a user-trained
model based on recurrent neural networks. In the case of hav-
ing sensitive datasets distributed across several data owners,
privacy can be preserved via Secure Multiparty Computation
(SMC) or Secure Function Evaluation (SFE). The protocol
outcome enables multiple data owners to collaboratively agree
to generate a function without leaking any information [131],
[132], [133]. Though several privacy definitions for FL are
stated in [40], [134], [58], [135], [136], [129], [137], [138],
[56], [139], we can classify them as global and local privacy. In

the global privacy setting, the server is assumed to be trusted,
and local model updates are private. In local privacy, individual
local model updates are generated on the client-side and
aggregated on the server. In Table IV, we show key ideas of
some existing FL-based privacy-preserving approaches. How-
ever, due to the presence of resource-constrained devices, the
existing privacy-preserving FL algorithms may not be suitable
for running on those devices. Thus, beyond ensuring rigorous
privacy guarantees, novel methods need to be designed that are
communication-efficient, computationally cheap, and capable
of handling dropped participants.

V. POTENTIAL SOLUTIONS OF EMERGING CHALLENGES
IN DEPLOYING FEDERATED LEARNING ALGORITHMS ON

RESOURCE-CONSTRAINED IOT DEVICES

In the previous section, we explored the implementation
challenges of the FL process during on-device training with
resource-scarce devices. A clear direction towards possible so-
lutions for those emerging challenges can be effective in future
research of this domain. This section describes the existing
works and possible solutions of emerging challenges during
training of resource-constrained devices in an FL environment.

A. Deploying Existing Algorithms to Reduce Communication
Overhead

We explored a couple of key approaches that aim to
reduce communication costs and can be classified into three
categories: decentralized training, model compression, and
importance-based updating. The integration of such strategies
can be useful to overcome the trade-offs and shortcomings
in this area. Haddadpour et al. [91] proposed an approach to
infuse redundancy among the clients to bring diversity and
reach convergence taking less communication round. Chen
et al. [124] also designed a framework of joint-learning
by considering the effect of wireless factors on participants
in the FL scenario. Some of these methods adapted model
compression strategies, but those methods may deteriorate
model accuracy and encounter high computational costs. Such
trade-offs are empirical, i.e., we need to conduct several local
training rounds to find an optimal number of iterations before
making a communication. FL method can be more scalable
if we can apply effective optimization techniques that are
formalized theoretically, and implemented and tested empir-
ically. Apart from compressing the model size, FL approaches
can be motivated by MEC paradigms and their applications.
For instance, the authors in [147] considered an intermediate
model aggregator for reducing instances during device-cloud
communication. However, their model costs more time to
converge when the number of clients or edge servers increased.
The situation becomes adverse when there exists non-IID data
across the network. Through multi-task learning [48], such a
statistical challenge can be handled. Moreover, FL models can
be exploited to efficiently utilize the storage and computing
power for facilitating efficient FL.

To reduce communication overhead, the authors in [148],
[149] discussed infusing redundancy among the client dataset
to reach convergence with fewer communication rounds. In

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 12

TABLE IV
EXISTING FL-BASED PRIVACY PRESERVING APPROACHES.

Approaches Ref. Key ideas
Client-side DP [40] Adapting dynamic DP-preserving technique during decentralized training.

mGAN-AI [140] Designed a framework by incorporating GAN with multi-task discriminator to differentiate
category, and client identity within input samples.

No-Peek [141] A survey on differentially private FL-based privacy-preserving techniques.
Hybrid FL [37] Combine SMC with DP to obtain stronger privacy and produce a model with high accuracy.

NbAFL [142] Designed a framework based on DP to add artificial noises at the client side before
performing model aggregation, and analyze algorithms and performance of DP in FL.

PEFL [143] Presented a privacy-enhanced FL framework to protect local model update in presence of an
untrusted server using Paillier homomorphic cryptosystem.

Wireless DP [144] Analyzed how superposition properties of wireless can be beneficial for privacy.
Fog FL [145] Enabled IoT data to satisfy ε-DP to prevent data and model attacks.

TEE FL [146] Based on Trusted Execution Environment (TEE), designed a training-integrity protocol that
can preserve privacy and ensures integrity in deep learning processes.

Fig. 10, we see that a particular data collection point L1 is
used by two clients D1 and D4. Similarly, other data collection
points i.e., L2, L3 and L4 are utilized by D1 and D2, D2 and
D3, and D3 and D4, respectively. This setting leads to infusing
redundant data samples among the client devices. According to

Fig. 10. Infusing data redundancy through overlapping data collection.

[33], [150], a novel approach is proposed to share compressed
sizes of message and carry out the reduced number of com-
munication rounds to attain the target model. With the same
motivation, the authors in [151] applied lossy compression and
federated dropout to train a smaller subset of local clients
and reduce client-to-server interaction and local computation
(see Fig. 11). Though frequent communication may accelerate
convergence, recurrent interaction incurs more communication
costs. Every time a client interacts with the server, it has to
compromise its resources. To handle the limited resources of
the clients, a resource-optimization algorithm is necessary to
consider such a trade-off. In this regard, the authors in [90],
[152], [153], [26], [154], [155], [156] studied the relation
between communication cost and effective resource utilization,
though they did not discuss the complications of the local
problem’s solution. Wang et al. [67] presented a distributed
control algorithm for minimizing the training loss under a
given resource budget. Besides, the authors in [11] designed
a framework to exchange learning parameters of the clients
through the collaboration for generating better local training
models. Hence, this reduces communication overhead and
ensures both system and application level improvement, which
generates additional energy cost. A detailed discussion on the
trade-offs between FL training period and energy requirement

cost can be seen in [157], [115], [158], [159]. They minimized
the weighted sum of the training completion period and energy
consumption, applying an iterative algorithm. In the case of
delay-sensitive scenarios, they adjusted the weights so that
FL participants would expend more energy to achieve time
minimization.

However, most of the studies that we discussed do not
consider the heterogeneity of client resources. Due to such
heterogeneity, some of the approaches can not be adapted
in such a resource-constrained FL-based IoT environment.
For instance, the key idea of [20] was to allow for more
computation on the mobile-edge side, e.g., by conducting
more local updates before interacting with the server. Such
an application requires processing power, which may not be
feasible for IoT clients with weak-processing units. Finally,
the resource-limitations may cause a straggler effect.

B. Convergence Guarantee in Asynchronous FL

In Section IV-D, we highlighted the difference between
synchronous and asynchronous communication. Most of the
existing FL approaches are implemented on the concept of
synchronous FL, where the global model aggregation depends
on the receiving of all the local model parameters of the partic-
ipants. Previous works obtained fast convergence in such syn-
chronous FL procedures, as they assumed all participants have
sufficient resources (e.g., computation, bandwidth, memory).
In consequence, even the slowest participant does not affect
much the overall accuracy; and eventually, the model conver-
gences. On the other hand, in asynchronous FL, the server
performs aggregation whenever a model is received and may
include a participant in the middle of the training phase. This
approach enables scalability within the system and reduces the
straggler impact, but cannot guarantee convergence. In Table
V, we point out the key ideas of different asynchronous FL-
based approaches. Sprague et al. [160] analyzed the issues of
ensuring convergence of asynchronous FL but did not present a
solution to overcome such issues. The authors in [97] proposed
asynchronous federated optimization, [160], [161] discussed
on the asynchronous FL for geospatial applications, [162],
[163], [164] proposed a DP-based asynchronous FL strategy
for MEC, and [165] presented a blockchain-based secure data
sharing strategy for asynchronous FL. Still, none of these

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 13

Fig. 11. Reducing size of the model by (1) generating a sub-model applying Federated Dropout, (2) lossily compressing the obtained resulting object which
is passed to the client, who (4) applies decompression and trains that using its own local data, and (5) again compresses the update which is sent back to
network server. There it is (7) again decompressed and finally, (8) aggregated to be a part of the global model.

works guarantee convergence during asynchronous FL com-
munication of resource-constrained clients. Thus, formulating
a method to ensure convergence in asynchronous FL can be a
new research direction.

C. Quantification of Statistical Heterogeneity

FL training becomes complicated when the training data
across devices are not identical in terms of data modeling
and convergence behavior of the training process. Several ML
works focused on the designing of statistical heterogeneity via
meta-learning [169], [170], multi-task learning [171], [172],
which are further extended to FL settings [48], [24], [173],
[174], [175], [176]. For instance, an optimization framework
MOCHA [48] allows for personalization through multi-task
learning; however it considers convex objectives and is limited
to its ability while scaling to massive networks. The authors in
[174] modeled a Bayesian network by performing variational
inference during learning. Though their proposed approach can
handle both convex and non-convex models, it encounters high
cost while generalizing to large federated networks. Besides,
the authors in [175] aimed to identify cyclic patterns within
data samples, while a detailed analysis of transfer learning
strategy for personalization during FL can be seen in [173].
While the client data tend to be heterogeneous in terms of the
number of samples, dataset structure, and format in a non-
IID setting, all existing works on FL adjust the statistical
heterogeneity after the training phase begins. It impacts the
training quality, and the lack of proper quantification of such
heterogeneity can cause poor training performance. A local
dissimilarity approach is proposed [177] to quantify statistical
sample variation, where the resource-quantification starts after
the training starts. The authors in [178] proposed a centralized
approach of handling heterogeneity of FL model training but
did not consider specific support and analysis for statistical
heterogeneity. Li et al. [21] proposed a reparametrization
of the FedAvg [20] algorithm that can scale up divergent
model updates and guarantees convergence while learning
over statistical heterogeneous networks. However, they did not
quantify the level of statistical heterogeneity while selecting
clients during training or performing model aggregation.

D. Data Cleaning and Handling False Data Injection

In a real-world FL-based IoT environment, the IoT clients
generate their models based on their extracted data. In a

conventional FL-based IoT approach, there is no intermediate
stage to refine the sensor data, which may cause a falsified
local model with an erroneous update that eventually misleads
the global model aggregation. As the number of such false data
injected clients increases, the model accuracy reduces at the
same phase. In time, it brings down the chance of reaching
convergence. Bagdasaryan et al. [60] proposed a backdoor
FL to identify malicious attacks during federated aggregation.
They developed a train-and-scale scheme to restrict anomaly
detectors from looking at the client’s model weights or ac-
curacy during FL tasks. The authors in [179] explained the
vulnerability of sybil attacks in the FL process. They proposed
a defense mechanism that can identify poisoning sybils by
analyzing the diversity of FL clients during model training.
However, none of them considered real-time false-data injec-
tion onto the IoT clients, which needs further research.

E. Reducing Energy Consumption and On-device Training

In line with our previous discussion, the clients of the IoT
domain may possess a weak-processing unit. Therefore, it
is challenging to conduct inference, training on devices, and
executing timely interaction with the server through an energy-
efficient communication scheme. However, on-device training
causes two problems. First, the generated on-device model size
needs to be small enough so that it fits within the device
memory and still captures most of the data complexity to
compute an effective model. The on-device inference problems
are solved in [180] and [181], but the on-device training
issues are not expounded. Second, the system can require high
computational and storage availability for on-device training
than these IoT clients can provide. Section IV-E presented
some approaches suitable for specialized neumorphic or field-
programmable gate array (FPGA) hardware or miss the com-
bative constraints observed in the FL-IoT domain. Figuring out
the solution to this dual problem is paramount. A potential
direction can be found in [182]. They proposed an IoT-
based network architecture to enable creating high-capacity
client models with 15-38x fewer parameters compared to the
conventional model experienced for such applications. Kumar
et al. [180] proposed a tree-based approach to predict 2KB
RAM IoT devices, e.g., Arduino Uno board that possessed
8-bit ATmega328P microcontroller without any floating-point
support, and 32 KB size of the read-only flash. Their proposed
algorithm attains standard prediction accuracy by constructing

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, 2021 14

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 15

TABLE V
ASYNCHRONOUS FEDERATED LEARNING BASED APPROACHES.

Approaches Ref. Key ideas

ASO-fed [166] Edge devices train themselves through online learning and server performs aggregation
by dynamic learning step size and exponential moving average.

TWAFL [167] Apply synchronous learning technique on client participants and temporally weighted
aggregation on the local client models.

FedAsync [97] Optimize a scheduler for selecting client for training phase periodically.
Blockchain Asynch [168] Designed a blockchain-based asynchronous FL communication in internet of vehicles

FedAsynch Geo [160] Applied the federated asynchronous approach in geospatial applications and analyzed
the performance and difference with synchronous aggregation technique.

FedAsynch DP [162] Adapted differential privacy for a secure and robust asynchronous FL based scheme.

SAFA [163] Semi-asynchronous FL to avoid problems regarding synchronous and asynchronous FL
for attaining less communication overhead.

a tree model that shrinks the model size and reduces prediction
costs. They learned a sparse tree with high-powered nodes, car-
rying out the tree’s learning process through sparsely project-
ing data within a low-dimensional space, and collaboratively
learning all projection parameters and trees. Investigating such
architecture to enable learning within the resource-constrained
FL environments is an unexplored domain.

As we discussed, FL needs on-device training; therefore,
any research that can enable energy-efficient execution of ML
algorithms can help FL in turn. If we consider resource-
constrained nodes for an IoT environment, then prolonging
battery-power life duration is a challenge. Due to repeated
interactions with the server, the battery charge can be reduced
significantly. Minimizing the depreciation of battery power
while interacting with the server is challenging. [180] de-
veloped a tree-based algorithm for making a prediction on
resource-constrained IoT devices (i.e., Arduino) that possess
only 2KB RAM. Still, they did not perform the training
operation on resource-constrained IoT nodes. [183] designed a
kNN-based algorithm that works on resource-scarce IoT nodes
(≤ 32kB RAM and 16MHz processor) to predict through
supervised learning, but the edge devices are not trained
locally. Therefore, it is essential to design an improved version
of the FL algorithm that can handle small computational power
as well as storage to train IoT nodes on edges, and how we
can manage the energy consumption of client nodes during
the training phase is also an open issue. An exciting direction
in this front are dynamic computation technologies. Dynamic
computation techniques activate only a part of the neural
network for an input. This can help achieve both efficient
training and inference as only a part of the neural network
is updated for each input. There are many different ways
one can introduce dynamic computation to a neural network.
The techniques can be divided intothree broad categories
- dynamic channel pruning (DCP), dynamic layer skipping
(DLS), dynamic spatial gating (DSG), Dynamic Layer Skip-
ping (DLS) and Mixture of Experts (MoE). DSG techniques
([184], [185]) identify spatial regions in the OFM that are
deemed important and focus their attention only on those parts
of the OFM. DCP techniques identify channels in the OFM
that are deemed unimportant and skip computations for those
channels ([186], [187]). DLS techniques are more specific to
ResNet style architecture with skip connections or RNN based
models ([188], [189]). Finally, MoE is based on the idea that

instead of using a single large neural network to process an
input data, multiple domain experts can be used to process the
input. Based on the input, the results from the domain experts
can be given more weight. The routing to the experts is done
via a predictor network. By gating experts that are deemed
unimportant for the input, one can achieve faster computation
[190]. DCP techniques can be viewed as a specific instantiation
of the techniques in this domain.

Beyond algorithm innovations, there has been a surge of
work in the domain of design of software and hardware that
executes ML algorithms efficiently. Here, efficiency refers to
any or all of reduced energy consumption, faster runtime,
and smaller memory footprint. The works in this area can be
categorized in the domain of novel instructions for executing
ML in CPU [191], [192], design of specialized accelerators
[193], [194], [195], optimized software library [196], [197],
development of new memory technologies [198] and near
data processing to enable large storage using smaller energy
budget [199]. However, the vast majority of these works are
focused on the efficient inference of ML algorithms. A lot
of these optimizations could be tailored to enable suitable
training. Thus, further research in understanding the training
algorithms of ML and how they execute on hardware can help
tailor these solutions to solve this issue. The work described
above modifies traditional hardware to make them amenable to
machine learning. In traditional hardware, the unit responsible
for processing information (processing unit) is separated from
the unit responsible for storing data (memory). The instruc-
tions and data are fetched from memory and executed in the
processing unit. This is called the von Neumann architecture.
Apart from this, there is an entire body of works in the
domain of neuromorphic computing [200], [201] dedicated to
replicating the extreme power efficiency of the human brain by
developing new hardware that mimics its synaptic structure.
The main difference with traditional hardware lies in the non
von Neumann architecture of these hardware as the processing
and memory elements are not separate. We refer the readers to
[200] to get a better overview of this field. FL can also benefit
from edge units built using this neuromorphic hardware that
can enable efficient on-device learning.

F. Managing Dropped Participants

Internet availability and network connection power are
crucial, particularly while applying FL in an IoT environment.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 16

Any FL-IoT participant may go out of network in the middle of
the training phase or during the interaction with the server due
to mobility, bandwidth shortage, lack of transmission power,
or out of battery life. Most of the recent works considered that
all FL participants maintain a continuous connection with the
server and cannot drop connection in the middle. In the real-
world FL-IoT environment, such a scenario is not feasible,
and any participant may go offline due to out-of-resources.
Dropping off a significant portion of the participants would
fail to generate an effective global model. It is difficult to
understand whether a client gives a slow response because
of the network issue or resource-shortage. Figuring out the
potential problem may help us act according to the problem
scenario. The authors in [92] presented a solution to handle
straggler clients by acknowledging their resource utilization
(i.e., computation power) after each local update. They formed
a predictive model by analyzing the client’s resource utilization
and adjusting local computation accordingly. Another strategy
is to perform asynchronous training, i.e., updating the global
model whenever it receives a model update from any of the
participated clients [67], [167]. Moreover, a recently invented
FL framework, FedProx [202] can handle heterogeneity in
federated networks. FedProx allows a partial amount of work
from each client device through a re-parameterization of the
conventional FedAvg algorithm. However, when most of the
clients within the network perform a low amount of partial
works, their approach may take longer to reach convergence.
The authors in [127] proposed activity and resource-aware FL
strategy that can handle straggler issues by examining resource
status, labeling clients with trust values in accordance to
their contributions towards model convergence, and accepting
variable works from the participated clients. However, further
research needs to be conducted to optimize hyperparameters
while enabling variable or partial works from the clients.

G. Privacy Preservation

The existing FL approaches aim to improve privacy by
adapting classical cryptographic protocols and algorithms such
as DP, SMC. An FL-based SMC protocol is proposed in [95] to
protect client model updates. Through this method, the server
cannot see the local update parameter but can still extract some
information by observing the aggregated results after each
round. However, this approach encounters a high communi-
cation cost, which is not feasible for a resource-constrained
FL-IoT environment. The authors in [40], [56], [203] applied
DP to FL to achieve a global DP, but the hyperparameters
of these approaches affect the communication and model
accuracy. An adaptive gradient clipping technique is presented
in [204] to handle this issue. In [58], a modified version of
local privacy is designed to limit the power of adversaries that
guarantees more robust privacy than global privacy and results
in better model accuracy. Another interesting approach to a DP
mechanism based on meta-learning is proposed in [137] that
can be used in FL through personalization. Besides, DP can be
coupled with model compression strategies to reduce commu-
nication overhead and attain an improved version of privacy
simultaneously [7], [136]. Further, some prior works [205],

[206], [207], [208] proposed mechanisms to preserve privacy
in a blockchain-enabled FL-based IoT environment. However,
most of these approaches did not consider the heterogeneous
resources of clients. They did not analyze the feasibility of
applying a robust privacy-preserving algorithm that can be
adapted without a straggler effect. Further research needs to be
conducted to obtain maximum privacy benefits for resource-
constrained heterogeneous FL-based IoT environment.

VI. APPLICATIONS OF FEDERATED LEARNING

FL fits best in applications where we need to deal with
sensitive information, and therefore, on-device training is more
important than passing local data to the server. Most of the
existing FL applications are based on labeled data collected
from clients or user activities (e.g. type URLs or keyboard,
click button). In this section, we discuss some existing FL
applications to better understand the real-world impact of FL.

A. Resource-Sufficient Federated Learning Application

Recommendation System: A recommendation system can
be compared to an information filtering scheme that tries to
predict user preference or rating for an item. In the conven-
tional recommendation system, user preference or rating would
be shared with other users, and privacy is not maintained in
many cases. Instead of sharing such private data, the authors
in [24] proposed a federated meta-learning framework through
which each local client shares his/her algorithm rather than
his/her data or local model. In particular, federated meta-
learning is useful when the model size is large; therefore,
sharing algorithm is more flexible than sharing a model.

Next-word Prediction: A popular ML-based application
is next-word prediction where a model is constructed that
can predict what the next probable word would be. Such
a centralized ML application may transfer private user data
(e.g. SMS, URLs) to the server and may leak any sensitive
information about the user. From that motivation, an on-
device distributed ML-based framework is designed by [22],
which is inspired by the FedAvg algorithm. They trained
each participant locally and obtained a higher recall than the
conventional approach. In this way, FL helps a user make
predictions by learning his/her typing behavior and indirectly
reading the user’s mind.

Keyword Spotting: Wake-word detector applications are
prevalent nowadays. For instance, Amazon’s ‘Hey Alexa’
wake-word detector is used to play different songs, or execute
different commands, while Google’s wake-word detector ‘Hey
Google’ is used for different purposes including driving e.g.
to get direction on a map. However, most of those applications
are based on the cloud-based system and pass user data to the
server. Unlike this, an embedded speech model is proposed
[23], where they used a wake-word detector ‘Hey Snips’ to
recognize user’s voice. They used a crowd-sourced dataset and
applied the FL strategy by keeping user information private.

Relevant Content Suggestions for On-Device Keyboard:
Google has recently implemented a virtual keyboard appli-
cation named Gboard, where they applied the FL strategy
to suggest relevant content [29]. It works on user-click or

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 17

TABLE VI
LIST OF EXISTING FEDERATED LEARNING APPLICATIONS.

Approach Category Data
partition

Model
type

Decision-
making Remark

MDLdroid [209] NN Reinforcement
learning

FedNER [210]
FedRec [211]
In-edge AI [11]

FCF [212] Applications Horizontal LM Server-centric Collaborative
filter

FedMF [213] Matrix
factorization

FL Next-Word
Prediction [22] NN Natural language

processing
FL Emoji-Prediction [69]
FL OOV [214]
Gboard [29] LM Linear regression
FL RBHS [215] LM SVM

ignores situations that are stored in training cache and value
is added when related contents are suggested. Based on user-
click, the information is stored in the cache and feeds into the
on-device training process. In this work, inference and training
are performed on-device. Only the model updated parameters
are shared with the server, while globally trained models are
deployed on each client.

B. Resource-Constrained Federated Learning Application

Smart Robotics: A lifelong reinforcement FL framework
for mobile robots is proposed in [50]. They designed an
architecture to enhance navigation systems of mobile robots
to learn efficiently from prior knowledge and adapt to a
new environment effectively. They used two types of transfer
learning for fast adaptation of the mobile robots within a
new environment. Their proposed system is scalable but lacks
security, privacy, robustness, and sparsification.

Smart Object Detection: The authors in [216] designed
an approach of optimizing object detection by considering
Kullback- Leibler divergence (KLD) during measurement of
weights divergence of client’s local models. They adapted the
Abnormal Weight Suppression technique to reduce the effects
of weight divergence that may be caused by unbalanced and
non-IID data.

Smart Healthcare: In healthcare services, the FL-based IoT
concept can be extremely effective to preserve the privacy
of sensitive medical data. The IoT devices can be useful to
generate data streams of patient’s status, and FL can be used to
undertake early precautions or treatment utilizing the historical
data. The authors in [217] developed an FL framework for
smart healthcare by applying the FL mechanism, and reduced
computation load of IoT devices during training. Their pro-
posed approach also took the edge of communication overhead
during interaction of FL server and IoT devices. However,
their developed framework does not guarantee convergence,
and is incapable of performing a successful learning process
in presence of malfunction or edge/cloud server failure.

On-device Ranking: Another application of FL is to rank
a search result. For instance, if we query something in our
device, an automated search result appeared. This is done by

making an expensive call to the server. To reduce such cost,
implementation of on-device training to generate a ranking
of search results is proposed in [95], which is particularly
useful for resource-constrained devices. By observing the
user’s selected item from a ranked list, their system puts a label
whenever a user interacts with the ranking feature. In this way,
user preference is not revealed to anyone, and communication
overhead is reduced by a significant margin.

Anomaly Detection: An autonomous self-learning scheme
is proposed in [218] to identify compromised devices within
IoT networks. Relying on unlabeled crowdsource data and
depending on the device-type-specific behavior profiles, their
proposed system can learn anomaly detection model without
requiring any labeled data or human intervention to operate.
They apply the FL strategy to aggregate behavior profiles for
effective intrusion detection.

Resource-efficient Training of UAV-enabled IoT Devices:
A particle swarm-based air quality monitoring framework
is proposed in [57]. Their proposed system enables energy-
efficient lightweight model training of Unmanned Aerial Ve-
hicles (UAVs) using aerial haze images and predicts Air
Quality Index (AQI) while preserving privacy. To sense ground
systems, they proposed a Graph CNN-based Long Short-Term
Memory (LSTM) model for obtaining accurate and real-time
AQI inference. Besides, the authors in [219] addressed the
issue of reducing latency and improving the energy efficiency
of UAV-enabled IoT devices by optimizing battery resources
and wireless bandwidth. They employed a deep deterministic
policy gradient (DDPG) strategy to evaluate their system cost.

In Table VI, we present a detailed summary of some existing
FL applications.

VII. FUTURE DIRECTIONS FOR FEDERATED LEARNING
ALGORITHMS CONSIDERING RESOURCE-CONSTRAINED

IOT DEVICES

As we discussed, FL is a recently invented distributed ML
technique that can be considered as an emerging research
area. After examining the core challenges of FL process while
applying on resource-constrained IoT devices in Section IV,
and analyzing some potential solutions of those emerging chal-
lenging in Section V, we point-out potential future directions

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 18

in FL-based IoT environments. In this section, we highlight
the future directions of this domain.
• In an FL-based IoT environment, it can be experienced
that some clients possess more data (e.g., due to frequent
use of a particular application, or having a greater memory
size) compared to other clients within the underlying IoT
network setting. Such a discrepancy in the number of data
samples, particularly due to heterogeneous memory size and
availability, leads to massive deviation in terms of training
periods from participant-to-participant. The non-uniform data
distribution raises issues in generating the representation of
the population distribution of any client dataset. Handling such
disparity within local training dataset needs further research.
• To ensure convergence for asynchronous learning in a Non-
IID setting with a presence of resource-constrained devices,
loss functions of the non-convex problem (i.e., an objective
function that has multiple feasible regions, and each region
has multiple locally optimal points) need to be considered,
and supportive algorithms should be proposed.
• In an FL system, we may need to choose a cluster head
that would be responsible for passing the aggregated model
parameter to the server for energy efficiency. The cluster
head can collect client model parameters from its region in
a synchronized fashion, while the central server can receive
those locally aggregated models through a synchronous or
asynchronous manner. Here, the leader can act as an intermedi-
ate aggregator and can avoid straggler nodes. It can marginally
reduce power consumption as well as can minimize bandwidth
requirements of the FL system, which could be effective for
resource-constrained FL-based IoT environment. However, the
leader node needs to be proficient to conduct swift operations
and should be trustworthy to avoid false data injection.
• A device-centric automatic wake-up mechanism can be
useful in determining the optimal period to carry out interac-
tion with the server. Such an approach can reduce unnecessary
communication with the server and avoid sending a model
update when the client’s local data does not change much.
Besides, the automatic wake-up mechanism may help the
resource-constrained devices to reserve energy, which could
be utilized in further training.
• Client mobility can drastically change the overall system
behavior. A network may hold a large number of active clients
before the training starts, and after some period, most of them
could go out of network. As a result, some areas may own
a large number of clients, while some other regions may not
be able to generate a feasible model due to a lack of active
clients. Therefore, how to handle the mobility issues of the
IoT devices and ensure successful federated model training is
a potential research direction.
• During FL process, we may observe statistical heterogene-
ity among the client data. Such heterogeneity compels the
clients to perform more interactions with the server, or with
its neighbor nodes. The existing works did quantification of
such statistical heterogeneity after initiating the training, which
may cost extra resources and may have crucial impact on
local training of the resource-constrained devices. Extensive
research needs to be conducted to quantify the statistical
heterogeneity even before the initialization of FL training to

avoid idiosyncratic situations due to data sample variations.
• Effective incentives mechanism design is essential to en-
courage FL clients to share their model information. Some in-
centives or regulations schemes are implemented in blockchain
[220], [221], [222], and some incentive mechanisms are
proposed for high-quality federated data [223], [224]. Still,
more extensive research needs to be conducted on incentives
mechanism design to upgrade the effectiveness of FL. An
example of such design is how game-theory models can
be adapted in FLS or, in addition to the accuracy, what
new benefit can be provided to the user to encourage them
for joining in FL training. Besides, as the FL participants
can be resource-bounded, or the participants can be business
competitors, it is mandatory to design a strategy that divides
the overall earnings to ensure the long-term engagement of
the participants. Further, more focus needs to be placed on
how to defend against adversarial attacks that try to collect
the majority of the incentives.
• A lightweight blockchain framework for FL-IoT setting
needs to be designed that can ensure robustness, enhance
privacy and security while interacting with the server or
neighbor clients. Blockchain can prevent model parameters
or algorithm temperament and verify the model update and
exchange. Some blockchain paradigm for on-device training
is discussed in [36], [225], but they designed that framework
without considering the challenges of the weak-processing
unit and limited memory of IoT devices. Further research
needs to be conducted on designing miner selection, block
mining, consensus algorithm, validating a chain, atomicity, and
blockchain interoperability, especially for FL with resource-
constrained IoT clients.
• The FL structure leads us to think about integrating trust
model to avoid adversarial clients during training. Selecting
a client based on only resource availability would lead us to
choose a malicious client. However, we can design a trust-
based model based on the client’s previous contribution to
learning within the network and interacting with other clients.
Typically, it is assumed that the server is trustworthy, and we
can use the server to generate the trust model by analyzing
the behavior of the clients. The incentive mechanism can be
designed based on the generated trust model, and this may
open us a new research direction.

VIII. CONCLUSION

This paper presented a comprehensive survey on feder-
ated learning algorithms and analyzed the implementation
challenges while performing on-device training. We particu-
larly emphasized the issues of FL process while considering
resource-constrained IoT devices as FL clients. Firstly, we
presented a highlight over FL algorithms that can enable
efficient and scalable model training in edge devices. Then,
we presented an overview of FL taxonomy and analyzed
the existing papers to distinguish our contribution as com-
pared with prior surveys. We discussed distributed learning
and optimization techniques and explained various aspects of
distributed algorithms for decision-making purposes. We ana-
lyzed the challenges during the on-device learning of resource-
constrained devices and discussed existing feasible solutions.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 19

After analyzing the challenges, we described the emerging
challenges of FL implementation in resource-constrained IoT
devices, which needs extensive further research. Afterwards,
we explored the existing FL applications to provide a better
understanding of the FL role in real-world applications. Fi-
nally, we listed the potential future directions of deploying FL
within resource-constrained heterogeneous IoT environment.

REFERENCES

[1] Andrew C Yao. Protocols for secure computations. In 23rd annual
symposium on foundations of computer science (sfcs 1982), pages 160–
164. IEEE, 1982.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data
mining. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 439–450, 2000.

[3] Roberto J Bayardo and Rakesh Agrawal. Data privacy through optimal
k-anonymization. In 21st International conference on data engineering
(ICDE’05), pages 217–228. IEEE, 2005.

[4] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving
svm classification. Knowledge and Information Systems, 14(2):161–
178, 2008.

[5] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. Journal of
Computer and System Sciences, 60(3):592–629, 2000.

[6] Wenbo He, Xue Liu, Hoang Nguyen, Klara Nahrstedt, and Tarek
Abdelzaher. Pda: Privacy-preserving data aggregation in wireless
sensor networks. In IEEE INFOCOM 2007-26th IEEE International
Conference on Computer Communications, pages 2045–2053. IEEE,
2007.

[7] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. IEEE
Signal Processing Magazine, 37(3):50–60, 2020.

[8] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology (TIST), 10(2):12, 2019.

[9] Solmaz Niknam, Harpreet S Dhillon, and Jeffery H Reed. Federated
learning for wireless communications: Motivation, opportunities and
challenges. arXiv preprint arXiv:1908.06847, 2019.

[10] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao
Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao.
Federated learning in mobile edge networks: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 2020.

[11] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen,
and Min Chen. In-edge ai: Intelligentizing mobile edge computing,
caching and communication by federated learning. IEEE Network,
33(5):156–165, 2019.

[12] Peter Kairouz, H Brendan McMahan, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[13] Zhi Zhou et al. Edge intelligence: Paving the last mile of artificial
intelligence with edge computing. Proc. of the IEEE, 107(8):1738–
1762, 2019.

[14] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge
computing: A survey. IEEE Internet of Things Journal, 5(1):450–465,
2017.

[15] Laizhong Cui, Shu Yang, et al. A survey on application of machine
learning for internet of things. J. M. L. Cybernetics, 9(8):1399–1417,
2018.

[16] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B
Letaief. A survey on mobile edge computing: The communication
perspective. IEEE Communications Surveys & Tutorials, 19(4):2322–
2358, 2017.

[17] He Li, Kaoru Ota, et al. Learning iot in edge: Deep learning for the
internet of things with edge computing. IEEE network, 32(1):96–101,
2018.

[18] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and
Wenbo Wang. A survey on mobile edge networks: Convergence of
computing, caching and communications. IEEE Access, 5:6757–6779,
2017.

[19] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey
on architecture and computation offloading. IEEE Communications
Surveys & Tutorials, 19(3):1628–1656, 2017.

[20] H Brendan McMahan, Eider Moore, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv:1602.05629,
2016.

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks, 2018.

[22] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

[23] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and
Joseph Dureau. Federated learning for keyword spotting. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6341–6345. IEEE, 2019.

[24] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated
meta-learning for recommendation. arXiv preprint arXiv:1802.07876,
2018.

[25] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang
Yang. Secureboost: A lossless federated learning framework. arXiv
preprint arXiv:1901.08755, 2019.

[26] Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian
Chen, Mingyi Hong, and Qiang Yang. A communication efficient ver-
tical federated learning framework. arXiv preprint arXiv:1912.11187,
2019.

[27] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2009.

[28] Yang Liu, Tianjian Chen, and Qiang Yang. Secure federated transfer
learning. arXiv preprint arXiv:1812.03337, 2018.

[29] Timothy Yang, Galen Andrew, et al. Applied federated learning:
Improving google keyboard query suggestions. arXiv:1812.02903,
2018.

[30] Qinbin Li, Zeyi Wen, and Bingsheng He. Practical federated gradient
boosting decision trees. arXiv preprint arXiv:1911.04206, 2019.

[31] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock,
Giorgio Patrini, Guillaume Smith, and Brian Thorne. Private feder-
ated learning on vertically partitioned data via entity resolution and
additively homomorphic encryption. arXiv preprint arXiv:1711.10677,
2017.

[32] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and
Privacy, pages 334–348. IEEE, 2013.

[33] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[34] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopou-
los, and Yasaman Khazaeni. Federated learning with matched averag-
ing. arXiv preprint arXiv:2002.06440, 2020.

[35] Qinbin Li, Zeyi Wen, and Bingsheng He. Federated learning systems:
Vision, hype and reality for data privacy and protection. arXiv preprint
arXiv:1907.09693, 2019.

[36] Hyesung Kim, Jihong Park, et al. Blockchained on-device federated
learning. IEEE Communications Letters, 2019.

[37] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th ACM
Workshop on Artificial Intelligence and Security, pages 1–11, 2019.

[38] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic
federated learning. arXiv preprint arXiv:1902.00146, 2019.

[39] Lingchen Zhao, Lihao Ni, Shengshan Hu, Yaniiao Chen, Pan Zhou,
Fu Xiao, and Libing Wu. Inprivate digging: Enabling tree-based
distributed data mining with differential privacy. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pages 2087–
2095. IEEE, 2018.

[40] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially pri-
vate federated learning: A client level perspective. arXiv preprint
arXiv:1712.07557, 2017.

[41] Alekh Agarwal, John Langford, and Chen-Yu Wei. Federated residual
learning, 2020.

[42] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated
optimization: Distributed optimization beyond the datacenter. arXiv
preprint arXiv:1511.03575, 2015.

[43] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Gree-
newald, Trong Nghia Hoang, and Yasaman Khazaeni. Bayesian

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 20

nonparametric federated learning of neural networks. arXiv preprint
arXiv:1905.12022, 2019.

[44] Yang Liu, Zhuo Ma, Ximeng Liu, Siqi Ma, Surya Nepal, and Robert
Deng. Boosting privately: Privacy-preserving federated extreme boost-
ing for mobile crowdsensing. arXiv preprint arXiv:1907.10218, 2019.

[45] Yang Liu, Yingting Liu, Zhijie Liu, Junbo Zhang, Chuishi Meng, and
Yu Zheng. Federated forest. arXiv preprint arXiv:1905.10053, 2019.

[46] Yi-Ruei Chen, Amir Rezapour, and Wen-Guey Tzeng. Privacy-
preserving ridge regression on distributed data. Information Sciences,
451:34–49, 2018.

[47] Ashish P Sanil, Alan F Karr, Xiaodong Lin, and Jerome P Reiter.
Privacy preserving regression modelling via distributed computation.
In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 677–682, 2004.

[48] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S
Talwalkar. Federated multi-task learning. In Advances in Neural
Information Processing Systems, pages 4424–4434, 2017.

[49] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Im-
proving federated learning personalization via model agnostic meta
learning. arXiv preprint arXiv:1909.12488, 2019.

[50] Boyi Liu, Lujia Wang, and Ming Liu. Lifelong federated reinforcement
learning: a learning architecture for navigation in cloud robotic systems.
IEEE Robotics and Automation Letters, 4(4):4555–4562, 2019.

[51] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Fednas:
Federated deep learning via neural architecture search, 2020.

[52] Hangyu Zhu and Yaochu Jin. Multi-objective evolutionary federated
learning. IEEE transactions on neural networks and learning systems,
2019.

[53] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi
Bennis, and Seong-Lyun Kim. Communication-efficient on-device
machine learning: Federated distillation and augmentation under non-
iid private data. arXiv preprint arXiv:1811.11479, 2018.

[54] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech
Samek. Robust and communication-efficient federated learning from
non-iid data. IEEE transactions on neural networks and learning
systems, 2019.

[55] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. Fedsel:
Federated sgd under local differential privacy with top-k dimension
selection, 2020.

[56] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
Learning differentially private recurrent language models. arXiv
preprint arXiv:1710.06963, 2017.

[57] Yi Liu, Jiangtian Nie, Xuandi Li, Syed Hassan Ahmed, Wei Yang Bryan
Lim, and Chunyan Miao. Federated learning in the sky: Aerial-ground
air quality sensing framework with uav swarms. IEEE Internet of
Things Journal, 2020.

[58] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor,
and Ryan Rogers. Protection against reconstruction and its applications
in private federated learning. arXiv preprint arXiv:1812.00984, 2018.

[59] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[60] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How to backdoor federated learning. arXiv preprint
arXiv:1807.00459, 2018.

[61] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin
Calo. Analyzing federated learning through an adversarial lens. arXiv
preprint arXiv:1811.12470, 2018.

[62] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed
backdoor attacks against federated learning. In International Confer-
ence on Learning Representations, 2019.

[63] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation
in federated learning. arXiv preprint arXiv:1905.10497, 2019.

[64] Yuan Liu, Shuai Sun, Zhengpeng Ai, Shuangfeng Zhang, Zelei Liu,
and Han Yu. Fedcoin: A peer-to-peer payment system for federated
learning, 2020.

[65] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan
Zhang. Incentive mechanism for reliable federated learning: A joint
optimization approach to combining reputation and contract theory.
IEEE Internet of Things Journal, 6(6):10700–10714, 2019.

[66] Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. In ICC 2019-
2019 IEEE International Conference on Communications (ICC), pages
1–7. IEEE, 2019.

[67] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung,
Christian Makaya, Ting He, and Kevin Chan. Adaptive federated
learning in resource constrained edge computing systems. IEEE
Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

[68] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark
for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[69] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise
Beaufays. Federated learning for emoji prediction in a mobile key-
board, 2019.

[70] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First
analysis of local gd on heterogeneous data, 2019.

[71] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decen-
tralized collaborative learning of personalized models over networks.
2017.

[72] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang,
and Ji Liu. Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Processing Systems, pages
5330–5340, 2017.

[73] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečný, Ste-
fano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards federated
learning at scale: System design, 2019.

[74] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rab-
bat. Stochastic gradient push for distributed deep learning. arXiv
preprint arXiv:1811.10792, 2018.

[75] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon.
Gossip dual averaging for decentralized optimization of pairwise func-
tions. arXiv preprint arXiv:1606.02421, 2016.

[76] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2:
Decentralized training over decentralized data. In International Con-
ference on Machine Learning, pages 4848–4856, 2018.

[77] Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Decentral-
ized stochastic optimization and gossip algorithms with compressed
communication. arXiv preprint arXiv:1902.00340, 2019.

[78] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi.
Personalized and private peer-to-peer machine learning. arXiv preprint
arXiv:1705.08435, 2017.

[79] Anis Elgabli, Jihong Park, Amrit S Bedi, Mehdi Bennis, and Vaneet
Aggarwal. Gadmm: Fast and communication efficient framework for
distributed machine learning. arXiv preprint arXiv:1909.00047, 2019.

[80] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz
Koushanfar. Peer-to-peer federated learning on graphs. arXiv preprint
arXiv:1901.11173, 2019.

[81] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J
Franklin, and Michael I Jordan. Mlbase: A distributed machine-learning
system. In Cidr, volume 1, pages 2–1, 2013.

[82] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Com-
munication efficient distributed machine learning with the parameter
server. In Advances in Neural Information Processing Systems, pages
19–27, 2014.

[83] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[84] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient
distributed optimization using an approximate newton-type method. In
International conference on machine learning, pages 1000–1008, 2014.

[85] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay
Krishnan, Thomas Hofmann, and Michael I Jordan. Communication-
efficient distributed dual coordinate ascent. In Advances in neural
information processing systems, pages 3068–3076, 2014.

[86] Yuchen Zhang and Lin Xiao. Disco: Communication-efficient dis-
tributed optimization of self-concordant empirical loss. 2015.

[87] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information
processing systems, pages 315–323, 2013.

[88] Jakub Konečnỳ and Peter Richtárik. Semi-stochastic gradient descent
methods. arXiv preprint arXiv:1312.1666, 2013.

[89] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup,
and Mohak Shah. On-device machine learning: An algorithms and
learning theory perspective. arXiv preprint arXiv:1911.00623, 2019.

[90] Chenxin Ma, Jakub Konečnỳ, Martin Jaggi, Virginia Smith, Michael I
Jordan, Peter Richtárik, and Martin Takáč. Distributed optimization
with arbitrary local solvers. Optimization Methods and Software,
32(4):813–848, 2017.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 21

[91] Farzin Haddadpour, Mohammad Mahdi Kamani, et al. Trading redun-
dancy for communication: Speeding up distributed sgd for non-convex
optimization. In ICML, 2019.

[92] Anirban Das and Thomas Brunschwiler. Privacy is what we care about:
Experimental investigation of federated learning on edge devices. arXiv
preprint arXiv:1911.04559, 2019.

[93] Yuang Jiang, Shiqiang Wang, Bong Jun Ko, Wei-Han Lee, and Lean-
dros Tassiulas. Model pruning enables efficient federated learning on
edge devices. arXiv preprint arXiv:1909.12326, 2019.

[94] Zirui Xu, Zhao Yang, et al. Elfish: Resource-aware federated learning
on heterogeneous edge devices. arXiv:1912.01684, 2019.

[95] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny,
Stefano Mazzocchi, H Brendan McMahan, et al. Towards federated
learning at scale: System design. arXiv preprint arXiv:1902.01046,
2019.

[96] Martin Zinkevich, John Langford, and Alex J Smola. Slow learners
are fast. In Advances in neural information processing systems, pages
2331–2339, 2009.

[97] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

[98] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-
Ming Ma, and Tie-Yan Liu. Asynchronous stochastic gradient descent
with delay compensation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 4120–4129. JMLR.
org, 2017.

[99] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous
decentralized parallel stochastic gradient descent. arXiv preprint
arXiv:1710.06952, 2017.

[100] Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou,
Nathalie Baracaldo, Heiko Ludwig, and Yue Cheng. Towards taming
the resource and data heterogeneity in federated learning. In 2019
{USENIX} Conference on Operational Machine Learning (OpML 19),
pages 19–21, 2019.

[101] Sukjong Ha, Jingjing Zhang, Osvaldo Simeone, and Joonhyuk Kang.
Coded federated computing in wireless networks with straggling de-
vices and imperfect csi. In 2019 IEEE International Symposium on
Information Theory (ISIT), pages 2649–2653. IEEE, 2019.

[102] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi
Amini. Federated learning for resource-constrained iot devices: Panora-
mas and state-of-the-art, 2020.

[103] Andy Zhou, Rikky Muller, and Jan Rabaey. Memory-efficient, limb
position-aware hand gesture recognition using hyperdimensional com-
puting, 2021.

[104] Colby R. Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin
Fazel, Jeremy Holleman, Xinyuan Huang, Robert Hurtado, David
Kanter, Anton Lokhmotov, David Patterson, Danilo Pau, Jae sun Seo,
Jeff Sieracki, Urmish Thakker, Marian Verhelst, and Poonam Yadav.
Benchmarking tinyml systems: Challenges and direction, 2021.

[105] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro,
Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina,
and Paul N. Whatmough. Micronets: Neural network architectures for
deploying tinyml applications on commodity microcontrollers, 2021.

[106] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song
Han. Once-for-all: Train one network and specialize it for efficient
deployment. In International Conference on Learning Representations,
2020.

[107] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and
inference with integers in deep neural networks. arXiv preprint
arXiv:1802.04680, 2018.

[108] Jihong Park, Shiqiang Wang, Anis Elgabli, Seungeun Oh, Eunjeong
Jeong, Han Cha, Hyesung Kim, Seong-Lyun Kim, and Mehdi Bennis.
Distilling on-device intelligence at the network edge. arXiv preprint
arXiv:1908.05895, 2019.

[109] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczyn-
ski, Jian Zhang, and Christopher Ré. Low-memory neural network
training: A technical report. CoRR, abs/1904.10631, 2019.

[110] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion Stoica. Checkmate:
Breaking the memory wall with optimal tensor rematerialization. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of
Machine Learning and Systems, volume 2, pages 497–511, 2020.

[111] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training
deep nets with sublinear memory cost. CoRR, abs/1604.06174, 2016.

[112] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce
memory, not parameters for efficient on-device learning, 2021.

[113] Zhongshu Gu, Hani Jamjoom, et al. Reaching data confidentiality and
model accountability on the caltrain. In IEEE DSN, 2019.

[114] Tiffany Tuor, Shiqiang Wang, Bong Jun Ko, Changchang Liu, and
Kin K Leung. Overcoming noisy and irrelevant data in federated
learning. In 25th International Conference on Pattern Recognition
(ICPR), 2020. Accepted.

[115] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao
Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao.
Federated learning in mobile edge networks: A comprehensive survey.
arXiv preprint arXiv:1909.11875, 2019.

[116] Lingjuan Lyu, Xinyi Xu, and Qian Wang. Collaborative fairness in
federated learning. arXiv preprint arXiv:2008.12161, 2020.

[117] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng,
Dusit Niyato, and Qiang Yang. A fairness-aware incentive scheme for
federated learning. In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, pages 393–399, 2020.

[118] Latif U Khan, Shashi Raj Pandey, Nguyen H Tran, Walid Saad, Zhu
Han, Minh NH Nguyen, and Choong Seon Hong. Federated learning
for edge networks: Resource optimization and incentive mechanism.
IEEE Communications Magazine, 58(10):88–93, 2020.

[119] Yang Liu and Jiaheng Wei. Incentives for federated learning: a
hypothesis elicitation approach. arXiv preprint arXiv:2007.10596,
2020.

[120] Xianglin Bao, Cheng Su, Yan Xiong, Wenchao Huang, and Yifei
Hu. Flchain: A blockchain for auditable federated learning with trust
and incentive. In 2019 5th International Conference on Big Data
Computing and Communications (BIGCOM), pages 151–159. IEEE,
2019.

[121] Takayuki Nishio, Ryoichi Shinkuma, and Narayan B Mandayam. Es-
timation of individual device contributions for incentivizing federated
learning. arXiv preprint arXiv:2009.09371, 2020.

[122] Mingshu Cong, Han Yu, Xi Weng, Jiabao Qu, Yang Liu, and Siu Ming
Yiu. A vcg-based fair incentive mechanism for federated learning.
arXiv preprint arXiv:2008.06680, 2020.

[123] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng,
Dusit Niyato, and Qiang Yang. A sustainable incentive scheme for
federated learning. IEEE Intelligent Systems, 2020.

[124] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vin-
cent Poor, and Shuguang Cui. A joint learning and communications
framework for federated learning over wireless networks. arXiv
preprint arXiv:1909.07972, 2019.

[125] Ahmed Imteaj and M Hadi Amini. Fedar: Activity and resource-aware
federated learning model for distributed mobile robots. arXiv preprint
arXiv:2101.03705.

[126] Dongdong Ye, Rong Yu, Miao Pan, and Zhu Han. Federated learning
in vehicular edge computing: A selective model aggregation approach.
IEEE Access, 8:23920–23935, 2020.

[127] Ahmed Imteaj and M Hadi Amini. Fedparl: Client activity and
resource-oriented lightweight federated learning model for resource-
constrained heterogeneous iot environment. Frontiers in Communica-
tions and Networks, 2:10, 2021.

[128] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 691–706. IEEE, 2019.

[129] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn
Song. The secret sharer: Measuring unintended neural network memo-
rization & extracting secrets. arXiv preprint arXiv:1802.08232, 2018.

[130] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1322–1333, 2015.

[131] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applica-
tions. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 707–721, 2018.

[132] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology, 1(1):65–75,
1988.

[133] Neel Guha, Ameet Talwlkar, et al. One-shot federated learning.
arXiv:1902.11175, 2019.

[134] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang,
and Sen Liu. Efficient and privacy-enhanced federated learning for
industrial artificial intelligence. IEEE Transactions on Industrial
Informatics, 2019.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 22

[135] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-box infer-
ence attacks against centralized and federated learning. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 739–753. IEEE, 2019.

[136] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv
Kumar, and Brendan McMahan. cpsgd: Communication-efficient and
differentially-private distributed sgd. In Advances in Neural Informa-
tion Processing Systems, pages 7564–7575, 2018.

[137] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar.
Differentially private meta-learning. arXiv preprint arXiv:1909.05830,
2019.

[138] Wenqi Li, Fausto Milletarı̀, Daguang Xu, Nicola Rieke, Jonny Han-
cox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin,
M Jorge Cardoso, et al. Privacy-preserving federated brain tumour
segmentation. In International Workshop on Machine Learning in
Medical Imaging, pages 133–141. Springer, 2019.

[139] Badih Ghazi, Rasmus Pagh, and Ameya Velingker. Scalable and
differentially private distributed aggregation in the shuffled model.
arXiv preprint arXiv:1906.08320, 2019.

[140] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang,
and Hairong Qi. Beyond inferring class representatives: User-level
privacy leakage from federated learning. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages 2512–2520.
IEEE, 2019.

[141] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta,
and Abhimanyu Dubey. No peek: A survey of private distributed deep
learning. arXiv preprint arXiv:1812.03288, 2018.

[142] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad
Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learn-
ing with differential privacy: Algorithms and performance analysis.
IEEE Transactions on Information Forensics and Security, 2020.

[143] Jiale Zhang, Bing Chen, Shui Yu, and Hai Deng. Pefl: A privacy-
enhanced federated learning scheme for big data analytics. In 2019
IEEE Global Communications Conference (GLOBECOM), pages 1–6.
IEEE, 2019.

[144] Mohamed Seif, Ravi Tandon, and Ming Li. Wireless federated learning
with local differential privacy. arXiv preprint arXiv:2002.05151, 2020.

[145] Chunyi Zhou, Anmin Fu, Shui Yu, Wei Yang, Huaqun Wang, and
Yuqing Zhang. Privacy-preserving federated learning in fog computing.
IEEE Internet of Things Journal, 2020.

[146] Yu Chen, Fang Luo, Tong Li, Tao Xiang, Zheli Liu, and Jin Li. A
training-integrity privacy-preserving federated learning scheme with
trusted execution environment. Information Sciences, 522:69–79, 2020.

[147] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Edge-assisted
hierarchical federated learning with non-iid data. arXiv preprint
arXiv:1905.06641, 2019.

[148] Ahmed Imteaj and M Hadi Amini. Distributed sensing using smart
end-user devices: pathway to federated learning for autonomous iot.
In 2019 International Conference on Computational Science and
Computational Intelligence (CSCI), pages 1156–1161. IEEE, 2019.

[149] Yuxuan Sun, Sheng Zhou, and Deniz Gündüz. Energy-aware analog
aggregation for federated learning with redundant data. arXiv preprint
arXiv:1911.00188, 2019.

[150] Pengchao Han, Shiqiang Wang, and Kin K Leung. Adaptive gradi-
ent sparsification for efficient federated learning: An online learning
approach. In IEEE ICDCS, 2020.

[151] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet
Talwalkar. Expanding the reach of federated learning by reducing client
resource requirements. arXiv preprint arXiv:1812.07210, 2018.

[152] Haifeng Sun, Shiqi Li, F Richard Yu, Qi Qi, Jingyu Wang, and Jianxin
Liao. Toward communication-efficient federated learning in the internet
of things with edge computing. IEEE Internet of Things Journal,
7(11):11053–11067, 2020.

[153] Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen
Kang, and M Shamim Hossain. Deep anomaly detection for time-series
data in industrial iot: A communication-efficient on-device federated
learning approach. IEEE Internet of Things Journal, 2020.

[154] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. Person-
alized federated learning with moreau envelopes. arXiv preprint
arXiv:2006.08848, 2020.

[155] Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and Yan
Zhang. Communication-efficient federated learning and permissioned
blockchain for digital twin edge networks. IEEE Internet of Things
Journal, 2020.

[156] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personal-
ized federated learning: A meta-learning approach. arXiv preprint
arXiv:2002.07948, 2020.

[157] Zhaohui Yang, Mingzhe Chen, Walid Saad, Choong Seon Hong, and
Mohammad Shikh-Bahaei. Energy efficient federated learning over
wireless communication networks. arXiv preprint arXiv:1911.02417,
2019.

[158] Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. Federated
learning via over-the-air computation. IEEE Transactions on Wireless
Communications, 19(3):2022–2035, 2020.

[159] Nguyen H Tran, Wei Bao, Albert Zomaya, Nguyen Minh NH, and
Choong Seon Hong. Federated learning over wireless networks:
Optimization model design and analysis. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages 1387–1395.
IEEE, 2019.

[160] Michael R Sprague, Amir Jalalirad, et al. Asynchronous federated
learning for geospatial applications. In ECML-PKDD, 2018.

[161] Catalin Capota, Moritz Neun, Lyman Do, and Michael Kopp. Asyn-
chronous federated learning for geospatial applications. In ECML
PKDD 2018 Workshops: DMLE 2018 and IoTStream 2018, Dublin,
Ireland, September 10–14, 2018, Revised Selected Papers, volume 967,
page 21. Springer, 2019.

[162] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and
Yan Zhang. Differentially private asynchronous federated learning for
mobile edge computing in urban informatics. IEEE Transactions on
Industrial Informatics, 2019.

[163] Wentai Wu, Ligang He, Weiwei Lin, Stephen Jarvis, et al. Safa: a semi-
asynchronous protocol for fast federated learning with low overhead.
arXiv preprint arXiv:1910.01355, 2019.

[164] Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao. Asynchronous
federated learning with differential privacy for edge intelligence. arXiv
preprint arXiv:1912.07902, 2019.

[165] Yan Zhang, Yunlong Lu, Xiaohong Huang, Ke Zhang, and Sabita
Maharjan. Blockchain empowered asynchronous federated learning
for secure data sharing in internet of vehicles. IEEE Transactions on
Vehicular Technology, 2020.

[166] Yujing Chen, Yue Ning, and Huzefa Rangwala. Asynchronous online
federated learning for edge devices. arXiv preprint arXiv:1911.02134,
2019.

[167] Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient
federated deep learning with layerwise asynchronous model update
and temporally weighted aggregation. IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[168] Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and Yan
Zhang. Blockchain empowered asynchronous federated learning for
secure data sharing in internet of vehicles. IEEE Transactions on
Vehicular Technology, 69(4):4298–4311, 2020.

[169] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of
meta-learning. Artificial intelligence review, 18(2):77–95, 2002.

[170] Sebastian Thrun et al. Learning to learn. Springer Science & Business
Media, 2012.

[171] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75,
1997.

[172] Theodoros Evgeniou et al. Regularized multi–task learning. In ACM
SIGKDD, 2004.

[173] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[174] Luca Corinzia et al. Variational federated multi-task learning.
arXiv:1906.06268, 2019.

[175] Hubert Eichner et al. Semi-cyclic stochastic gradient descent.
arXiv:1904.10120, 2019.

[176] Mikhail Khodak, Maria Florina-Balcan, and Ameet Talwalkar.
Adaptive gradient-based meta-learning methods. arXiv preprint
arXiv:1906.02717, 2019.

[177] Iddo I Eliazar and Igor M Sokolov. Measuring statistical heterogeneity:
The pietra index. Physica A: Stat. Mech. App., 389(1):117–125, 2010.

[178] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning
via model distillation. arXiv preprint arXiv:1910.03581, 2019.

[179] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mit-
igating sybils in federated learning poisoning. arXiv preprint
arXiv:1808.04866, 2018.

[180] Ashish Kumar, Saurabh Goyal, et al. Resource-efficient machine
learning in 2 kb ram for the internet of things. In ICML, 2017.

[181] Urmish Thakker, Jesse Beu, et al. Compressing rnns for iot devices
by 15-38x using kronecker products. arXiv preprint arXiv:1906.02876,
2019.

[182] Urmish Thakker, Jesse Beu, Dibakar Gope, Ganesh Dasika, and
Matthew Mattina. Run-time efficient rnn compression for inference
on edge devices, 2019.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 23

[183] Chirag Gupta, Arun Sai Suggala, et al. Protonn: Compressed and
accurate knn for resource-scarce devices. In ICML, 2017.

[184] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Ed-
ward Suh. Channel gating neural networks, 2018.

[185] Xueqin Huang, Urmish Thakker, Dibakar Gope, and Jesse Beu. Push-
ing the envelope of dynamic spatial gating technologies. In Proceedings
of the 2nd International Workshop on Challenges in Artificial Intelli-
gence and Machine Learning for Internet of Things, AIChallengeIoT
’20, page 21–26, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[186] Ravi Raju, Dibakar Gope, Urmish Thakker, and Jesse Beu. Understand-
ing the impact of dynamic channel pruning on conditionally parameter-
ized convolutions. In Proceedings of the 2nd International Workshop on
Challenges in Artificial Intelligence and Machine Learning for Internet
of Things, AIChallengeIoT ’20, page 27–33, New York, NY, USA,
2020. Association for Computing Machinery.

[187] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng
zhong Xu. Dynamic channel pruning: Feature boosting and suppres-
sion, 2018.

[188] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonza-
lez. Skipnet: Learning dynamic routing in convolutional networks. In
Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[189] Jin Tao, Urmish Thakker, Ganesh Dasika, and Jesse Beu. Skipping rnn
state updates without retraining the original model. SenSys-ML 2019,
page 31–36, New York, NY, USA, 2019. Association for Computing
Machinery.

[190] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer, 2017.

[191] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen.
Cambricon: An instruction set architecture for neural networks. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 393–405, 2016.

[192] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, and et al. The arm scalable vector
extension. IEEE Micro, 37(2):26–39, Mar 2017.

[193] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[194] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong
Wu, Yunji Chen, and Olivier Temam. Diannao: A small-footprint
high-throughput accelerator for ubiquitous machine-learning. ACM
SIGARCH Computer Architecture News, 42(1):269–284, 2014.

[195] Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar Krishna.
Genesys: Enabling continuous learning through neural network evolu-
tion in hardware, 2018.

[196] Urmish Thakker, Ganesh Dasika, Jesse Beu, and Matthew Mattina.
Measuring scheduling efficiency of rnns for nlp applications, 2019.

[197] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient
neural network kernels for arm cortex-m cpus, 2018.

[198] Skanda Koppula, Lois Orosa, A Giray Yağlıkçı, Roknoddin Azizi,
Taha Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu. Eden:
Enabling energy-efficient, high-performance deep neural network in-
ference using approximate dram. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 166–
181, 2019.

[199] Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta,
Farinaz Koushanfar, and Tajana Rosing. Rapidnn: In-memory deep
neural network acceleration framework, 2018.

[200] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas
Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. A survey
of neuromorphic computing and neural networks in hardware, 2017.

[201] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay.
Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 380–392,
2016.

[202] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems, 2:429–450,
2020.

[203] Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang,
Lingjuan Lyu, Dusit Niyato, and Kwok-Yan Lam. Local differential
privacy based federated learning for internet of things. IEEE Internet
of Things Journal, 2020.

[204] Om Thakkar, Galen Andrew, and H Brendan McMahan. Differ-
entially private learning with adaptive clipping. arXiv preprint
arXiv:1905.03871, 2019.

[205] Youyang Qu, Longxiang Gao, Tom H Luan, Yong Xiang, Shui Yu, Bai
Li, and Gavin Zheng. Decentralized privacy using blockchain-enabled
federated learning in fog computing. IEEE Internet of Things Journal,
7(6):5171–5183, 2020.

[206] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan
Zhang. Blockchain and federated learning for privacy-preserved data
sharing in industrial iot. IEEE Transactions on Industrial Informatics,
16(6):4177–4186, 2019.

[207] Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang
Li, Lingjuan Lyu, and Yingbo Liu. Privacy-preserving blockchain-
based federated learning for iot devices. IEEE Internet of Things
Journal, 2020.

[208] Yong Li, Yipeng Zhou, Alireza Jolfaei, Dongjin Yu, Gaochao Xu,
and Xi Zheng. Privacy-preserving federated learning framework based
on chained secure multi-party computing. IEEE Internet of Things
Journal, 2020.

[209] Yu Zhang, Tao Gu, and Xi Zhang. Mdldroid: a chainsgd-reduce
approach to mobile deep learning for personal mobile sensing, 2020.

[210] Suyu Ge, Fangzhao Wu, Chuhan Wu, Tao Qi, Yongfeng Huang, and
Xing Xie. Fedner: Privacy-preserving medical named entity recognition
with federated learning, 2020.

[211] Tao Qi, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, and Xing
Xie. Fedrec: Privacy-preserving news recommendation with federated
learning, 2020.

[212] Muhammad Ammad-ud din, Elena Ivannikova, Suleiman A Khan,
Were Oyomno, Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan.
Federated collaborative filtering for privacy-preserving personalized
recommendation system. arXiv preprint arXiv:1901.09888, 2019.

[213] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated
matrix factorization. arXiv preprint arXiv:1906.05108, 2019.

[214] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays.
Federated learning of out-of-vocabulary words, 2019.

[215] Florian Hartmann, Sunah Suh, Arkadiusz Komarzewski, Tim D. Smith,
and Ilana Segall. Federated learning for ranking browser history
suggestions, 2019.

[216] Peihua Yu and Yunfeng Liu. Federated object detection: Optimizing
object detection model with federated learning. In Proceedings of the
3rd International Conference on Vision, Image and Signal Processing,
pages 1–6, 2019.

[217] Binhang Yuan, Song Ge, and Wenhui Xing. A federated learning
framework for healthcare iot devices. arXiv preprint arXiv:2005.05083,
2020.

[218] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein
Fereidooni, N Asokan, and Ahmad-Reza Sadeghi. Dı̈ot: A federated
self-learning anomaly detection system for iot. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pages 756–767. IEEE, 2019.

[219] Shunpu Tang, Wenqi Zhou, Lunyuan Chen, Lijia Lai, Junjuan Xia, and
Liseng Fan. Battery-constrained federated edge learning in uav-enabled
iot for b5g/6g networks. arXiv preprint arXiv:2101.12472, 2021.

[220] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Re-
nesse. Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX}
symposium on networked systems design and implementation ({NSDI}
16), pages 45–59, 2016.

[221] Yufeng Zhan, Peng Li, Zhihao Qu, Deze Zeng, and Song Guo. A
learning-based incentive mechanism for federated learning. IEEE
Internet of Things Journal, 7(7):6360–6368, 2020.

[222] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using
blockchain to protect personal data. In 2015 IEEE Security and Privacy
Workshops, pages 180–184. IEEE, 2015.

[223] Yunus Sarikaya and Ozgur Ercetin. Motivating workers in federated
learning: A stackelberg game perspective. IEEE Networking Letters,
2019.

[224] Radu Jurca and Boi Faltings. An incentive compatible reputation
mechanism. In EEE International Conference on E-Commerce, 2003.
CEC 2003., pages 285–292. IEEE, 2003.

[225] Ronghua Xu, Yu Chen, and Jian Li. MicroFL: A lightweight, secure-
by-design edge network fabric for decentralized IoT systems. In NDSS,
2020.

IEEE INTERNET OF THINGS JOURNAL, VOL. #, NO. #, FEBRUARY 2021 24

Ahmed Imteaj is currently a PhD candidate and
graduate assistant at the Knight Foundation School
of Computing and Information Sciences at Florida
International University. He is also a research lab
member of Sustainability, Optimization, and Learn-
ing for InterDependent networks laboratory (solid
lab) at Florida International University. His re-
search interests span federated learning, Internet of
Things (IoT), machine learning, blockchain, sensor
networks, cyber-physical-social resilience, and op-
timization. He holds a B.Sc. degree in Computer

Science and Engineering from Chittagong University of Engineering and
Technology (CUET), Bangladesh in 2015. From 2015 to 2018, he worked as
a Lecturer at International Islamic University Chittagong (IIUC), Chittagong,
Bangladesh. Ahmed’s work on federated learning for IoT environments is
the recipient of the best paper award from “2019 IEEE Conference on
Computational Science & Computational Intelligence” and won the second
place at 2021 Florida International University GSAW Scholarly Forum.
Ahmed has published more than 30 referred journals and conference papers.

Urmish Thakker is a Deep Learning Researcher
at SambaNova Systems. Before joining SambaNova,
he worked with Arm Research, AMD, Texas Instru-
ments and Broadcom. His research has primarily
focused on efficient execution of neural networks
on resource constrained devices. Specifically, he has
worked on model quantization, pruning, structured
matrices and low-rank decomposition. His work has
led to patents, publications and contributions to
various products across multiple companies. Urmish
completed his Master’s in Computer Science from

UW Madison in US and Bachelor’s from BITS Pilani in India.

Shiqiang Wang (S’13–M’15) received his Ph.D.
from the Department of Electrical and Electronic
Engineering, Imperial College London, United King-
dom, in 2015. Before that, he received his mas-
ter’s and bachelor’s degrees at Northeastern Uni-
versity, China, in 2011 and 2009, respectively. He
is a Research Staff Member at IBM T. J. Watson
Research Center, NY, USA since 2016, where he
was also a Graduate-level Co-op in the summers
of 2014 and 2013. In the fall of 2012, he was
at NEC Laboratories Europe, Heidelberg, Germany.

His current research focuses on the interdisciplinary areas in distributed
computing, machine learning, networking, optimization, and signal process-
ing. Dr. Wang served as a technical program committee (TPC) member
of several international conferences, including ICML, NeurIPS, ICDCS,
AISTATS, IJCAI, IFIP Networking, IEEE GLOBECOM, IEEE ICC, and
as an associate editor of the IEEE Transactions on Mobile Computing. He
received the IEEE Communications Society Leonard G. Abraham Prize in
2021, IBM Outstanding Technical Achievement Award (OTAA) in 2019 and
2021, multiple Invention Achievement Awards from IBM since 2016, Best
Paper Finalist of the IEEE International Conference on Image Processing
(ICIP) 2019, and Best Student Paper Award of the Network and Information
Sciences International Technology Alliance (NIS-ITA) in 2015.

Jian Li is an Assistant Professor of Computer
Engineering with the Department of Electrical and
Computer Engineering at Binghamton University,
State University of New York (SUNY). He was a
postdoc with the College of Information and Com-
puter Sciences, University of Massachusetts Amherst
from January 2017 to August 2019. He received
the Ph.D. degree in Computer Engineering from
Texas A&M University in December 2016, and
B.E. degree from Shanghai Jiao Tong University in
June 2012. His current research interests lie in the

areas of reinforcement learning, online learning, network optimization, online
algorithms and their applications in large scale networked systems.

M. Hadi Amini is an Assistant Professor at Knight
Foundation School of Computing and Information
Sciences at Florida International University. He is
the director of Sustainability, Optimization, and
Learning for InterDependent networks laboratory
(www.solidlab.network). He received his Ph.D. in
Electrical and Computer Engineering from Carnegie
Mellon University in 2019, where he received his
M.Sc. degree in 2015. He also holds a doctoral de-
gree in Computer Science and Technology. Prior to
that, he received M.Sc. degree from Tarbiat Modares

University in 2013, and the B.Sc. degree from Sharif University of Technology
in 2011. His research interests include distributed optimization and learning
algorithms, distributed computing and intelligence, sensor networks, interde-
pendent networks, and cyber-physical-social resilience. Application domains
include smart cities, energy systems, transportation networks, and healthcare.

Hadi is a life member of IEEE-Eta Kappa Nu (IEEE-HKN), the honor
society of IEEE. He served as President of Carnegie Mellon University Energy
Science and Innovation Club; as technical program committee of several IEEE
and ACM conferences; and as the lead editor for a book series on “Sustainable
Interdependent Networks” since 2017. He also serves as Associate Editor of
SN Operations Research Forum and International Transactions on Electrical
Energy Systems. He has published more than 100 refereed journal and
conference papers, and book chapters. He edited/authored six books. He
is the recipient of the best paper award from “2019 IEEE Conference
on Computational Science & Computational Intelligence”, FIU’s Knight
Foundation School of Computing and Information Sciences’ “Excellence in
Teaching Award”, best reviewer award from four IEEE Transactions, the best
journal paper award in “Journal of Modern Power Systems and Clean Energy”,
and the dean’s honorary award from the President of Sharif University of
Technology. (Homepage: www.hadiamini.com)

