Detection of Tennis Events from Acoustic Data

Aaron Baughman
baaron@us.ibm.com

Eduardo Morales

eduardo.morales@ibm.com

Gary Reiss

gwreiss@us.ibm.com

IBM IBM Research IBM

Research Triangle Park, NC, USA

Nancy Greco
grecon@us.ibm.com
IBM Research
Yorktown Heights, NY, USA

ABSTRACT

Professional tennis is a fast-paced sport with serves and hits that
can reach speeds of over 100 mph and matches lasting long in du-
ration. For example, in 13 years of Grand Slam data, there were
454 matches with an average of 3 sets that lasted 40 minutes. The
fast pace and long duration of tennis matches make tracking the
time boundaries of each tennis point in a match challenging. The
visual aspect of a tennis match is highly diverse because of its
variety in angles, occlusions, resolutions, contrast and colors, but
the sound component is relatively stable and consistent. In this
paper, we present a system that detects events such as ball hits
and point boundaries in a tennis match from sound data recorded
in the match. We first describe the sound processing pipeline that
includes preprocessing, feature extraction, basic (atomic) event de-
tection, and point boundary detection. Then, we describe the overall
cloud-based system architecture. Afterwards, we describe the user
interface that includes a tool for data labeling to efficiently generate
the training dataset, and a workbench for sound and model manage-
ment. The performance of our system is evaluated in experiments
with real-world tennis sound data. Our proposed pipeline can detect
atomic tennis events with an F1-score of 92.39% and point bound-
aries with average precision and recall values of around 80%. This
system can be very useful for tennis coaches and players to find
and extract game highlights with specific characteristics, so that
they can analyze these highlights and establish their play strategy.
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1 INTRODUCTION

Through all of the 2018 tennis Grand Slam tournaments that include
the Australian Open Tennis Championships, Roland Garros, Wim-
bledon Championships, and the U.S. Open Tennis Championships,
thousands of hours of tennis play was recorded. Practice facilities
such as the United States Tennis Association Player Development
(USTA-PD) collect additional thousands of hours of tennis practice.
The majority of these videos do not contain gameplay annotations
and only include high-level summary information such as play
outcome, venue, players, and date. Even for the actual Grand Slam
matches, only 60% of them have ball and player tracking informa-
tion from a system such as Hawkeye [3] that can be used to create
play annotations such as stroke, duration, player running distance,
etc. Among the tennis practice facilities, very few of them have ball
tracking data.

Before the tournaments begin, tennis competitors spend hun-
dreds of hours practicing their forms and establishing their play
strategy. The videos captured during the tournament and practice
play are frequently used by coaches and players to refine their
game. These videos provide multimedia tennis feedback that can
be manually spliced, scrolled, and panned, but the visual aspect of
the media is very diverse with numerous angles, occlusions, resolu-
tions, contrast, and colors. The latter fact makes it very difficult for
humans to find specific game patterns that deserve further analysis
by coaches or players, particularly when considering that there are
thousands of hours of video recordings.

To solve the above problem, Artificial Intelligence (Al) systems
can be designed to detect useful game patterns from a long duration
of tennis play recording. Machine learning models can be trained
on video segments with pre-defined labels. Using these models, a
tennis recording without gameplay annotations can be automat-
ically annotated by the AI system. However, several challenges
exist towards this goal: 1) The videos recorded in tennis games
are usually very diverse (as explained above); therefore, training
a good machine learning model to detect different video events
would require a large number of labeled video segments, which is
difficult to collect. 2) Processing long durations of video requires
a large amount of processing power, which makes the system not
scalable to a large number of users or long duration of recordings.
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3) A particular game pattern usually consists of multiple smaller
events, which makes the machine learning modeling more difficult
than detecting each single event alone. 4) The human labeling of
data for a large amount of tennis events is a time-consuming task.

In this paper, we address the above challenges by first observing
that although the visual signatures are diverse, the acoustic sig-
natures of actions during play are relatively stable and consistent
throughout the tennis recordings. Based on this observation, we
propose a system that efficiently detects game patterns from the
audio that is recorded together with the video in tennis games.
Since our system processes the audio, the amount of required train-
ing data and processing time is much smaller than what would be
required for video processing. The start and end times of particular
game patterns detected from the audio signal can then be annotated
in the original video recording, which can be easily searched for
and played back to users. For example, coaches and players can
find video segments about certain strokes to analyze body position
throughout a tennis ball hit. We focus on detecting atomic tennis
events and tennis point boundaries in this paper, but the pipeline
can be extended for detecting other game patterns as well.

Our main contributions in this paper are summarized as follows:

(1) We propose a pipeline for tennis event detection that in-
cludes the preprocessing of sounds to detect the existence of
potential events, feature extraction from sounds, the detec-
tion of basic atomic events (such as ball hit) in tennis, and
the detection of the start and end times of a tennis point
which includes a sequence of multiple basic events.

(2) We present the overall system architecture that uses con-
tainer technology and enables the efficient deployment of
the tennis event detection service in a cloud.

(3) We present a data labeling tool that allows the user to effi-
ciently label sound segments that potentially contain tennis
events, where these labeled sound segments are used for
model training, as well as a web interface for the efficient
management of recorded sounds and trained models.

(4) We present experimentation results that show the accuracy
of our models.

We note that different from most existing works which assume
that the training dataset is already given to the system beforehand,
our work in this paper considers the entire life-cycle of the system
where initially the system has no labeled data. We provide tools for
human users to efficiently assign labels to data (sounds) contain-
ing tennis events, and manage labeled and unlabeled data as well
as trained models. This design consideration is important for the
practical applicability of the system.

The rest of this paper is organized as follows. We review the
related work in Section 2. In Section 3, we present our pipeline for
tennis event detection with machine learning models. Section 4
describes the system architecture. The user interfaces for data la-
beling and model/sound management are described in Section 5.
The experimentation setup and results are presented in Section 6
and Section 7 draws conclusions.

2 RELATED WORK
2.1 Automatic Video Annotations

With the growth of video content, there is an increasing demand
for automatic interpretation of videos. Within sports, video meta
tagging and excitement ranking by Merler et al. ranked videos with
multimodal signatures such as actor gesture, commentator, crowd
noise, and speaker content [18, 19]. The work includes streaming
professional tennis and golf videos with several deep learning al-
gorithms to find highlight start and end times. However, these
methods based on video processing generally have very high com-
putational complexity as mentioned in Section 1, which may not
scale well to scenarios with a large amount of video data.

Sports highlight detection using only audio data has been studied
in [9, 13], which is based on sounds such as whistles, speech, and
crowd noise. These works only use shallow models such as the
Gaussian Mixture Model (GMM), and only focus on specific machine
learning approaches instead of the overall system design.

2.2 Acoustic Recognition

The classification of acoustic signals into different classes has re-
ceived much attention in the literature, for various application
scenarios. The current state of the art within acoustic recognition
attempts to use different architectures of deep neural networks. For
example, Oines et al. use Long Short-Term Memory (LSTM), Feed-
forward Sequential Memory Network (FSMN), and a combination
of LSTM and FSMN with a Connectionist Temporal Classification
(CTC) criteria for acoustic modeling [21]. They showed that their
hybrid model performs better on acoustic classification over 3 lan-
guages. A Kaggle competition on acoustic event classification had
69 teams [1], where the winning team implemented a weighted en-
semble that uses several different Convolutional Neural Networks
(CNNs) [11]. In the DCASE 2017 competition, the detection of rare
sound events and acoustic event classification were largely solved
by CNNs as well [20].

However, when a smaller and focused feature set is engineered,
conventional algorithms such as GMM and Support Vector Machine
(SVM) may perform well in specific application domains too [7].
Some works use Mel-Frequency Cepstral Coefficient (MFCC) as
input into environmental sound recognition [6, 12]. Chu et al. pro-
posed a system that uses GMM to classify sounds from 14 predeter-
mined classes [6]. Lu et al. proposed a method that is based on both
K nearest neighbor and GMM algorithms for audio classification
and segmentation [16].

Li et al. discuss comparisons of several variants of deep neural
networks and shallow models [15]. For their domain, they found
that deep neural networks provide superior performance. However,
work by Dai found that conventional models such as GMM and
SVM perform better on some classification tasks [7].

None of the above approaches mentioned in this subsection are
developed for classifying tennis events. We propose an approach
for detecting and classifying tennis events in this paper.

2.3 Time Series Classification

Evidence trending over time provides a temporal basis for time
series classification and event detection. Various deep learning
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methods can be used for time series classification [10]. For example,
LSTM was used to model long-range structural dependencies in
video for automatic video summarization [22]. Other works such
as [8] use streams event processing based on domain encoded rules
and equations, which have already been discovered to predict high-
light markers. Dynamic Time Warping (DTW) and nearest neighbor
models have been used as a method for time series classification
as well [4]. Bagnall et al. maintain a repository of algorithms and
datasets for time series classification, which shows the depth of
this area [5]. As an extension to the body of work on time series
classification, in this paper, we propose an approach for detecting
start and end boundaries of tennis points from the result provided
by the atomic tennis event detection model.

In summary, while there exist works on machine learning ap-
proaches related to our work in this paper, none of them provides
a scalable system that supports the entire life-cycle of tennis event
detection and addresses all the challenges mentioned in Section 1.
We present such a system in this paper. Although we focus on
tennis, our system can be extended to other sports applications
(or sound event detection applications in general) in a relatively
straightforward manner.

3 TENNIS EVENT DETECTION PIPELINE

In a tennis game, two players or teams start on opposing sides of a
net dividing a firm, rectangular, flat surface. The playing surface
is turf, clay, concrete or a painted synthetic. A legal serve starts a
rally as each player takes a turn alternately striking the ball. As
the player’s feet and the tennis ball impact the court surface or
the player’s racquet, a set of characteristic acoustic signatures are
generated. Our goal is to automatically identify different tennis
events and point boundaries based on the sounds recorded in the
tennis game, using machine learning approaches.

3.1 Preprocessing

To classify the acoustic events from a stream of sounds recorded
in a tennis match, the sound needs to be segmented into small
sound windows on which a machine learning model is applied.
Traditional acoustic analysis systems often partition the sound into
equally-sized windows starting from the beginning of the sound
recording. However, since tennis events are sparely distributed over
time and usually have a very short duration, the above approach
may cause the sound of interest span over two different windows,
which degrades the sound classification accuracy. To tackle this
problem, we implement a peak detection approach that detects the
sound of interest and isolates it within a single window.

In our proposed peak detection algorithm, we first obtain the
sound amplitude over time from the raw waveform of the sound.
The algorithm scans for local maxima points where the slope of
the amplitude changes from positive to negative as the central
reference point for a sound classification task. When a peak is
found, the sound is segmented on both sides for a total duration of
1 second, i.e., starting from the center of the peak, 0.5 second before
and 0.5 second after the midpoint are segmented into one sound
window. This resulting sound window is then used for further
processing as explained below.
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Figure 1: Peak sound analyzer.

The overall procedure of peak detection together with its con-
nection to acoustic classification is shown in Fig. 1. The search
for peaks is performed within a range of 10 seconds, where the
length of this search range was determined empirically. The win-
dow length of 1 second was determined empirically as well which
represents the duration of most tennis sound events.

With the 1-second windows containing potential sound events
provided by the peak detection algorithm, the next step is to detect
which event exists in each sound window, as well as to determine
the point boundary in the tennis game. The overall pipeline of
processing each 1-second sound window is shown in Fig. 2, which
includes three main parts: acoustic feature extraction, acoustic clas-
sification and basic event detection, and point boundary detection.
We explain each of these main building blocks in the following.

3.2 Acoustic Feature Extraction

For machine learning models to work on sounds, feature represen-
tations need to be extracted from the raw waveform of the original
1-second sound windows.

At the feature extraction phase, the acoustic signal is first strat-
ified into time frames of 20 ms. Then, Mel-Frequency Cepstral
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Figure 2: Acoustic pipeline for tennis event detection.

Coefficients (MFCC) features with 25 bands is computed on each
20 ms sound frame, which determines the energy level within each
of the frequency regions [14, 17]. Much like human hearing, MFCC
takes the energy level at a log scale; and afterwards, a Discrete Co-
sine Transform (DCT) is taken across the filterbanks to decorrelate
the bins. At this point, the signal is described by power spectral
features.

Because much of the event information is encoded within the
dynamics of the sound, we also include the delta features [17] as
part of the sound features, which capture the fluctuations of the
acoustic signal over time. The delta features are calculated as:

ZI::I n(ct+n = Ct—n)

dy =
2y N n?

1)

where c¢; denotes the original power spectral feature vector at time
frame ¢, N is a window size to look back and forward (a typical
value of N is 2), and d; is the delta feature vector obtained at time
frame ¢. The window size may be reduced at the first and last few
frames of a sound. By applying (1) on the delta feature vector again,
we obtain the acceleration (i.e., second-order delta) features. The
delta and acceleration feature vectors have the same dimension as
the original power spectral feature vector. They are appended to
the power spectral features so that the vector encodes both static
and dynamic properties of the sound.

3.3 Basic Event Detection

The feature vector of each sound window resulting from the above
is used as input to a machine learning model for sound event classi-
fication. Our system primarily uses a CNN classifier together with
MFCC with delta and acceleration features as explained above.
Our proposed CNN model includes 8 layers of different sizes and
types in the following sequence (from top layer to bottom layer):

e 7 Softmax

e 64 Dense

e 64 Dense

e 5 X 5 X% 48 Convolution
e 2 X 2 MaxPool

e 5 X 5 X% 48 Convolution
e 2 X 2 MaxPool

e 5% 5 X% 24 Convolution

The output layer gives the probabilities of 7 different labels as
described below, the last dense layer uses a sigmoid activation
function, the convolutional layers and the other dense layer all use
the rectified linear unit (ReLU) as the activation function. This CNN
architecture was empirically determined. The CNN also has £2
regularization, and is trained using stochastic gradient decent. Our

experiments in Section 6 also consider other classifier and feature
extractor combinations for comparison.
The classifier is trained to classify the following tennis events:

Announcer - human voice of an announcement

Applause - clapping generated by spectators

Feet — the squeaks from the shoes worn by players

Hit - the sound that is generated when a ball strikes the

racket generated by a player’s swing

e Nonplay — non-characteristic noise generated by the tennis
court venue, usually the hushed white noise heard right
before a player serves.

e Out - pronounced yell/call from a line judge

These classes (which we refer to as basic or atomic events) were cho-
sen because they represent a set of typical events in a tennis game.
They also provide us with enough label diversification to perform
downstream time series classification for tennis point boundary
detection, as explained next.

3.4 Point Boundary Detection

Tennis point boundaries specify the start and end times of a tennis
point. These boundaries can be considered as advanced events
compared to the basic events mentioned above, because they are
related to the overall progression of the entire tennis game and
we are essentially detecting the boundaries out of a time series.
Point boundary detection is an extremely valuable utility for tennis
coaches and players to measure fatigue, stroke effectiveness, game
strategy, and opponent weaknesses.

The detection of tennis point boundaries use features derived
from the basic event classifier outputs and confidence values (la-
bel probabilities) of multiple neighboring sound windows. These
features are empirically determined, where the core patterns that
provided the context of a start and end point was defined from ten-
nis domain experts, and experimentation using the point boundary
detection models described below uncovered additional features
that included trends of sound classifier confidence. Table 1 shows
the list of features used for detecting the start or end boundaries,
or both.

Taking these features as input, we use two logistic regression
models for detecting the start and end boundary points, respectively.
The output of the logistic regression model is defined as

px) = ! (2)

T 1+ e~ BotBixit+Prxi)’
where the vector x = [x1, X2, ..., Xg | denotes the input of the model
(i.e., the features defined above), f1, fa, ..., B¢ are trainable parame-
ters that represent the predictive power of each feature. We define
that the start and end boundaries are triggered by a sound of hit.
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Table 1: The features used for point boundary detection

Model Features
Start  Sound duration, announcer average label probability,
applause label count, duration to next label, duration to
previous label, duration to previous two labels, duration
between hit labels
End  Label probability, hit label average probability, nonplay
label count, nonplay average label probability, next la-
bel probability, next two label probabilities, previous
two label probabilities
Both  Announcer label count, applause average label proba-
bility, feet label count, feet average label probability, out
label count, hit label count, out average label probabil-
ity, previous label probability, current label probability,
next label probability, previous two labels probability,
next two labels probability

The output of the model can be interpreted as the probability of the
sound of a hit defining the start time of a point or a hit indicating
the end time of a point, depending on whether the model is for
predicting the start or end boundary. External systems can then
accumulate the boundaries of different tennis point for automated
content tagging and highlight window creation.

4 SYSTEM ARCHITECTURE

If all of the professional matches in the past 13 years of tennis
Grand Slams were analyzed by our system, over 1,000,000 sounds
would have to be classified and 100,000’s of tennis points detected.
In all, over 900 hours of video and 1,000,000,000’s of player and
data tracking points from Hawkeye would need to be processed to
discover all point events related tennis statistics. To achieve the goal
of a production system that is continuously available and scalable,
each of the acoustic detection components of our system needs
to be designed in a distributed architecture. In this way, model,
code, data, and configuration changes can be easily deployed and
orchestrated to our system. We describe our design in the following.

4.1 Containerization

The core acoustic engine is created with several layers within a
Docker container. The core layer contains Ubuntu. Several Unix
packages are installed into a docker image that support our system.
The image contains file permission configurations. At deployment,
the library with multiple acoustic classification algorithms includ-
ing those described in Section 3 is pulled from a git repository and
compiled and built. The library has dozens of acoustic classification
algorithms that are designed for the tennis domain. In addition, a
workbench application that includes a web-based user interface
enables the management of annotated sounds and trained models
(see Section 5.2).

A RESTful webservice is exposed to post sound files and videos
to our system. The work is distributed and routed first to the models
for basic event detection and then to the models for point boundary
detection. The results are stored within a configurable data store
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Figure 3: Overall system architecture.

such as Cloudant [2] that can be retrieved through a RESTful inter-
face from our application. The application in the form of a Docker
image can be deployed as a service.

4.2 Tennis Event Detection as a Service

As shown in Fig. 3, Kubernetes technology exposes our system as
a scaled and distributed service in the cloud. The Docker image is
pushed to a Kubernetes image library. The image can be shifted and
pulled to any region on any cloud. Any number of Kubernetes pods
with a desired set of workers are rolled out to the cloud with our
image. After we specify our node port, our system is publicly avail-
able for tennis event classification. A global server load balancer
(GSLB) can distribute traffic across different regions to Kubernetes
clusters. Kubernetes then routes the traffic to workers. A shared
data store such as Cloudant stores the results of our system.

A client posts the sound files to the Domain Name Service (DNS)
that populates the request to our service. The basic event and point
boundary detection functionalities are ready for any consumer.
Any changes to models, configuration, or code are rolled out to the
service by updating the docker image.

5 USER INTERFACE
5.1 Data Labeling Tool

The machine learning models presented in Section 3 need to be
trained on labeled tennis sounds first, before they can be used in
analyzing tennis sounds with unknown labels. It would be too
time-consuming for a human to watch (and listen to) entire tennis
match recordings where events only occur relatively sparsely in the
recording. To assist the human labeling process, we developed an
annotation tool as shown in Fig. 4. The tool makes use of our peak
detection approach described in Section 3.1. It ingests a selected
match’s video and audio footage and shows (and plays) 1 second
duration video (and audio) segments centered around sound peaks
to the user. If applicable, the user selects a checkbox marking the
start or end of a tennis point and the most appropriate basic event
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Figure 4: Data labeling tool.

label from a predefined list, for the currently shown video and
sound segment. Then, the 1 second sound is extracted from the
video, named with the selected label and an incremental sequence
number, and saved as a file.

As the labeled dataset grows, a model is trained and integrated
with the labeling tool, so that the tool can suggest a sound label for
unseen samples. The user has the option to accept or override this
suggestion. This annotation process enabled a large dataset to be
accumulated very quickly. In our user experiment, a large collection
of over 20,000 labeled sounds was obtained within 5 days.

5.2 Sound and Model Management Workbench

The annotated sound dataset generated using the labeling tool
described in Section 5.1 is sent to the system for training models for
basic event detection and point boundary detection. As the dataset
grows (e.g., recordings of new tennis games may be added over
time), new models are trained possibly using different datasets and
for different purposes. There may also exist sounds in the dataset
which were mislabeled at first and need to be corrected later. In
addition, sounds that are recorded by the user when using the
system may represent some interesting event instances that the
system did not know or gave a label with low confidence.

In all the above cases, the user may need to re-label, delete, or add
sounds into the training dataset; the user may also need to delete or

re-train existing models, or train new models on an updated dataset.

The workbench shown in Fig. 5 is the web-interface that allows
the user to perform these operations. Some details are explained as
follows.

e The “Manage Sounds” tab manages all the sounds in the
current training dataset. Here, each sound can be played, its
labels can be edited, or the entire sound can be deleted. Note
that each sound can have multiple categories of labels (such
as “event: hit; sport: tennis”) if models for distinguishing
different aspects of sounds need to be trained. Although
our pipeline described in Section 3 currently works on a

single label category, this design allows us to extend the
system to more complex models and use cases in the future.
In addition, multiple label categories are also useful in the
search for specific categories of sounds. For example, the
database may store sounds of different sports and the user
may want to train a model only for tennis sounds.

e The “Review” tab keeps all the sounds for which an event
has been detected, where the sounds are uploaded by the
user when running the system for event detection using pre-
trained models (i.e., during the testing phase). It allows the
user to label sounds that the system has determined to be
unknown and add them to the training dataset. It also allows
the user to listen to sounds and check the correctness of the
labels provided by the system; if the user verifies that the
label is correct (or provides a correct label if it was labeled
incorrectly by the system), the sound can be added to the
training dataset as well.

e The “Classify” and “Train” tabs are for model management,
where a pre-trained model can be used to test against sounds
uploaded to the workbench directly in the “Classify” tab, to
examine its accuracy on a test dataset provided by the user.
Under the “Train” tab, new models can be created (trained)
using all or a selected subset of the training data, and unused
models can be deleted.

e The “Visualization” tab visualizes the correlations among
different labels based on the distances of sounds with dif-
ferent labels in the feature space. This allows the user to
explore which sets of labels correspond to similar sounds
and which sets of labels correspond to very different sounds,
to obtain insight on why some sounds may be more difficult
to distinguish than others.

6 EXPERIMENTS AND RESULTS
6.1 Setup

In the experiments, videos captured from a series of tennis matches
on a concrete surface at the same overall acoustic venue environ-
ment were used. The acoustic dataset for training and testing was
annotated from a variety of professional tennis matches in the US
Open Series. This dataset provided a high degree of diversity of
sound within the context of a tennis match on a given surface. Only
hard-court matches were selected from a variety of very large, large,
medium, and small indoor and outdoor venues. The dataset had
diversity of ambient noise. The production quality of the match
footage and sound also varied from commercial broadcast qual-
ity to remote controlled robo camera production. No voice over
commentary was used. Many times, there was overlap with the
individual noises such as a ball strike event being a combination of
feet shuffling, grunting, and the sound of a ball being struck with a
racquet.

The original unlabeled tennis video footage was labeled by a
human user using our data labeling tool described in Section 5.1.
The duration of each sound was 1 second to match with the usual
length of a tennis hit sound, as explained in Section 3.1. The set
of basic events described in Section 3.3 was used as labels. The
match identifier along with timestamp was used to track all of
the labels within a temporal sequence. After some clean-ups and
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Predicted -> announcer applause nonplay out
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applause 1.83% 89.02% 1.34% 1.02% 6.26% 0.53%
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hit 0.99% 1.64% 2.73% 90.60% 2.73% 1.31%
nonplay 1.46% 4.58% 3.67% 1.81% 87.87% 0.61%
out 0.48% 0.03% 0.51% 0.57% 0.19% 98.22%

Figure 6: Confusion matrix of the proposed CNN + MFCC-Delta-Acceleration model.

balancing among the number of sounds for different labels, the
assembled dataset included 6,568 individual tennis sounds, which is
equivalent to a total duration of 1.83 hours of annotated sounds that
were available for machine learning tasks. The class distribution
and total duration of different types of sounds are summarized in
Table 2. Throughout the machine learning tasks, cross-validation
with 4 folds was used with this entire dataset.

Table 2: Distribution of acoustic classes

Class Count Duration (min:sec)
Announcer 3383 56:23
Applause 2842 47:22
Feet 2455 40:55
Hit 3596 59:56
Nonplay 3710 61:50
Out 3137 52:17

6.2 Basic Event Classification Results

To evaluate basic event classification, we compared our proposed
approach of CNN with MFCC-Delta-Acceleration features with
several shallow models including GMM, nearest neighbor, and SVM,
as well as feature extraction mechanisms including log-mel energy
with or without delta/acceleration. The log-mel energy feature
is MFCC without the last step of DCT transform. Some of these
shallow models we use in comparison here are also used in the
related work as described in Section 2.

The GMM model used in comparison had 8 Gaussians in the
mixture model. A separate GMM is trained on data corresponding
to each label. The probabilities of different labels in the test phase
is computed from the likelihood values provided by each GMM,

which is the typical approach in audio classification. For the nearest
neighbor model, we chose an £? norm distance metric with p = 0.5
for distance computation, which, strictly speaking, is not a real
distance metric because the triangle inequality does not hold with
this value of p, but it performed the best according to our empirical
study. The SVM model was defined with a linear kernel.

The precision, recall, and F1-score of several top performing
combinations of models and feature extractors are shown in Table 3.
We see that our proposed CNN model with MFCC plus delta and
acceleration features achieved the best overall performance with
an F1-score of 92.39%. The confusion matrix for the proposed CNN
+ MFCC-Delta-Acceleration model is shown in Fig. 6. Generally,
sounds that are clearly distinguishable from other classes have
higher classification accuracies, whereas sounds that sound similar
to other classes have lower accuracies, as one would intuitively
expect.

Note that all these results were obtained together with the peak
detection algorithm described in Section 3.1. The peak detector
worked well because the tennis event sounds are loud and sudden.

6.3 Point Boundary Detection Results

The prediction of the start time of a tennis point with our proposed
approach described in Section 3.4, based on the output of our CNN +
MFCC-Delta-Acceleration model, had a precision of 84% and a recall
of 82%. The end time prediction had a slightly lower precision of
77% and a recall of 77%. Many of the sounds for the start or end of a
point overlapped. For example, the start of a point could occur when
ball was hit and the crowd was cheering. However, at other times,
the sound of a ball hit could be occluded by applause or nonplay
noise. The constructive sounds during the point event decreased
the point boundary detection performance. The look-ahead and
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Table 3: Basic event classification results of different models
and feature extractors

Model Type Precision % Recall% F1%
CNN + MFCC 90.01 89.89 89.88
CNN + MFCC-Delta-Acc 92.47 92.40 92.39
GMM + MFCC-Delta 78.41 71.53 71.50
GMM + MFCC 76.65 75.76 75.87
GMM + Log-Mel 72.67 71.83 71.61
Nearest Neighbor + MFCC 72.59 68.53 68.57
Nearest Neighbor + Log-Mel 73.64 70.21 70.26
SVM + MFCC 37.19 20.12 23.94
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Figure 7: The ROC curve of point boundary detection.

look-back features in Table 1 of Section 3.4 were designed to help
deconstruct the time series patterns.

The duration or time between labels was not as important for
the end boundary detector as it was for the start boundary detector.
For example, the duration between two closest tennis hit labels
was very important for the start boundary detector. Intuitively,
the timing between a serve and return has small variability. The
label confidences (probabilities) from the sound classifier were more
predictive for detecting the end boundary. If the confidences of next
two labels and previous two labels from the sound classifier were
above 50%, the sound was more likely an end boundary marker. The
Receiver Operator Characteristic (ROC) curve in Fig. 7 depicts the
performance of our point boundary detection approach. Marking
the end of a point is slightly more difficult than marking the start
of a point, because there are usually more overlapping sounds at
the end of a point than at the start of a point.

6.4 Real-World Deployment

At the US Open 2019 (a tennis grand slam event), the detection
of sound-based events and point boundary classification provided
acoustic experiences for tennis fans. For example, we classified
tennis sounds to determine streaming video cuts for the automatic
generation of tennis highlights. The system processed hours of live
tennis match data from 7 courts to create tennis highlights that

& watson

Thank you for
participating!

Figure 8: Acoustics used in IBM US Open Experience.

were distributed around the world. In addition, thousands of people
interacted with interpreted sounds within highlights (see Fig. 8). At
the IBM experience attached to the Aurthur Ashe Stadium, tennis
fans could create their own highlight by moving in front of a camera
and speaking into a microphone. Deep learning algorithms that are
similar to those presented within this paper were used to rank the
excitement levels of the participant.

7 CONCLUSION

In this paper, we have presented a system for detecting tennis events
from acoustic data. It includes tools to support data labeling and
sound/model management by users, and a complete pipeline for
tennis event detection. The system is provided as a cloud service
that can span over a large geographical area. Experimentation re-
sults confirm the effectiveness of our proposed system. Our system
can be used for automatic detection of tennis highlights with event
markers. In addition, results provided by our system can give addi-
tional meta-data and indexes into tennis videos to provide tennis
players with more data and insights as they train and prepare for
matches.
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